1 /* 2 * generic functions used by VFIO devices 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 #ifdef CONFIG_KVM 24 #include <linux/kvm.h> 25 #endif 26 #include <linux/vfio.h> 27 28 #include "hw/vfio/vfio-common.h" 29 #include "hw/vfio/vfio.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "exec/ram_addr.h" 33 #include "hw/hw.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/range.h" 37 #include "sysemu/kvm.h" 38 #include "sysemu/reset.h" 39 #include "sysemu/runstate.h" 40 #include "trace.h" 41 #include "qapi/error.h" 42 #include "migration/migration.h" 43 #include "migration/misc.h" 44 #include "migration/blocker.h" 45 #include "sysemu/tpm.h" 46 47 VFIOGroupList vfio_group_list = 48 QLIST_HEAD_INITIALIZER(vfio_group_list); 49 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = 50 QLIST_HEAD_INITIALIZER(vfio_address_spaces); 51 52 #ifdef CONFIG_KVM 53 /* 54 * We have a single VFIO pseudo device per KVM VM. Once created it lives 55 * for the life of the VM. Closing the file descriptor only drops our 56 * reference to it and the device's reference to kvm. Therefore once 57 * initialized, this file descriptor is only released on QEMU exit and 58 * we'll re-use it should another vfio device be attached before then. 59 */ 60 static int vfio_kvm_device_fd = -1; 61 #endif 62 63 /* 64 * Common VFIO interrupt disable 65 */ 66 void vfio_disable_irqindex(VFIODevice *vbasedev, int index) 67 { 68 struct vfio_irq_set irq_set = { 69 .argsz = sizeof(irq_set), 70 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER, 71 .index = index, 72 .start = 0, 73 .count = 0, 74 }; 75 76 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 77 } 78 79 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index) 80 { 81 struct vfio_irq_set irq_set = { 82 .argsz = sizeof(irq_set), 83 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK, 84 .index = index, 85 .start = 0, 86 .count = 1, 87 }; 88 89 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 90 } 91 92 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index) 93 { 94 struct vfio_irq_set irq_set = { 95 .argsz = sizeof(irq_set), 96 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK, 97 .index = index, 98 .start = 0, 99 .count = 1, 100 }; 101 102 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 103 } 104 105 static inline const char *action_to_str(int action) 106 { 107 switch (action) { 108 case VFIO_IRQ_SET_ACTION_MASK: 109 return "MASK"; 110 case VFIO_IRQ_SET_ACTION_UNMASK: 111 return "UNMASK"; 112 case VFIO_IRQ_SET_ACTION_TRIGGER: 113 return "TRIGGER"; 114 default: 115 return "UNKNOWN ACTION"; 116 } 117 } 118 119 static const char *index_to_str(VFIODevice *vbasedev, int index) 120 { 121 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { 122 return NULL; 123 } 124 125 switch (index) { 126 case VFIO_PCI_INTX_IRQ_INDEX: 127 return "INTX"; 128 case VFIO_PCI_MSI_IRQ_INDEX: 129 return "MSI"; 130 case VFIO_PCI_MSIX_IRQ_INDEX: 131 return "MSIX"; 132 case VFIO_PCI_ERR_IRQ_INDEX: 133 return "ERR"; 134 case VFIO_PCI_REQ_IRQ_INDEX: 135 return "REQ"; 136 default: 137 return NULL; 138 } 139 } 140 141 static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state) 142 { 143 switch (container->iommu_type) { 144 case VFIO_TYPE1v2_IOMMU: 145 case VFIO_TYPE1_IOMMU: 146 /* 147 * We support coordinated discarding of RAM via the RamDiscardManager. 148 */ 149 return ram_block_uncoordinated_discard_disable(state); 150 default: 151 /* 152 * VFIO_SPAPR_TCE_IOMMU most probably works just fine with 153 * RamDiscardManager, however, it is completely untested. 154 * 155 * VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does 156 * completely the opposite of managing mapping/pinning dynamically as 157 * required by RamDiscardManager. We would have to special-case sections 158 * with a RamDiscardManager. 159 */ 160 return ram_block_discard_disable(state); 161 } 162 } 163 164 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex, 165 int action, int fd, Error **errp) 166 { 167 struct vfio_irq_set *irq_set; 168 int argsz, ret = 0; 169 const char *name; 170 int32_t *pfd; 171 172 argsz = sizeof(*irq_set) + sizeof(*pfd); 173 174 irq_set = g_malloc0(argsz); 175 irq_set->argsz = argsz; 176 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action; 177 irq_set->index = index; 178 irq_set->start = subindex; 179 irq_set->count = 1; 180 pfd = (int32_t *)&irq_set->data; 181 *pfd = fd; 182 183 if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 184 ret = -errno; 185 } 186 g_free(irq_set); 187 188 if (!ret) { 189 return 0; 190 } 191 192 error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure"); 193 194 name = index_to_str(vbasedev, index); 195 if (name) { 196 error_prepend(errp, "%s-%d: ", name, subindex); 197 } else { 198 error_prepend(errp, "index %d-%d: ", index, subindex); 199 } 200 error_prepend(errp, 201 "Failed to %s %s eventfd signaling for interrupt ", 202 fd < 0 ? "tear down" : "set up", action_to_str(action)); 203 return ret; 204 } 205 206 /* 207 * IO Port/MMIO - Beware of the endians, VFIO is always little endian 208 */ 209 void vfio_region_write(void *opaque, hwaddr addr, 210 uint64_t data, unsigned size) 211 { 212 VFIORegion *region = opaque; 213 VFIODevice *vbasedev = region->vbasedev; 214 union { 215 uint8_t byte; 216 uint16_t word; 217 uint32_t dword; 218 uint64_t qword; 219 } buf; 220 221 switch (size) { 222 case 1: 223 buf.byte = data; 224 break; 225 case 2: 226 buf.word = cpu_to_le16(data); 227 break; 228 case 4: 229 buf.dword = cpu_to_le32(data); 230 break; 231 case 8: 232 buf.qword = cpu_to_le64(data); 233 break; 234 default: 235 hw_error("vfio: unsupported write size, %u bytes", size); 236 break; 237 } 238 239 if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { 240 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64 241 ",%d) failed: %m", 242 __func__, vbasedev->name, region->nr, 243 addr, data, size); 244 } 245 246 trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size); 247 248 /* 249 * A read or write to a BAR always signals an INTx EOI. This will 250 * do nothing if not pending (including not in INTx mode). We assume 251 * that a BAR access is in response to an interrupt and that BAR 252 * accesses will service the interrupt. Unfortunately, we don't know 253 * which access will service the interrupt, so we're potentially 254 * getting quite a few host interrupts per guest interrupt. 255 */ 256 vbasedev->ops->vfio_eoi(vbasedev); 257 } 258 259 uint64_t vfio_region_read(void *opaque, 260 hwaddr addr, unsigned size) 261 { 262 VFIORegion *region = opaque; 263 VFIODevice *vbasedev = region->vbasedev; 264 union { 265 uint8_t byte; 266 uint16_t word; 267 uint32_t dword; 268 uint64_t qword; 269 } buf; 270 uint64_t data = 0; 271 272 if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { 273 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m", 274 __func__, vbasedev->name, region->nr, 275 addr, size); 276 return (uint64_t)-1; 277 } 278 switch (size) { 279 case 1: 280 data = buf.byte; 281 break; 282 case 2: 283 data = le16_to_cpu(buf.word); 284 break; 285 case 4: 286 data = le32_to_cpu(buf.dword); 287 break; 288 case 8: 289 data = le64_to_cpu(buf.qword); 290 break; 291 default: 292 hw_error("vfio: unsupported read size, %u bytes", size); 293 break; 294 } 295 296 trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data); 297 298 /* Same as write above */ 299 vbasedev->ops->vfio_eoi(vbasedev); 300 301 return data; 302 } 303 304 const MemoryRegionOps vfio_region_ops = { 305 .read = vfio_region_read, 306 .write = vfio_region_write, 307 .endianness = DEVICE_LITTLE_ENDIAN, 308 .valid = { 309 .min_access_size = 1, 310 .max_access_size = 8, 311 }, 312 .impl = { 313 .min_access_size = 1, 314 .max_access_size = 8, 315 }, 316 }; 317 318 /* 319 * Device state interfaces 320 */ 321 322 bool vfio_mig_active(void) 323 { 324 VFIOGroup *group; 325 VFIODevice *vbasedev; 326 327 if (QLIST_EMPTY(&vfio_group_list)) { 328 return false; 329 } 330 331 QLIST_FOREACH(group, &vfio_group_list, next) { 332 QLIST_FOREACH(vbasedev, &group->device_list, next) { 333 if (vbasedev->migration_blocker) { 334 return false; 335 } 336 } 337 } 338 return true; 339 } 340 341 static Error *multiple_devices_migration_blocker; 342 343 static unsigned int vfio_migratable_device_num(void) 344 { 345 VFIOGroup *group; 346 VFIODevice *vbasedev; 347 unsigned int device_num = 0; 348 349 QLIST_FOREACH(group, &vfio_group_list, next) { 350 QLIST_FOREACH(vbasedev, &group->device_list, next) { 351 if (vbasedev->migration) { 352 device_num++; 353 } 354 } 355 } 356 357 return device_num; 358 } 359 360 int vfio_block_multiple_devices_migration(Error **errp) 361 { 362 int ret; 363 364 if (multiple_devices_migration_blocker || 365 vfio_migratable_device_num() <= 1) { 366 return 0; 367 } 368 369 error_setg(&multiple_devices_migration_blocker, 370 "Migration is currently not supported with multiple " 371 "VFIO devices"); 372 ret = migrate_add_blocker(multiple_devices_migration_blocker, errp); 373 if (ret < 0) { 374 error_free(multiple_devices_migration_blocker); 375 multiple_devices_migration_blocker = NULL; 376 } 377 378 return ret; 379 } 380 381 void vfio_unblock_multiple_devices_migration(void) 382 { 383 if (!multiple_devices_migration_blocker || 384 vfio_migratable_device_num() > 1) { 385 return; 386 } 387 388 migrate_del_blocker(multiple_devices_migration_blocker); 389 error_free(multiple_devices_migration_blocker); 390 multiple_devices_migration_blocker = NULL; 391 } 392 393 static bool vfio_devices_all_dirty_tracking(VFIOContainer *container) 394 { 395 VFIOGroup *group; 396 VFIODevice *vbasedev; 397 MigrationState *ms = migrate_get_current(); 398 399 if (!migration_is_setup_or_active(ms->state)) { 400 return false; 401 } 402 403 QLIST_FOREACH(group, &container->group_list, container_next) { 404 QLIST_FOREACH(vbasedev, &group->device_list, next) { 405 VFIOMigration *migration = vbasedev->migration; 406 407 if (!migration) { 408 return false; 409 } 410 411 if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF && 412 migration->device_state == VFIO_DEVICE_STATE_RUNNING) { 413 return false; 414 } 415 } 416 } 417 return true; 418 } 419 420 /* 421 * Check if all VFIO devices are running and migration is active, which is 422 * essentially equivalent to the migration being in pre-copy phase. 