1 /* 2 * generic functions used by VFIO devices 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 #ifdef CONFIG_KVM 24 #include <linux/kvm.h> 25 #endif 26 #include <linux/vfio.h> 27 28 #include "hw/vfio/vfio-common.h" 29 #include "hw/vfio/pci.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "exec/ram_addr.h" 33 #include "hw/hw.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/range.h" 37 #include "sysemu/kvm.h" 38 #include "sysemu/reset.h" 39 #include "sysemu/runstate.h" 40 #include "trace.h" 41 #include "qapi/error.h" 42 #include "migration/misc.h" 43 #include "migration/blocker.h" 44 #include "migration/qemu-file.h" 45 #include "sysemu/tpm.h" 46 47 VFIODeviceList vfio_device_list = 48 QLIST_HEAD_INITIALIZER(vfio_device_list); 49 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = 50 QLIST_HEAD_INITIALIZER(vfio_address_spaces); 51 52 #ifdef CONFIG_KVM 53 /* 54 * We have a single VFIO pseudo device per KVM VM. Once created it lives 55 * for the life of the VM. Closing the file descriptor only drops our 56 * reference to it and the device's reference to kvm. Therefore once 57 * initialized, this file descriptor is only released on QEMU exit and 58 * we'll re-use it should another vfio device be attached before then. 59 */ 60 int vfio_kvm_device_fd = -1; 61 #endif 62 63 /* 64 * Device state interfaces 65 */ 66 67 bool vfio_mig_active(void) 68 { 69 VFIODevice *vbasedev; 70 71 if (QLIST_EMPTY(&vfio_device_list)) { 72 return false; 73 } 74 75 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 76 if (vbasedev->migration_blocker) { 77 return false; 78 } 79 } 80 return true; 81 } 82 83 static Error *multiple_devices_migration_blocker; 84 85 /* 86 * Multiple devices migration is allowed only if all devices support P2P 87 * migration. Single device migration is allowed regardless of P2P migration 88 * support. 89 */ 90 static bool vfio_multiple_devices_migration_is_supported(void) 91 { 92 VFIODevice *vbasedev; 93 unsigned int device_num = 0; 94 bool all_support_p2p = true; 95 96 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 97 if (vbasedev->migration) { 98 device_num++; 99 100 if (!(vbasedev->migration->mig_flags & VFIO_MIGRATION_P2P)) { 101 all_support_p2p = false; 102 } 103 } 104 } 105 106 return all_support_p2p || device_num <= 1; 107 } 108 109 int vfio_block_multiple_devices_migration(VFIODevice *vbasedev, Error **errp) 110 { 111 int ret; 112 113 if (vfio_multiple_devices_migration_is_supported()) { 114 return 0; 115 } 116 117 if (vbasedev->enable_migration == ON_OFF_AUTO_ON) { 118 error_setg(errp, "Multiple VFIO devices migration is supported only if " 119 "all of them support P2P migration"); 120 return -EINVAL; 121 } 122 123 if (multiple_devices_migration_blocker) { 124 return 0; 125 } 126 127 error_setg(&multiple_devices_migration_blocker, 128 "Multiple VFIO devices migration is supported only if all of " 129 "them support P2P migration"); 130 ret = migrate_add_blocker_normal(&multiple_devices_migration_blocker, errp); 131 132 return ret; 133 } 134 135 void vfio_unblock_multiple_devices_migration(void) 136 { 137 if (!multiple_devices_migration_blocker || 138 !vfio_multiple_devices_migration_is_supported()) { 139 return; 140 } 141 142 migrate_del_blocker(&multiple_devices_migration_blocker); 143 } 144 145 bool vfio_viommu_preset(VFIODevice *vbasedev) 146 { 147 return vbasedev->bcontainer->space->as != &address_space_memory; 148 } 149 150 static void vfio_set_migration_error(int ret) 151 { 152 if (migration_is_setup_or_active()) { 153 migration_file_set_error(ret, NULL); 154 } 155 } 156 157 bool vfio_device_state_is_running(VFIODevice *vbasedev) 158 { 159 VFIOMigration *migration = vbasedev->migration; 160 161 return migration->device_state == VFIO_DEVICE_STATE_RUNNING || 162 migration->device_state == VFIO_DEVICE_STATE_RUNNING_P2P; 163 } 164 165 bool vfio_device_state_is_precopy(VFIODevice *vbasedev) 166 { 167 VFIOMigration *migration = vbasedev->migration; 168 169 return migration->device_state == VFIO_DEVICE_STATE_PRE_COPY || 170 migration->device_state == VFIO_DEVICE_STATE_PRE_COPY_P2P; 171 } 172 173 static bool vfio_devices_all_dirty_tracking(VFIOContainerBase *bcontainer) 174 { 175 VFIODevice *vbasedev; 176 177 if (!migration_is_active() && !migration_is_device()) { 178 return false; 179 } 180 181 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 