423 */ 424 static bool vfio_devices_all_running_and_mig_active(VFIOContainer *container) 425 { 426 VFIOGroup *group; 427 VFIODevice *vbasedev; 428 429 if (!migration_is_active(migrate_get_current())) { 430 return false; 431 } 432 433 QLIST_FOREACH(group, &container->group_list, container_next) { 434 QLIST_FOREACH(vbasedev, &group->device_list, next) { 435 VFIOMigration *migration = vbasedev->migration; 436 437 if (!migration) { 438 return false; 439 } 440 441 if (migration->device_state == VFIO_DEVICE_STATE_RUNNING) { 442 continue; 443 } else { 444 return false; 445 } 446 } 447 } 448 return true; 449 } 450 451 static int vfio_dma_unmap_bitmap(VFIOContainer *container, 452 hwaddr iova, ram_addr_t size, 453 IOMMUTLBEntry *iotlb) 454 { 455 struct vfio_iommu_type1_dma_unmap *unmap; 456 struct vfio_bitmap *bitmap; 457 uint64_t pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size(); 458 int ret; 459 460 unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap)); 461 462 unmap->argsz = sizeof(*unmap) + sizeof(*bitmap); 463 unmap->iova = iova; 464 unmap->size = size; 465 unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP; 466 bitmap = (struct vfio_bitmap *)&unmap->data; 467 468 /* 469 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of 470 * qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize 471 * to qemu_real_host_page_size. 472 */ 473 474 bitmap->pgsize = qemu_real_host_page_size(); 475 bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) / 476 BITS_PER_BYTE; 477 478 if (bitmap->size > container->max_dirty_bitmap_size) { 479 error_report("UNMAP: Size of bitmap too big 0x%"PRIx64, 480 (uint64_t)bitmap->size); 481 ret = -E2BIG; 482 goto unmap_exit; 483 } 484 485 bitmap->data = g_try_malloc0(bitmap->size); 486 if (!bitmap->data) { 487 ret = -ENOMEM; 488 goto unmap_exit; 489 } 490 491 ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap); 492 if (!ret) { 493 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data, 494 iotlb->translated_addr, pages); 495 } else { 496 error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m"); 497 } 498 499 g_free(bitmap->data); 500 unmap_exit: 501 g_free(unmap); 502 return ret; 503 } 504 505 /* 506 * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86 507 */ 508 static int vfio_dma_unmap(VFIOContainer *container, 509 hwaddr iova, ram_addr_t size, 510 IOMMUTLBEntry *iotlb) 511 { 512 struct vfio_iommu_type1_dma_unmap unmap = { 513 .argsz = sizeof(unmap), 514 .flags = 0, 515 .iova = iova, 516 .size = size, 517 }; 518 519 if (iotlb && container->dirty_pages_supported && 520 vfio_devices_all_running_and_mig_active(container)) { 521 return vfio_dma_unmap_bitmap(container, iova, size, iotlb); 522 } 523 524 while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) { 525 /* 526 * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c 527 * v4.15) where an overflow in its wrap-around check prevents us from 528 * unmapping the last page of the address space. Test for the error 529 * condition and re-try the unmap excluding the last page. The 530 * expectation is that we've never mapped the last page anyway and this 531 * unmap request comes via vIOMMU support which also makes it unlikely 532 * that this page is used. This bug was introduced well after type1 v2 533 * support was introduced, so we shouldn't need to test for v1. A fix 534 * is queued for kernel v5.0 so this workaround can be removed once 535 * affected kernels are sufficiently deprecated. 536 */ 537 if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) && 538 container->iommu_type == VFIO_TYPE1v2_IOMMU) { 539 trace_vfio_dma_unmap_overflow_workaround(); 540 unmap.size -= 1ULL << ctz64(container->pgsizes); 541 continue; 542 } 543 error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno)); 544 return -errno; 545 } 546 547 if (iotlb && vfio_devices_all_running_and_mig_active(container)) { 548 cpu_physical_memory_set_dirty_range(iotlb->translated_addr, size, 549 tcg_enabled() ? DIRTY_CLIENTS_ALL : 550 DIRTY_CLIENTS_NOCODE); 551 } 552 553 return 0; 554 } 555 556 static int vfio_dma_map(VFIOContainer *container, hwaddr iova, 557 ram_addr_t size, void *vaddr, bool readonly) 558 { 559 struct vfio_iommu_type1_dma_map map = { 560 .argsz = sizeof(map), 561 .flags = VFIO_DMA_MAP_FLAG_READ, 562 .vaddr = (__u64)(uintptr_t)vaddr, 563 .iova = iova, 564 .size = size, 565 }; 566 567 if (!readonly) { 568 map.flags |= VFIO_DMA_MAP_FLAG_WRITE; 569 } 570 571 /* 572 * Try the mapping, if it fails with EBUSY, unmap the region and try 573 * again. This shouldn't be necessary, but we sometimes see it in 574 * the VGA ROM space. 575 */ 576 if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 || 577 (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 && 578 ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) { 579 return 0; 580 } 581 582 error_report("VFIO_MAP_DMA failed: %s", strerror(errno)); 583 return -errno; 584 } 585 586 static void vfio_host_win_add(VFIOContainer *container, 587 hwaddr min_iova, hwaddr max_iova, 588 uint64_t iova_pgsizes) 589 { 590 VFIOHostDMAWindow *hostwin; 591 592 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 593 if (ranges_overlap(hostwin->min_iova, 594 hostwin->max_iova - hostwin->min_iova + 1, 595 min_iova, 596 max_iova - min_iova + 1)) { 597 hw_error("%s: Overlapped IOMMU are not enabled", __func__); 598 } 599 } 600 601 hostwin = g_malloc0(sizeof(*hostwin)); 602 603 hostwin->min_iova = min_iova; 604 hostwin->max_iova = max_iova; 605 hostwin->iova_pgsizes = iova_pgsizes; 606 QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next); 607 } 608 609 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova, 610 hwaddr max_iova) 611 { 612 VFIOHostDMAWindow *hostwin; 613 614 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 615 if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) { 616 QLIST_REMOVE(hostwin, hostwin_next); 617 g_free(hostwin); 618 return 0; 619 } 620 } 621 622 return -1; 623 } 624 625 static bool vfio_listener_skipped_section(MemoryRegionSection *section) 626 { 627 return (!memory_region_is_ram(section->mr) && 628 !memory_region_is_iommu(section->mr)) || 629 memory_region_is_protected(section->mr) || 630 /* 631 * Sizing an enabled 64-bit BAR can cause spurious mappings to 632 * addresses in the upper part of the 64-bit address space. These 633 * are never accessed by the CPU and beyond the address width of 634 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. 635 */ 636 section->offset_within_address_space & (1ULL << 63); 637 } 638 639 /* Called with rcu_read_lock held. */ 640 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 641 ram_addr_t *ram_addr, bool *read_only) 642 { 643 bool ret, mr_has_discard_manager; 644 645 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only, 646 &mr_has_discard_manager); 647 if (ret && mr_has_discard_manager) { 648 /* 649 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The 650 * pages will remain pinned inside vfio until unmapped, resulting in a 651 * higher memory consumption than expected. If memory would get 652 * populated again later, there would be an inconsistency between pages 653 * pinned by vfio and pages seen by QEMU. This is the case until 654 * unmapped from the IOMMU (e.g., during device reset). 655 * 656 * With malicious guests, we really only care about pinning more memory 657 * than expected. RLIMIT_MEMLOCK set for the user/process can never be 658 * exceeded and can be used to mitigate this problem. 659 */ 660 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" 661 " RAM (e.g., virtio-mem) works, however, malicious" 662 " guests can trigger pinning of more memory than" 663 " intended via an IOMMU. It's possible to mitigate " 664 " by setting/adjusting RLIMIT_MEMLOCK."); 665 } 666 return ret; 667 } 668 669 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 670 { 671 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); 672 VFIOContainer *container = giommu->container; 673 hwaddr iova = iotlb->iova + giommu->iommu_offset; 674 void *vaddr; 675 int ret; 676 677 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", 678 iova, iova + iotlb->addr_mask); 679 680 if (iotlb->target_as != &address_space_memory) { 681 error_report("Wrong target AS \"%s\", only system memory is allowed", 682 iotlb->target_as->name ? iotlb->target_as->name : "none"); 683 return; 684 } 685 686 rcu_read_lock(); 687 688 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 689 bool read_only; 690 691 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) { 692 goto out; 693 } 694 /* 695 * vaddr is only valid until rcu_read_unlock(). But after 696 * vfio_dma_map has set up the mapping the pages will be 697 * pinned by the kernel. This makes sure that the RAM backend 698 * of vaddr will always be there, even if the memory object is 699 * destroyed and its backing memory munmap-ed. 700 */ 701 ret = vfio_dma_map(container, iova, 702 iotlb->addr_mask + 1, vaddr, 703 read_only); 704 if (ret) { 705 error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 706 "0x%"HWADDR_PRIx", %p) = %d (%m)", 707 container, iova, 708 iotlb->addr_mask + 1, vaddr, ret); 709 } 710 } else { 711 ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb); 712 if (ret) { 713 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 714 "0x%"HWADDR_PRIx") = %d (%m)", 715 container, iova, 716 iotlb->addr_mask + 1, ret); 717 } 718 } 719 out: 720 rcu_read_unlock(); 721 } 722 723 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, 724 MemoryRegionSection *section) 725 { 726 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 727 listener); 728 const hwaddr size = int128_get64(section->size); 729 const hwaddr iova = section->offset_within_address_space; 730 int ret; 731 732 /* Unmap with a single call. */ 733 ret = vfio_dma_unmap(vrdl->container, iova, size , NULL); 734 if (ret) { 735 error_report("%s: vfio_dma_unmap() failed: %s", __func__, 736 strerror(-ret)); 737 } 738 } 739 740 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, 741 MemoryRegionSection *section) 742 { 743 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 744 listener); 745 const hwaddr end = section->offset_within_region + 746 int128_get64(section->size); 747 hwaddr start, next, iova; 748 void *vaddr; 749 int ret; 750 751 /* 752 * Map in (aligned within memory region) minimum granularity, so we can 753 * unmap in minimum granularity later. 754 */ 755 for (start = section->offset_within_region; start < end; start = next) { 756 next = ROUND_UP(start + 1, vrdl->granularity); 757 next = MIN(next, end); 758 759 iova = start - section->offset_within_region + 760 section->offset_within_address_space; 761 vaddr = memory_region_get_ram_ptr(section->mr) + start; 762 763 ret = vfio_dma_map(vrdl->container, iova, next - start, 764 vaddr, section->readonly); 765 if (ret) { 766 /* Rollback */ 767 vfio_ram_discard_notify_discard(rdl, section); 768 return ret; 769 } 770 } 771 return 0; 772 } 773 774 static void vfio_register_ram_discard_listener(VFIOContainer *container, 775 MemoryRegionSection *section) 776 { 777 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 778 VFIORamDiscardListener *vrdl; 779 780 /* Ignore some corner cases not relevant in practice. */ 781 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); 782 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, 783 TARGET_PAGE_SIZE)); 784 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); 785 786 vrdl = g_new0(VFIORamDiscardListener, 1); 787 vrdl->container = container; 788 vrdl->mr = section->mr; 789 vrdl->offset_within_address_space = section->offset_within_address_space; 790 vrdl->size = int128_get64(section->size); 791 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, 792 section->mr); 793 794 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); 795 g_assert(container->pgsizes && 796 vrdl->granularity >= 1ULL << ctz64(container->pgsizes)); 797 798 ram_discard_listener_init(&vrdl->listener, 799 vfio_ram_discard_notify_populate, 800 vfio_ram_discard_notify_discard, true); 801 ram_discard_manager_register_listener(rdm, &vrdl->listener, section); 802 QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next); 803 804 /* 805 * Sanity-check if we have a theoretically problematic setup where we could 806 * exceed the maximum number of possible DMA mappings over time. We assume 807 * that each mapped section in the same address space as a RamDiscardManager 808 * section consumes exactly one DMA mapping, with the exception of 809 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections 810 * in the same address space as RamDiscardManager sections. 811 * 812 * We assume that each section in the address space consumes one memslot. 813 * We take the number of KVM memory slots as a best guess for the maximum 814 * number of sections in the address space we could have over time, 815 * also consuming DMA mappings. 816 */ 817 if (container->dma_max_mappings) { 818 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; 819 820 #ifdef CONFIG_KVM 821 if (kvm_enabled()) { 822 max_memslots = kvm_get_max_memslots(); 823 } 824 #endif 825 826 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 827 hwaddr start, end; 828 829 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, 830 vrdl->granularity); 831 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, 832 vrdl->granularity); 833 vrdl_mappings += (end - start) / vrdl->granularity; 834 vrdl_count++; 835 } 836 837 if (vrdl_mappings + max_memslots - vrdl_count > 838 container->dma_max_mappings) { 839 warn_report("%s: possibly running out of DMA mappings. E.g., try" 840 " increasing the 'block-size' of virtio-mem devies." 841 " Maximum possible DMA mappings: %d, Maximum possible" 842 " memslots: %d", __func__, container->dma_max_mappings, 843 max_memslots); 844 } 845 } 846 } 847 848 static void vfio_unregister_ram_discard_listener(VFIOContainer *container, 849 MemoryRegionSection *section) 850 { 851 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 852 VFIORamDiscardListener *vrdl = NULL; 853 854 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 855 if (vrdl->mr == section->mr && 856 vrdl->offset_within_address_space == 857 section->offset_within_address_space) { 858 break; 859 } 860 } 861 862 if (!vrdl) { 863 hw_error("vfio: Trying to unregister missing RAM discard listener"); 864 } 865 866 ram_discard_manager_unregister_listener(rdm, &vrdl->listener); 867 QLIST_REMOVE(vrdl, next); 868 g_free(vrdl); 869 } 870 871 static bool vfio_known_safe_misalignment(MemoryRegionSection *section) 872 { 873 MemoryRegion *mr = section->mr; 874 875 if (!TPM_IS_CRB(mr->owner)) { 876 return false; 877 } 878 879 /* this is a known safe misaligned region, just trace for debug purpose */ 880 trace_vfio_known_safe_misalignment(memory_region_name(mr), 881 section->offset_within_address_space, 882 section->offset_within_region, 883 qemu_real_host_page_size()); 884 return true; 885 } 886 887 static void vfio_listener_region_add(MemoryListener *listener, 888 MemoryRegionSection *section) 889 { 890 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 891 hwaddr iova, end; 892 Int128 llend, llsize; 893 void *vaddr; 894 int ret; 895 VFIOHostDMAWindow *hostwin; 896 bool hostwin_found; 897 Error *err = NULL; 898 899 if (vfio_listener_skipped_section(section)) { 900 trace_vfio_listener_region_add_skip( 901 section->offset_within_address_space, 902 section->offset_within_address_space + 903 int128_get64(int128_sub(section->size, int128_one()))); 904 return; 905 } 906 907 if (unlikely((section->offset_within_address_space & 908 ~qemu_real_host_page_mask()) != 909 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 910 if (!vfio_known_safe_misalignment(section)) { 911 error_report("%s received unaligned region %s iova=0x%"PRIx64 912 " offset_within_region=0x%"PRIx64 913 " qemu_real_host_page_size=0x%"PRIxPTR, 914 __func__, memory_region_name(section->mr), 915 section->offset_within_address_space, 916 section->offset_within_region, 917 qemu_real_host_page_size()); 918 } 919 return; 920 } 921 922 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 923 llend = int128_make64(section->offset_within_address_space); 924 llend = int128_add(llend, section->size); 925 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 926 927 if (int128_ge(int128_make64(iova), llend)) { 928 if (memory_region_is_ram_device(section->mr)) { 929 trace_vfio_listener_region_add_no_dma_map( 930 memory_region_name(section->mr), 931 section->offset_within_address_space, 932 int128_getlo(section->size), 933 qemu_real_host_page_size()); 934 } 935 return; 936 } 937 end = int128_get64(int128_sub(llend, int128_one())); 938 939 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 940 hwaddr pgsize = 0; 941 942 /* For now intersections are not allowed, we may relax this later */ 943 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 944 if (ranges_overlap(hostwin->min_iova, 945 hostwin->max_iova - hostwin->min_iova + 1, 946 section->offset_within_address_space, 947 int128_get64(section->size))) { 948 error_setg(&err, 949 "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing" 950 "host DMA window [0x%"PRIx64",0x%"PRIx64"]", 951 section->offset_within_address_space, 952 section->offset_within_address_space + 953 int128_get64(section->size) - 1, 954 hostwin->min_iova, hostwin->max_iova); 955 goto fail; 956 } 957 } 958 959 ret = vfio_spapr_create_window(container, section, &pgsize); 960 if (ret) { 961 error_setg_errno(&err, -ret, "Failed to create SPAPR window"); 962 goto fail; 963 } 964 965 vfio_host_win_add(container, section->offset_within_address_space, 966 section->offset_within_address_space + 967 int128_get64(section->size) - 1, pgsize); 968 #ifdef CONFIG_KVM 969 if (kvm_enabled()) { 970 VFIOGroup *group; 971 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 972 struct kvm_vfio_spapr_tce param; 973 struct kvm_device_attr attr = { 974 .group = KVM_DEV_VFIO_GROUP, 975 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE, 976 .addr = (uint64_t)(unsigned long)¶m, 977 }; 978 979 if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD, 980 ¶m.tablefd)) { 981 QLIST_FOREACH(group, &container->group_list, container_next) { 982 param.groupfd = group->fd; 983 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 984 error_report("vfio: failed to setup fd %d " 985 "for a group with fd %d: %s", 986 param.tablefd, param.groupfd, 987 strerror(errno)); 988 return; 989 } 990 trace_vfio_spapr_group_attach(param.groupfd, param.tablefd); 991 } 992 } 993 } 994 #endif 995 } 996 997 hostwin_found = false; 998 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 999 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { 1000 hostwin_found = true; 1001 break; 1002 } 1003 } 1004 1005 if (!hostwin_found) { 1006 error_setg(&err, "Container %p can't map guest IOVA region" 1007 " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end); 1008 goto fail; 1009 } 1010 1011 memory_region_ref(section->mr); 1012 1013 if (memory_region_is_iommu(section->mr)) { 1014 VFIOGuestIOMMU *giommu; 1015 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 1016 int iommu_idx; 1017 1018 trace_vfio_listener_region_add_iommu(iova, end); 1019 /* 1020 * FIXME: For VFIO iommu types which have KVM acceleration to 1021 * avoid bouncing all map/unmaps through qemu this way, this 1022 * would be the right place to wire that up (tell the KVM 1023 * device emulation the VFIO iommu handles to use). 1024 */ 1025 giommu = g_malloc0(sizeof(*giommu)); 1026 giommu->iommu_mr = iommu_mr; 1027 giommu->iommu_offset = section->offset_within_address_space - 1028 section->offset_within_region; 1029 giommu->container = container; 1030 llend = int128_add(int128_make64(section->offset_within_region), 1031 section->size); 1032 llend = int128_sub(llend, int128_one()); 1033 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 1034 MEMTXATTRS_UNSPECIFIED); 1035 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, 1036 IOMMU_NOTIFIER_IOTLB_EVENTS, 1037 section->offset_within_region, 1038 int128_get64(llend), 1039 iommu_idx); 1040 1041 ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr, 1042 container->pgsizes, 1043 &err); 1044 if (ret) { 1045 g_free(giommu); 1046 goto fail; 1047 } 1048 1049 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, 1050 &err); 1051 if (ret) { 1052 g_free(giommu); 1053 goto fail; 1054 } 1055 QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next); 1056 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n); 1057 1058 return; 1059 } 1060 1061 /* Here we assume that memory_region_is_ram(section->mr)==true */ 1062 1063 /* 1064 * For RAM memory regions with a RamDiscardManager, we only want to map the 1065 * actually populated parts - and update the mapping whenever we're notified 1066 * about changes. 1067 */ 1068 if (memory_region_has_ram_discard_manager(section->mr)) { 1069 vfio_register_ram_discard_listener(container, section); 1070 return; 1071 } 1072 1073 vaddr = memory_region_get_ram_ptr(section->mr) + 1074 section->offset_within_region + 1075 (iova - section->offset_within_address_space); 1076 1077 trace_vfio_listener_region_add_ram(iova, end, vaddr); 1078 1079 llsize = int128_sub(llend, int128_make64(iova)); 1080 1081 if (memory_region_is_ram_device(section->mr)) { 1082 hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 1083 1084 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { 1085 trace_vfio_listener_region_add_no_dma_map( 1086 memory_region_name(section->mr), 1087 section->offset_within_address_space, 1088 int128_getlo(section->size), 1089 pgmask + 1); 1090 return; 1091 } 1092 } 1093 1094 ret = vfio_dma_map(container, iova, int128_get64(llsize), 1095 vaddr, section->readonly); 1096 if (ret) { 1097 error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 1098 "0x%"HWADDR_PRIx", %p) = %d (%m)", 1099 container, iova, int128_get64(llsize), vaddr, ret); 1100 if (memory_region_is_ram_device(section->mr)) { 1101 /* Allow unexpected mappings not to be fatal for RAM devices */ 1102 error_report_err(err); 1103 return; 1104 } 1105 goto fail; 1106 } 1107 1108 return; 1109 1110 fail: 1111 if (memory_region_is_ram_device(section->mr)) { 1112 error_report("failed to vfio_dma_map. pci p2p may not work"); 1113 return; 1114 } 1115 /* 1116 * On the initfn path, store the first error in the container so we 1117 * can gracefully fail. Runtime, there's not much we can do other 1118 * than throw a hardware error. 1119 */ 1120 if (!container->initialized) { 1121 if (!container->error) { 1122 error_propagate_prepend(&container->error, err, 1123 "Region %s: ", 1124 memory_region_name(section->mr)); 1125 } else { 1126 error_free(err); 1127 } 1128 } else { 1129 error_report_err(err); 1130 hw_error("vfio: DMA mapping failed, unable to continue"); 1131 } 1132 } 1133 1134 static void vfio_listener_region_del(MemoryListener *listener, 1135 MemoryRegionSection *section) 1136 { 1137 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1138 hwaddr iova, end; 1139 Int128 llend, llsize; 1140 int ret; 1141 bool try_unmap = true; 1142 1143 if (vfio_listener_skipped_section(section)) { 1144 trace_vfio_listener_region_del_skip( 1145 section->offset_within_address_space, 1146 section->offset_within_address_space + 1147 int128_get64(int128_sub(section->size, int128_one()))); 1148 return; 1149 } 1150 1151 if (unlikely((section->offset_within_address_space & 1152 ~qemu_real_host_page_mask()) != 1153 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 1154 if (!vfio_known_safe_misalignment(section)) { 1155 error_report("%s received unaligned region %s iova=0x%"PRIx64 1156 " offset_within_region=0x%"PRIx64 1157 " qemu_real_host_page_size=0x%"PRIxPTR, 1158 __func__, memory_region_name(section->mr), 1159 section->offset_within_address_space, 1160 section->offset_within_region, 1161 qemu_real_host_page_size()); 1162 } 1163 return; 1164 } 1165 1166 if (memory_region_is_iommu(section->mr)) { 1167 VFIOGuestIOMMU *giommu; 1168 1169 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 1170 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1171 giommu->n.start == section->offset_within_region) { 1172 memory_region_unregister_iommu_notifier(section->mr, 1173 &giommu->n); 1174 QLIST_REMOVE(giommu, giommu_next); 1175 g_free(giommu); 1176 break; 1177 } 1178 } 1179 1180 /* 1181 * FIXME: We assume the one big unmap below is adequate to 1182 * remove any individual page mappings in the IOMMU which 1183 * might have been copied into VFIO. This works for a page table 1184 * based IOMMU where a big unmap flattens a large range of IO-PTEs. 1185 * That may not be true for all IOMMU types. 1186 */ 1187 } 1188 1189 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 1190 llend = int128_make64(section->offset_within_address_space); 1191 llend = int128_add(llend, section->size); 1192 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 1193 1194 if (int128_ge(int128_make64(iova), llend)) { 1195 return; 1196 } 1197 end = int128_get64(int128_sub(llend, int128_one())); 1198 1199 llsize = int128_sub(llend, int128_make64(iova)); 1200 1201 trace_vfio_listener_region_del(iova, end); 1202 1203 if (memory_region_is_ram_device(section->mr)) { 1204 hwaddr pgmask; 1205 VFIOHostDMAWindow *hostwin; 1206 bool hostwin_found = false; 1207 1208 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 1209 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { 1210 hostwin_found = true; 1211 break; 1212 } 1213 } 1214 assert(hostwin_found); /* or region_add() would have failed */ 1215 1216 pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 1217 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); 1218 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1219 vfio_unregister_ram_discard_listener(container, section); 1220 /* Unregistering will trigger an unmap. */ 1221 try_unmap = false; 1222 } 1223 1224 if (try_unmap) { 1225 if (int128_eq(llsize, int128_2_64())) { 1226 /* The unmap ioctl doesn't accept a full 64-bit span. */ 1227 llsize = int128_rshift(llsize, 1); 1228 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); 1229 if (ret) { 1230 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 1231 "0x%"HWADDR_PRIx") = %d (%m)", 1232 container, iova, int128_get64(llsize), ret); 1233 } 1234 iova += int128_get64(llsize); 1235 } 1236 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); 1237 if (ret) { 1238 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 1239 "0x%"HWADDR_PRIx") = %d (%m)", 1240 container, iova, int128_get64(llsize), ret); 1241 } 1242 } 1243 1244 memory_region_unref(section->mr); 1245 1246 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1247 vfio_spapr_remove_window(container, 1248 section->offset_within_address_space); 1249 if (vfio_host_win_del(container, 1250 section->offset_within_address_space, 1251 section->offset_within_address_space + 1252 int128_get64(section->size) - 1) < 0) { 1253 hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx, 1254 __func__, section->offset_within_address_space); 1255 } 1256 } 1257 } 1258 1259 static void vfio_set_dirty_page_tracking(VFIOContainer *container, bool start) 1260 { 1261 int ret; 1262 struct vfio_iommu_type1_dirty_bitmap dirty = { 1263 .argsz = sizeof(dirty), 1264 }; 1265 1266 if (!container->dirty_pages_supported) { 1267 return; 1268 } 1269 1270 if (start) { 1271 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START; 1272 } else { 1273 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP; 1274 } 1275 1276 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty); 1277 if (ret) { 1278 error_report("Failed to set dirty tracking flag 0x%x errno: %d", 1279 dirty.flags, errno); 1280 } 1281 } 1282 1283 static void vfio_listener_log_global_start(MemoryListener *listener) 1284 { 1285 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1286 1287 vfio_set_dirty_page_tracking(container, true); 1288 } 1289 1290 static void vfio_listener_log_global_stop(MemoryListener *listener) 1291 { 1292 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1293 1294 vfio_set_dirty_page_tracking(container, false); 1295 } 1296 1297 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova, 1298 uint64_t size, ram_addr_t ram_addr) 1299 { 1300 struct vfio_iommu_type1_dirty_bitmap *dbitmap; 1301 struct vfio_iommu_type1_dirty_bitmap_get *range; 1302 uint64_t pages; 1303 int ret; 1304 1305 if (!container->dirty_pages_supported) { 1306 cpu_physical_memory_set_dirty_range(ram_addr, size, 1307 tcg_enabled() ? DIRTY_CLIENTS_ALL : 1308 DIRTY_CLIENTS_NOCODE); 1309 return 0; 1310 } 1311 1312 dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range)); 1313 1314 dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range); 1315 dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP; 1316 range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data; 1317 range->iova = iova; 1318 range->size = size; 1319 1320 /* 1321 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of 1322 * qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize 1323 * to qemu_real_host_page_size. 1324 */ 1325 range->bitmap.pgsize = qemu_real_host_page_size(); 1326 1327 pages = REAL_HOST_PAGE_ALIGN(range->size) / qemu_real_host_page_size(); 1328 range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) / 1329 BITS_PER_BYTE; 1330 range->bitmap.data = g_try_malloc0(range->bitmap.size); 1331 if (!range->bitmap.data) { 1332 ret = -ENOMEM; 1333 goto err_out; 1334 } 1335 1336 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap); 1337 if (ret) { 1338 error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64 1339 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova, 1340 (uint64_t)range->size, errno); 1341 goto err_out; 1342 } 1343 1344 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data, 1345 ram_addr, pages); 1346 1347 trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size, 1348 range->bitmap.size, ram_addr); 1349 err_out: 1350 g_free(range->bitmap.data); 1351 g_free(dbitmap); 1352 1353 return ret; 1354 } 1355 1356 typedef struct { 1357 IOMMUNotifier n; 1358 VFIOGuestIOMMU *giommu; 1359 } vfio_giommu_dirty_notifier; 1360 1361 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 1362 { 1363 vfio_giommu_dirty_notifier *gdn = container_of(n, 1364 vfio_giommu_dirty_notifier, n); 1365 VFIOGuestIOMMU *giommu = gdn->giommu; 1366 VFIOContainer *container = giommu->container; 1367 hwaddr iova = iotlb->iova + giommu->iommu_offset; 1368 ram_addr_t translated_addr; 1369 1370 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); 1371 1372 if (iotlb->target_as != &address_space_memory) { 1373 error_report("Wrong target AS \"%s\", only system memory is allowed", 1374 iotlb->target_as->name ? iotlb->target_as->name : "none"); 1375 return; 1376 } 1377 1378 rcu_read_lock(); 1379 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) { 1380 int ret; 1381 1382 ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1, 1383 translated_addr); 1384 if (ret) { 1385 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " 1386 "0x%"HWADDR_PRIx") = %d (%m)", 1387 container, iova, 1388 iotlb->addr_mask + 1, ret); 1389 } 1390 } 1391 rcu_read_unlock(); 1392 } 1393 1394 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, 1395 void *opaque) 1396 { 1397 const hwaddr size = int128_get64(section->size); 1398 const hwaddr iova = section->offset_within_address_space; 1399 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + 1400 section->offset_within_region; 1401 VFIORamDiscardListener *vrdl = opaque; 1402 1403 /* 1404 * Sync the whole mapped region (spanning multiple individual mappings) 1405 * in one go. 1406 */ 1407 return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr); 1408 } 1409 1410 static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container, 1411 MemoryRegionSection *section) 1412 { 1413 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 1414 VFIORamDiscardListener *vrdl = NULL; 1415 1416 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 1417 if (vrdl->mr == section->mr && 1418 vrdl->offset_within_address_space == 1419 section->offset_within_address_space) { 1420 break; 1421 } 1422 } 1423 1424 if (!vrdl) { 1425 hw_error("vfio: Trying to sync missing RAM discard listener"); 1426 } 1427 1428 /* 1429 * We only want/can synchronize the bitmap for actually mapped parts - 1430 * which correspond to populated parts. Replay all populated parts. 1431 */ 1432 return ram_discard_manager_replay_populated(rdm, section, 1433 vfio_ram_discard_get_dirty_bitmap, 1434 &vrdl); 1435 } 1436 1437 static int vfio_sync_dirty_bitmap(VFIOContainer *container, 1438 MemoryRegionSection *section) 1439 { 1440 ram_addr_t ram_addr; 1441 1442 if (memory_region_is_iommu(section->mr)) { 1443 VFIOGuestIOMMU *giommu; 1444 1445 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 1446 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1447 giommu->n.start == section->offset_within_region) { 1448 Int128 llend; 1449 vfio_giommu_dirty_notifier gdn = { .giommu = giommu }; 1450 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr, 1451 MEMTXATTRS_UNSPECIFIED); 1452 1453 llend = int128_add(int128_make64(section->offset_within_region), 1454 section->size); 1455 llend = int128_sub(llend, int128_one()); 1456 1457 iommu_notifier_init(&gdn.n, 1458 vfio_iommu_map_dirty_notify, 1459 IOMMU_NOTIFIER_MAP, 1460 section->offset_within_region, 1461 int128_get64(llend), 1462 idx); 1463 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n); 1464 break; 1465 } 1466 } 1467 return 0; 1468 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1469 return vfio_sync_ram_discard_listener_dirty_bitmap(container, section); 1470 } 1471 1472 ram_addr = memory_region_get_ram_addr(section->mr) + 1473 section->offset_within_region; 1474 1475 return vfio_get_dirty_bitmap(container, 1476 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), 1477 int128_get64(section->size), ram_addr); 1478 } 1479 1480 static void vfio_listener_log_sync(MemoryListener *listener, 1481 MemoryRegionSection *section) 1482 { 1483 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1484 1485 if (vfio_listener_skipped_section(section)) { 1486 return; 1487 } 1488 1489 if (vfio_devices_all_dirty_tracking(container)) { 1490 vfio_sync_dirty_bitmap(container, section); 1491 } 1492 } 1493 1494 static const MemoryListener vfio_memory_listener = { 1495 .name = "vfio", 1496 .region_add = vfio_listener_region_add, 1497 .region_del = vfio_listener_region_del, 1498 .log_global_start = vfio_listener_log_global_start, 1499 .log_global_stop = vfio_listener_log_global_stop, 1500 .log_sync = vfio_listener_log_sync, 1501 }; 1502 1503 static void vfio_listener_release(VFIOContainer *container) 1504 { 1505 memory_listener_unregister(&container->listener); 1506 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1507 memory_listener_unregister(&container->prereg_listener); 1508 } 1509 } 1510 1511 static struct vfio_info_cap_header * 1512 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id) 1513 { 1514 struct vfio_info_cap_header *hdr; 1515 1516 for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) { 1517 if (hdr->id == id) { 1518 return hdr; 1519 } 1520 } 1521 1522 return NULL; 1523 } 1524 1525 struct vfio_info_cap_header * 1526 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id) 1527 { 1528 if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) { 1529 return NULL; 1530 } 1531 1532 return vfio_get_cap((void *)info, info->cap_offset, id); 1533 } 1534 1535 static struct vfio_info_cap_header * 1536 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) 1537 { 1538 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { 1539 return NULL; 1540 } 1541 1542 return vfio_get_cap((void *)info, info->cap_offset, id); 1543 } 1544 1545 struct vfio_info_cap_header * 1546 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id) 1547 { 1548 if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) { 1549 return NULL; 1550 } 1551 1552 return vfio_get_cap((void *)info, info->cap_offset, id); 1553 } 1554 1555 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info, 1556 unsigned int *avail) 1557 { 1558 struct vfio_info_cap_header *hdr; 1559 struct vfio_iommu_type1_info_dma_avail *cap; 1560 1561 /* If the capability cannot be found, assume no DMA limiting */ 1562 hdr = vfio_get_iommu_type1_info_cap(info, 1563 VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL); 1564 if (hdr == NULL) { 1565 return false; 1566 } 1567 1568 if (avail != NULL) { 1569 cap = (void *) hdr; 1570 *avail = cap->avail; 1571 } 1572 1573 return true; 1574 } 1575 1576 static int vfio_setup_region_sparse_mmaps(VFIORegion *region, 1577 struct vfio_region_info *info) 1578 { 1579 struct vfio_info_cap_header *hdr; 1580 struct vfio_region_info_cap_sparse_mmap *sparse; 1581 int i, j; 1582 1583 hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP); 1584 if (!hdr) { 1585 return -ENODEV; 1586 } 1587 1588 sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header); 1589 1590 trace_vfio_region_sparse_mmap_header(region->vbasedev->name, 1591 region->nr, sparse->nr_areas); 1592 1593 region->mmaps = g_new0(VFIOMmap, sparse->nr_areas); 1594 1595 for (i = 0, j = 0; i < sparse->nr_areas; i++) { 1596 if (sparse->areas[i].size) { 1597 trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset, 1598 sparse->areas[i].offset + 1599 sparse->areas[i].size - 1); 1600 region->mmaps[j].offset = sparse->areas[i].offset; 1601 region->mmaps[j].size = sparse->areas[i].size; 1602 j++; 1603 } 1604 } 1605 1606 region->nr_mmaps = j; 1607 region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap)); 1608 1609 return 0; 1610 } 1611 1612 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region, 1613 int index, const char *name) 1614 { 1615 struct vfio_region_info *info; 1616 int ret; 1617 1618 ret = vfio_get_region_info(vbasedev, index, &info); 1619 if (ret) { 1620 return ret; 1621 } 1622 1623 region->vbasedev = vbasedev; 1624 region->flags = info->flags; 1625 region->size = info->size; 1626 region->fd_offset = info->offset; 1627 region->nr = index; 1628 1629 if (region->size) { 1630 region->mem = g_new0(MemoryRegion, 1); 1631 memory_region_init_io(region->mem, obj, &vfio_region_ops, 1632 region, name, region->size); 1633 1634 if (!vbasedev->no_mmap && 1635 region->flags & VFIO_REGION_INFO_FLAG_MMAP) { 1636 1637 ret = vfio_setup_region_sparse_mmaps(region, info); 1638 1639 if (ret) { 1640 region->nr_mmaps = 1; 1641 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps); 1642 region->mmaps[0].offset = 0; 1643 region->mmaps[0].size = region->size; 1644 } 1645 } 1646 } 1647 1648 g_free(info); 1649 1650 trace_vfio_region_setup(vbasedev->name, index, name, 1651 region->flags, region->fd_offset, region->size); 1652 return 0; 1653 } 1654 1655 static void vfio_subregion_unmap(VFIORegion *region, int index) 1656 { 1657 trace_vfio_region_unmap(memory_region_name(®ion->mmaps[index].mem), 1658 region->mmaps[index].offset, 1659 region->mmaps[index].offset + 1660 region->mmaps[index].size - 1); 1661 memory_region_del_subregion(region->mem, ®ion->mmaps[index].mem); 1662 munmap(region->mmaps[index].mmap, region->mmaps[index].size); 1663 object_unparent(OBJECT(®ion->mmaps[index].mem)); 1664 region->mmaps[index].mmap = NULL; 1665 } 1666 1667 int vfio_region_mmap(VFIORegion *region) 1668 { 1669 int i, prot = 0; 1670 char *name; 1671 1672 if (!region->mem) { 1673 return 0; 1674 } 1675 1676 prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0; 1677 prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0; 1678 1679 for (i = 0; i < region->nr_mmaps; i++) { 1680 region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot, 1681 MAP_SHARED, region->vbasedev->fd, 1682 region->fd_offset + 1683 region->mmaps[i].offset); 1684 if (region->mmaps[i].mmap == MAP_FAILED) { 1685 int ret = -errno; 1686 1687 trace_vfio_region_mmap_fault(memory_region_name(region->mem), i, 1688 region->fd_offset + 1689 region->mmaps[i].offset, 1690 region->fd_offset + 1691 region->mmaps[i].offset + 1692 region->mmaps[i].size - 1, ret); 1693 1694 region->mmaps[i].mmap = NULL; 1695 1696 for (i--; i >= 0; i--) { 1697 vfio_subregion_unmap(region, i); 1698 } 1699 1700 return ret; 1701 } 1702 1703 name = g_strdup_printf("%s mmaps[%d]", 1704 memory_region_name(region->mem), i); 1705 memory_region_init_ram_device_ptr(®ion->mmaps[i].mem, 1706 memory_region_owner(region->mem), 1707 name, region->mmaps[i].size, 1708 region->mmaps[i].mmap); 1709 g_free(name); 1710 memory_region_add_subregion(region->mem, region->mmaps[i].offset, 1711 ®ion->mmaps[i].mem); 1712 1713 trace_vfio_region_mmap(memory_region_name(®ion->mmaps[i].mem), 1714 region->mmaps[i].offset, 1715 region->mmaps[i].offset + 1716 region->mmaps[i].size - 1); 1717 } 1718 1719 return 0; 1720 } 1721 1722 void vfio_region_unmap(VFIORegion *region) 1723 { 1724 int i; 1725 1726 if (!region->mem) { 1727 return; 1728 } 1729 1730 for (i = 0; i < region->nr_mmaps; i++) { 1731 if (region->mmaps[i].mmap) { 1732 vfio_subregion_unmap(region, i); 1733 } 1734 } 1735 } 1736 1737 void vfio_region_exit(VFIORegion *region) 1738 { 1739 int i; 1740 1741 if (!region->mem) { 1742 return; 1743 } 1744 1745 for (i = 0; i < region->nr_mmaps; i++) { 1746 if (region->mmaps[i].mmap) { 1747 memory_region_del_subregion(region->mem, ®ion->mmaps[i].mem); 1748 } 1749 } 1750 1751 trace_vfio_region_exit(region->vbasedev->name, region->nr); 1752 } 1753 1754 void vfio_region_finalize(VFIORegion *region) 1755 { 1756 int i; 1757 1758 if (!region->mem) { 1759 return; 1760 } 1761 1762 for (i = 0; i < region->nr_mmaps; i++) { 1763 if (region->mmaps[i].mmap) { 1764 munmap(region->mmaps[i].mmap, region->mmaps[i].size); 1765 object_unparent(OBJECT(®ion->mmaps[i].mem)); 1766 } 1767 } 1768 1769 object_unparent(OBJECT(region->mem)); 1770 1771 g_free(region->mem); 1772 g_free(region->mmaps); 1773 1774 trace_vfio_region_finalize(region->vbasedev->name, region->nr); 1775 1776 region->mem = NULL; 1777 region->mmaps = NULL; 1778 region->nr_mmaps = 0; 1779 region->size = 0; 1780 region->flags = 0; 1781 region->nr = 0; 1782 } 1783 1784 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled) 1785 { 1786 int i; 1787 1788 if (!region->mem) { 1789 return; 1790 } 1791 1792 for (i = 0; i < region->nr_mmaps; i++) { 1793 if (region->mmaps[i].mmap) { 1794 memory_region_set_enabled(®ion->mmaps[i].mem, enabled); 1795 } 1796 } 1797 1798 trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem), 1799 enabled); 1800 } 1801 1802 void vfio_reset_handler(void *opaque) 1803 { 1804 VFIOGroup *group; 1805 VFIODevice *vbasedev; 1806 1807 QLIST_FOREACH(group, &vfio_group_list, next) { 1808 QLIST_FOREACH(vbasedev, &group->device_list, next) { 1809 if (vbasedev->dev->realized) { 1810 vbasedev->ops->vfio_compute_needs_reset(vbasedev); 1811 } 1812 } 1813 } 1814 1815 QLIST_FOREACH(group, &vfio_group_list, next) { 1816 QLIST_FOREACH(vbasedev, &group->device_list, next) { 1817 if (vbasedev->dev->realized && vbasedev->needs_reset) { 1818 vbasedev->ops->vfio_hot_reset_multi(vbasedev); 1819 } 1820 } 1821 } 1822 } 1823 1824 static void vfio_kvm_device_add_group(VFIOGroup *group) 1825 { 1826 #ifdef CONFIG_KVM 1827 struct kvm_device_attr attr = { 1828 .group = KVM_DEV_VFIO_GROUP, 1829 .attr = KVM_DEV_VFIO_GROUP_ADD, 1830 .addr = (uint64_t)(unsigned long)&group->fd, 1831 }; 1832 1833 if (!kvm_enabled()) { 1834 return; 1835 } 1836 1837 if (vfio_kvm_device_fd < 0) { 1838 struct kvm_create_device cd = { 1839 .type = KVM_DEV_TYPE_VFIO, 1840 }; 1841 1842 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { 1843 error_report("Failed to create KVM VFIO device: %m"); 1844 return; 1845 } 1846 1847 vfio_kvm_device_fd = cd.fd; 1848 } 1849 1850 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1851 error_report("Failed to add group %d to KVM VFIO device: %m", 1852 group->groupid); 1853 } 1854 #endif 1855 } 1856 1857 static void vfio_kvm_device_del_group(VFIOGroup *group) 1858 { 1859 #ifdef CONFIG_KVM 1860 struct kvm_device_attr attr = { 1861 .group = KVM_DEV_VFIO_GROUP, 1862 .attr = KVM_DEV_VFIO_GROUP_DEL, 1863 .addr = (uint64_t)(unsigned long)&group->fd, 1864 }; 1865 1866 if (vfio_kvm_device_fd < 0) { 1867 return; 1868 } 1869 1870 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1871 error_report("Failed to remove group %d from KVM VFIO device: %m", 1872 group->groupid); 1873 } 1874 #endif 1875 } 1876 1877 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) 1878 { 1879 VFIOAddressSpace *space; 1880 1881 QLIST_FOREACH(space, &vfio_address_spaces, list) { 1882 if (space->as == as) { 1883 return space; 1884 } 1885 } 1886 1887 /* No suitable VFIOAddressSpace, create a new one */ 1888 space = g_malloc0(sizeof(*space)); 1889 space->as = as; 1890 QLIST_INIT(&space->containers); 1891 1892 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); 1893 1894 return space; 1895 } 1896 1897 static void vfio_put_address_space(VFIOAddressSpace *space) 1898 { 1899 if (QLIST_EMPTY(&space->containers)) { 1900 QLIST_REMOVE(space, list); 1901 g_free(space); 1902 } 1903 } 1904 1905 /* 1906 * vfio_get_iommu_type - selects the richest iommu_type (v2 first) 1907 */ 1908 static int vfio_get_iommu_type(VFIOContainer *container, 1909 Error **errp) 1910 { 1911 int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU, 1912 VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU }; 1913 int i; 1914 1915 for (i = 0; i < ARRAY_SIZE(iommu_types); i++) { 1916 if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) { 1917 return iommu_types[i]; 1918 } 1919 } 1920 error_setg(errp, "No available IOMMU models"); 1921 return -EINVAL; 1922 } 1923 1924 static int vfio_init_container(VFIOContainer *container, int group_fd, 1925 Error **errp) 1926 { 1927 int iommu_type, ret; 1928 1929 iommu_type = vfio_get_iommu_type(container, errp); 1930 if (iommu_type < 0) { 1931 return iommu_type; 1932 } 1933 1934 ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd); 1935 if (ret) { 1936 error_setg_errno(errp, errno, "Failed to set group container"); 1937 return -errno; 1938 } 1939 1940 while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) { 1941 if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1942 /* 1943 * On sPAPR, despite the IOMMU subdriver always advertises v1 and 1944 * v2, the running platform may not support v2 and there is no 1945 * way to guess it until an IOMMU group gets added to the container. 1946 * So in case it fails with v2, try v1 as a fallback. 1947 */ 1948 iommu_type = VFIO_SPAPR_TCE_IOMMU; 1949 continue; 1950 } 1951 error_setg_errno(errp, errno, "Failed to set iommu for container"); 1952 return -errno; 1953 } 1954 1955 container->iommu_type = iommu_type; 1956 return 0; 1957 } 1958 1959 static int vfio_get_iommu_info(VFIOContainer *container, 1960 struct vfio_iommu_type1_info **info) 1961 { 1962 1963 size_t argsz = sizeof(struct vfio_iommu_type1_info); 1964 1965 *info = g_new0(struct vfio_iommu_type1_info, 1); 1966 again: 1967 (*info)->argsz = argsz; 1968 1969 if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) { 1970 g_free(*info); 1971 *info = NULL; 1972 return -errno; 1973 } 1974 1975 if (((*info)->argsz > argsz)) { 1976 argsz = (*info)->argsz; 1977 *info = g_realloc(*info, argsz); 1978 goto again; 1979 } 1980 1981 return 0; 1982 } 1983 1984 static struct vfio_info_cap_header * 1985 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) 1986 { 1987 struct vfio_info_cap_header *hdr; 1988 void *ptr = info; 1989 1990 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { 1991 return NULL; 1992 } 1993 1994 for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) { 1995 if (hdr->id == id) { 1996 return hdr; 1997 } 1998 } 1999 2000 return NULL; 2001 } 2002 2003 static void vfio_get_iommu_info_migration(VFIOContainer *container, 2004 struct vfio_iommu_type1_info *info) 2005 { 2006 struct vfio_info_cap_header *hdr; 2007 struct vfio_iommu_type1_info_cap_migration *cap_mig; 2008 2009 hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION); 2010 if (!hdr) { 2011 return; 2012 } 2013 2014 cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration, 2015 header); 2016 2017 /* 2018 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of 2019 * qemu_real_host_page_size to mark those dirty. 2020 */ 2021 if (cap_mig->pgsize_bitmap & qemu_real_host_page_size()) { 2022 container->dirty_pages_supported = true; 2023 container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size; 2024 container->dirty_pgsizes = cap_mig->pgsize_bitmap; 2025 } 2026 } 2027 2028 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as, 2029 Error **errp) 2030 { 2031 VFIOContainer *container; 2032 int ret, fd; 2033 VFIOAddressSpace *space; 2034 2035 space = vfio_get_address_space(as); 2036 2037 /* 2038 * VFIO is currently incompatible with discarding of RAM insofar as the 2039 * madvise to purge (zap) the page from QEMU's address space does not 2040 * interact with the memory API and therefore leaves stale virtual to 2041 * physical mappings in the IOMMU if the page was previously pinned. We 2042 * therefore set discarding broken for each group added to a container, 2043 * whether the container is used individually or shared. This provides 2044 * us with options to allow devices within a group to opt-in and allow 2045 * discarding, so long as it is done consistently for a group (for instance 2046 * if the device is an mdev device where it is known that the host vendor 2047 * driver will never pin pages outside of the working set of the guest 2048 * driver, which would thus not be discarding candidates). 2049 * 2050 * The first opportunity to induce pinning occurs here where we attempt to 2051 * attach the group to existing containers within the AddressSpace. If any 2052 * pages are already zapped from the virtual address space, such as from 2053 * previous discards, new pinning will cause valid mappings to be 2054 * re-established. Likewise, when the overall MemoryListener for a new 2055 * container is registered, a replay of mappings within the AddressSpace 2056 * will occur, re-establishing any previously zapped pages as well. 2057 * 2058 * Especially virtio-balloon is currently only prevented from discarding 2059 * new memory, it will not yet set ram_block_discard_set_required() and 2060 * therefore, neither stops us here or deals with the sudden memory 2061 * consumption of inflated memory. 2062 * 2063 * We do support discarding of memory coordinated via the RamDiscardManager 2064 * with some IOMMU types. vfio_ram_block_discard_disable() handles the 2065 * details once we know which type of IOMMU we are using. 2066 */ 2067 2068 QLIST_FOREACH(container, &space->containers, next) { 2069 if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) { 2070 ret = vfio_ram_block_discard_disable(container, true); 2071 if (ret) { 2072 error_setg_errno(errp, -ret, 2073 "Cannot set discarding of RAM broken"); 2074 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, 2075 &container->fd)) { 2076 error_report("vfio: error disconnecting group %d from" 2077 " container", group->groupid); 2078 } 2079 return ret; 2080 } 2081 group->container = container; 2082 QLIST_INSERT_HEAD(&container->group_list, group, container_next); 2083 vfio_kvm_device_add_group(group); 2084 return 0; 2085 } 2086 } 2087 2088 fd = qemu_open_old("/dev/vfio/vfio", O_RDWR); 2089 if (fd < 0) { 2090 error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio"); 2091 ret = -errno; 2092 goto put_space_exit; 2093 } 2094 2095 ret = ioctl(fd, VFIO_GET_API_VERSION); 2096 if (ret != VFIO_API_VERSION) { 2097 error_setg(errp, "supported vfio version: %d, " 2098 "reported version: %d", VFIO_API_VERSION, ret); 2099 ret = -EINVAL; 2100 goto close_fd_exit; 2101 } 2102 2103 container = g_malloc0(sizeof(*container)); 2104 container->space = space; 2105 container->fd = fd; 2106 container->error = NULL; 2107 container->dirty_pages_supported = false; 2108 container->dma_max_mappings = 0; 2109 QLIST_INIT(&container->giommu_list); 2110 QLIST_INIT(&container->hostwin_list); 2111 QLIST_INIT(&container->vrdl_list); 2112 2113 ret = vfio_init_container(container, group->fd, errp); 2114 if (ret) { 2115 goto free_container_exit; 2116 } 2117 2118 ret = vfio_ram_block_discard_disable(container, true); 2119 if (ret) { 2120 error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken"); 2121 goto free_container_exit; 2122 } 2123 2124 switch (container->iommu_type) { 2125 case VFIO_TYPE1v2_IOMMU: 2126 case VFIO_TYPE1_IOMMU: 2127 { 2128 struct vfio_iommu_type1_info *info; 2129 2130 ret = vfio_get_iommu_info(container, &info); 2131 if (ret) { 2132 error_setg_errno(errp, -ret, "Failed to get VFIO IOMMU info"); 2133 goto enable_discards_exit; 2134 } 2135 2136 if (info->flags & VFIO_IOMMU_INFO_PGSIZES) { 2137 container->pgsizes = info->iova_pgsizes; 2138 } else { 2139 container->pgsizes = qemu_real_host_page_size(); 2140 } 2141 2142 if (!vfio_get_info_dma_avail(info, &container->dma_max_mappings)) { 2143 container->dma_max_mappings = 65535; 2144 } 2145 vfio_get_iommu_info_migration(container, info); 2146 g_free(info); 2147 2148 /* 2149 * FIXME: We should parse VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 2150 * information to get the actual window extent rather than assume 2151 * a 64-bit IOVA address space. 2152 */ 2153 vfio_host_win_add(container, 0, (hwaddr)-1, container->pgsizes); 2154 2155 break; 2156 } 2157 case VFIO_SPAPR_TCE_v2_IOMMU: 2158 case VFIO_SPAPR_TCE_IOMMU: 2159 { 2160 struct vfio_iommu_spapr_tce_info info; 2161 bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU; 2162 2163 /* 2164 * The host kernel code implementing VFIO_IOMMU_DISABLE is called 2165 * when container fd is closed so we do not call it explicitly 2166 * in this file. 2167 */ 2168 if (!v2) { 2169 ret = ioctl(fd, VFIO_IOMMU_ENABLE); 2170 if (ret) { 2171 error_setg_errno(errp, errno, "failed to enable container"); 2172 ret = -errno; 2173 goto enable_discards_exit; 2174 } 2175 } else { 2176 container->prereg_listener = vfio_prereg_listener; 2177 2178 memory_listener_register(&container->prereg_listener, 2179 &address_space_memory); 2180 if (container->error) { 2181 memory_listener_unregister(&container->prereg_listener); 2182 ret = -1; 2183 error_propagate_prepend(errp, container->error, 2184 "RAM memory listener initialization failed: "); 2185 goto enable_discards_exit; 2186 } 2187 } 2188 2189 info.argsz = sizeof(info); 2190 ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info); 2191 if (ret) { 2192 error_setg_errno(errp, errno, 2193 "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed"); 2194 ret = -errno; 2195 if (v2) { 2196 memory_listener_unregister(&container->prereg_listener); 2197 } 2198 goto enable_discards_exit; 2199 } 2200 2201 if (v2) { 2202 container->pgsizes = info.ddw.pgsizes; 2203 /* 2204 * There is a default window in just created container. 2205 * To make region_add/del simpler, we better remove this 2206 * window now and let those iommu_listener callbacks 2207 * create/remove them when needed. 2208 */ 2209 ret = vfio_spapr_remove_window(container, info.dma32_window_start); 2210 if (ret) { 2211 error_setg_errno(errp, -ret, 2212 "failed to remove existing window"); 2213 goto enable_discards_exit; 2214 } 2215 } else { 2216 /* The default table uses 4K pages */ 2217 container->pgsizes = 0x1000; 2218 vfio_host_win_add(container, info.dma32_window_start, 2219 info.dma32_window_start + 2220 info.dma32_window_size - 1, 2221 0x1000); 2222 } 2223 } 2224 } 2225 2226 vfio_kvm_device_add_group(group); 2227 2228 QLIST_INIT(&container->group_list); 2229 QLIST_INSERT_HEAD(&space->containers, container, next); 2230 2231 group->container = container; 2232 QLIST_INSERT_HEAD(&container->group_list, group, container_next); 2233 2234 container->listener = vfio_memory_listener; 2235 2236 memory_listener_register(&container->listener, container->space->as); 2237 2238 if (container->error) { 2239 ret = -1; 2240 error_propagate_prepend(errp, container->error, 2241 "memory listener initialization failed: "); 2242 goto listener_release_exit; 2243 } 2244 2245 container->initialized = true; 2246 2247 return 0; 2248 listener_release_exit: 2249 QLIST_REMOVE(group, container_next); 2250 QLIST_REMOVE(container, next); 2251 vfio_kvm_device_del_group(group); 2252 vfio_listener_release(container); 2253 2254 enable_discards_exit: 2255 vfio_ram_block_discard_disable(container, false); 2256 2257 free_container_exit: 2258 g_free(container); 2259 2260 close_fd_exit: 2261 close(fd); 2262 2263 put_space_exit: 2264 vfio_put_address_space(space); 2265 2266 return ret; 2267 } 2268 2269 static void vfio_disconnect_container(VFIOGroup *group) 2270 { 2271 VFIOContainer *container = group->container; 2272 2273 QLIST_REMOVE(group, container_next); 2274 group->container = NULL; 2275 2276 /* 2277 * Explicitly release the listener first before unset container, 2278 * since unset may destroy the backend container if it's the last 2279 * group. 2280 */ 2281 if (QLIST_EMPTY(&container->group_list)) { 2282 vfio_listener_release(container); 2283 } 2284 2285 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) { 2286 error_report("vfio: error disconnecting group %d from container", 2287 group->groupid); 2288 } 2289 2290 if (QLIST_EMPTY(&container->group_list)) { 2291 VFIOAddressSpace *space = container->space; 2292 VFIOGuestIOMMU *giommu, *tmp; 2293 VFIOHostDMAWindow *hostwin, *next; 2294 2295 QLIST_REMOVE(container, next); 2296 2297 QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) { 2298 memory_region_unregister_iommu_notifier( 2299 MEMORY_REGION(giommu->iommu_mr), &giommu->n); 2300 QLIST_REMOVE(giommu, giommu_next); 2301 g_free(giommu); 2302 } 2303 2304 QLIST_FOREACH_SAFE(hostwin, &container->hostwin_list, hostwin_next, 2305 next) { 2306 QLIST_REMOVE(hostwin, hostwin_next); 2307 g_free(hostwin); 2308 } 2309 2310 trace_vfio_disconnect_container(container->fd); 2311 close(container->fd); 2312 g_free(container); 2313 2314 vfio_put_address_space(space); 2315 } 2316 } 2317 2318 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp) 2319 { 2320 VFIOGroup *group; 2321 char path[32]; 2322 struct vfio_group_status status = { .argsz = sizeof(status) }; 2323 2324 QLIST_FOREACH(group, &vfio_group_list, next) { 2325 if (group->groupid == groupid) { 2326 /* Found it. Now is it already in the right context? */ 2327 if (group->container->space->as == as) { 2328 return group; 2329 } else { 2330 error_setg(errp, "group %d used in multiple address spaces", 2331 group->groupid); 2332 return NULL; 2333 } 2334 } 2335 } 2336 2337 group = g_malloc0(sizeof(*group)); 2338 2339 snprintf(path, sizeof(path), "/dev/vfio/%d", groupid); 2340 group->fd = qemu_open_old(path, O_RDWR); 2341 if (group->fd < 0) { 2342 error_setg_errno(errp, errno, "failed to open %s", path); 2343 goto free_group_exit; 2344 } 2345 2346 if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) { 2347 error_setg_errno(errp, errno, "failed to get group %d status", groupid); 2348 goto close_fd_exit; 2349 } 2350 2351 if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) { 2352 error_setg(errp, "group %d is not viable", groupid); 2353 error_append_hint(errp, 2354 "Please ensure all devices within the iommu_group " 2355 "are bound to their vfio bus driver.\n"); 2356 goto close_fd_exit; 2357 } 2358 2359 group->groupid = groupid; 2360 QLIST_INIT(&group->device_list); 2361 2362 if (vfio_connect_container(group, as, errp)) { 2363 error_prepend(errp, "failed to setup container for group %d: ", 2364 groupid); 2365 goto close_fd_exit; 2366 } 2367 2368 if (QLIST_EMPTY(&vfio_group_list)) { 2369 qemu_register_reset(vfio_reset_handler, NULL); 2370 } 2371 2372 QLIST_INSERT_HEAD(&vfio_group_list, group, next); 2373 2374 return group; 2375 2376 close_fd_exit: 2377 close(group->fd); 2378 2379 free_group_exit: 2380 g_free(group); 2381 2382 return NULL; 2383 } 2384 2385 void vfio_put_group(VFIOGroup *group) 2386 { 2387 if (!group || !QLIST_EMPTY(&group->device_list)) { 2388 return; 2389 } 2390 2391 if (!group->ram_block_discard_allowed) { 2392 vfio_ram_block_discard_disable(group->container, false); 2393 } 2394 vfio_kvm_device_del_group(group); 2395 vfio_disconnect_container(group); 2396 QLIST_REMOVE(group, next); 2397 trace_vfio_put_group(group->fd); 2398 close(group->fd); 2399 g_free(group); 2400 2401 if (QLIST_EMPTY(&vfio_group_list)) { 2402 qemu_unregister_reset(vfio_reset_handler, NULL); 2403 } 2404 } 2405 2406 int vfio_get_device(VFIOGroup *group, const char *name, 2407 VFIODevice *vbasedev, Error **errp) 2408 { 2409 struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) }; 2410 int ret, fd; 2411 2412 fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name); 2413 if (fd < 0) { 2414 error_setg_errno(errp, errno, "error getting device from group %d", 2415 group->groupid); 2416 error_append_hint(errp, 2417 "Verify all devices in group %d are bound to vfio-<bus> " 2418 "or pci-stub and not already in use\n", group->groupid); 2419 return fd; 2420 } 2421 2422 ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info); 2423 if (ret) { 2424 error_setg_errno(errp, errno, "error getting device info"); 2425 close(fd); 2426 return ret; 2427 } 2428 2429 /* 2430 * Set discarding of RAM as not broken for this group if the driver knows 2431 * the device operates compatibly with discarding. Setting must be 2432 * consistent per group, but since compatibility is really only possible 2433 * with mdev currently, we expect singleton groups. 2434 */ 2435 if (vbasedev->ram_block_discard_allowed != 2436 group->ram_block_discard_allowed) { 2437 if (!QLIST_EMPTY(&group->device_list)) { 2438 error_setg(errp, "Inconsistent setting of support for discarding " 2439 "RAM (e.g., balloon) within group"); 2440 close(fd); 2441 return -1; 2442 } 2443 2444 if (!group->ram_block_discard_allowed) { 2445 group->ram_block_discard_allowed = true; 2446 vfio_ram_block_discard_disable(group->container, false); 2447 } 2448 } 2449 2450 vbasedev->fd = fd; 2451 vbasedev->group = group; 2452 QLIST_INSERT_HEAD(&group->device_list, vbasedev, next); 2453 2454 vbasedev->num_irqs = dev_info.num_irqs; 2455 vbasedev->num_regions = dev_info.num_regions; 2456 vbasedev->flags = dev_info.flags; 2457 2458 trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions, 2459 dev_info.num_irqs); 2460 2461 vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET); 2462 return 0; 2463 } 2464 2465 void vfio_put_base_device(VFIODevice *vbasedev) 2466 { 2467 if (!vbasedev->group) { 2468 return; 2469 } 2470 QLIST_REMOVE(vbasedev, next); 2471 vbasedev->group = NULL; 2472 trace_vfio_put_base_device(vbasedev->fd); 2473 close(vbasedev->fd); 2474 } 2475 2476 int vfio_get_region_info(VFIODevice *vbasedev, int index, 2477 struct vfio_region_info **info) 2478 { 2479 size_t argsz = sizeof(struct vfio_region_info); 2480 2481 *info = g_malloc0(argsz); 2482 2483 (*info)->index = index; 2484 retry: 2485 (*info)->argsz = argsz; 2486 2487 if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) { 2488 g_free(*info); 2489 *info = NULL; 2490 return -errno; 2491 } 2492 2493 if ((*info)->argsz > argsz) { 2494 argsz = (*info)->argsz; 2495 *info = g_realloc(*info, argsz); 2496 2497 goto retry; 2498 } 2499 2500 return 0; 2501 } 2502 2503 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type, 2504 uint32_t subtype, struct vfio_region_info **info) 2505 { 2506 int i; 2507 2508 for (i = 0; i < vbasedev->num_regions; i++) { 2509 struct vfio_info_cap_header *hdr; 2510 struct vfio_region_info_cap_type *cap_type; 2511 2512 if (vfio_get_region_info(vbasedev, i, info)) { 2513 continue; 2514 } 2515 2516 hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE); 2517 if (!hdr) { 2518 g_free(*info); 2519 continue; 2520 } 2521 2522 cap_type = container_of(hdr, struct vfio_region_info_cap_type, header); 2523 2524 trace_vfio_get_dev_region(vbasedev->name, i, 2525 cap_type->type, cap_type->subtype); 2526 2527 if (cap_type->type == type && cap_type->subtype == subtype) { 2528 return 0; 2529 } 2530 2531 g_free(*info); 2532 } 2533 2534 *info = NULL; 2535 return -ENODEV; 2536 } 2537 2538 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type) 2539 { 2540 struct vfio_region_info *info = NULL; 2541 bool ret = false; 2542 2543 if (!vfio_get_region_info(vbasedev, region, &info)) { 2544 if (vfio_get_region_info_cap(info, cap_type)) { 2545 ret = true; 2546 } 2547 g_free(info); 2548 } 2549 2550 return ret; 2551 } 2552 2553 /* 2554 * Interfaces for IBM EEH (Enhanced Error Handling) 2555 */ 2556 static bool vfio_eeh_container_ok(VFIOContainer *container) 2557 { 2558 /* 2559 * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO 2560 * implementation is broken if there are multiple groups in a 2561 * container. The hardware works in units of Partitionable 2562 * Endpoints (== IOMMU groups) and the EEH operations naively 2563 * iterate across all groups in the container, without any logic 2564 * to make sure the groups have their state synchronized. For 2565 * certain operations (ENABLE) that might be ok, until an error 2566 * occurs, but for others (GET_STATE) it's clearly broken. 2567 */ 2568 2569 /* 2570 * XXX Once fixed kernels exist, test for them here 2571 */ 2572 2573 if (QLIST_EMPTY(&container->group_list)) { 2574 return false; 2575 } 2576 2577 if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) { 2578 return false; 2579 } 2580 2581 return true; 2582 } 2583 2584 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op) 2585 { 2586 struct vfio_eeh_pe_op pe_op = { 2587 .argsz = sizeof(pe_op), 2588 .op = op, 2589 }; 2590 int ret; 2591 2592 if (!vfio_eeh_container_ok(container)) { 2593 error_report("vfio/eeh: EEH_PE_OP 0x%x: " 2594 "kernel requires a container with exactly one group", op); 2595 return -EPERM; 2596 } 2597 2598 ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op); 2599 if (ret < 0) { 2600 error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op); 2601 return -errno; 2602 } 2603 2604 return ret; 2605 } 2606 2607 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as) 2608 { 2609 VFIOAddressSpace *space = vfio_get_address_space(as); 2610 VFIOContainer *container = NULL; 2611 2612 if (QLIST_EMPTY(&space->containers)) { 2613 /* No containers to act on */ 2614 goto out; 2615 } 2616 2617 container = QLIST_FIRST(&space->containers); 2618 2619 if (QLIST_NEXT(container, next)) { 2620 /* We don't yet have logic to synchronize EEH state across 2621 * multiple containers */ 2622 container = NULL; 2623 goto out; 2624 } 2625 2626 out: 2627 vfio_put_address_space(space); 2628 return container; 2629 } 2630 2631 bool vfio_eeh_as_ok(AddressSpace *as) 2632 { 2633 VFIOContainer *container = vfio_eeh_as_container(as); 2634 2635 return (container != NULL) && vfio_eeh_container_ok(container); 2636 } 2637 2638 int vfio_eeh_as_op(AddressSpace *as, uint32_t op) 2639 { 2640 VFIOContainer *container = vfio_eeh_as_container(as); 2641 2642 if (!container) { 2643 return -ENODEV; 2644 } 2645 return vfio_eeh_container_op(container, op); 2646 } 2647