182 VFIOMigration *migration = vbasedev->migration; 183 184 if (!migration) { 185 return false; 186 } 187 188 if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF && 189 (vfio_device_state_is_running(vbasedev) || 190 vfio_device_state_is_precopy(vbasedev))) { 191 return false; 192 } 193 } 194 return true; 195 } 196 197 bool vfio_devices_all_device_dirty_tracking(const VFIOContainerBase *bcontainer) 198 { 199 VFIODevice *vbasedev; 200 201 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 202 if (!vbasedev->dirty_pages_supported) { 203 return false; 204 } 205 } 206 207 return true; 208 } 209 210 /* 211 * Check if all VFIO devices are running and migration is active, which is 212 * essentially equivalent to the migration being in pre-copy phase. 213 */ 214 bool 215 vfio_devices_all_running_and_mig_active(const VFIOContainerBase *bcontainer) 216 { 217 VFIODevice *vbasedev; 218 219 if (!migration_is_active()) { 220 return false; 221 } 222 223 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 224 VFIOMigration *migration = vbasedev->migration; 225 226 if (!migration) { 227 return false; 228 } 229 230 if (vfio_device_state_is_running(vbasedev) || 231 vfio_device_state_is_precopy(vbasedev)) { 232 continue; 233 } else { 234 return false; 235 } 236 } 237 return true; 238 } 239 240 static bool vfio_listener_skipped_section(MemoryRegionSection *section) 241 { 242 return (!memory_region_is_ram(section->mr) && 243 !memory_region_is_iommu(section->mr)) || 244 memory_region_is_protected(section->mr) || 245 /* 246 * Sizing an enabled 64-bit BAR can cause spurious mappings to 247 * addresses in the upper part of the 64-bit address space. These 248 * are never accessed by the CPU and beyond the address width of 249 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. 250 */ 251 section->offset_within_address_space & (1ULL << 63); 252 } 253 254 /* Called with rcu_read_lock held. */ 255 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 256 ram_addr_t *ram_addr, bool *read_only, 257 Error **errp) 258 { 259 bool ret, mr_has_discard_manager; 260 261 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only, 262 &mr_has_discard_manager, errp); 263 if (ret && mr_has_discard_manager) { 264 /* 265 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The 266 * pages will remain pinned inside vfio until unmapped, resulting in a 267 * higher memory consumption than expected. If memory would get 268 * populated again later, there would be an inconsistency between pages 269 * pinned by vfio and pages seen by QEMU. This is the case until 270 * unmapped from the IOMMU (e.g., during device reset). 271 * 272 * With malicious guests, we really only care about pinning more memory 273 * than expected. RLIMIT_MEMLOCK set for the user/process can never be 274 * exceeded and can be used to mitigate this problem. 275 */ 276 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" 277 " RAM (e.g., virtio-mem) works, however, malicious" 278 " guests can trigger pinning of more memory than" 279 " intended via an IOMMU. It's possible to mitigate " 280 " by setting/adjusting RLIMIT_MEMLOCK."); 281 } 282 return ret; 283 } 284 285 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 286 { 287 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); 288 VFIOContainerBase *bcontainer = giommu->bcontainer; 289 hwaddr iova = iotlb->iova + giommu->iommu_offset; 290 void *vaddr; 291 int ret; 292 Error *local_err = NULL; 293 294 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", 295 iova, iova + iotlb->addr_mask); 296 297 if (iotlb->target_as != &address_space_memory) { 298 error_report("Wrong target AS \"%s\", only system memory is allowed", 299 iotlb->target_as->name ? iotlb->target_as->name : "none"); 300 vfio_set_migration_error(-EINVAL); 301 return; 302 } 303 304 rcu_read_lock(); 305 306 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 307 bool read_only; 308 309 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only, &local_err)) { 310 error_report_err(local_err); 311 goto out; 312 } 313 /* 314 * vaddr is only valid until rcu_read_unlock(). But after 315 * vfio_dma_map has set up the mapping the pages will be 316 * pinned by the kernel. This makes sure that the RAM backend 317 * of vaddr will always be there, even if the memory object is 318 * destroyed and its backing memory munmap-ed. 319 */ 320 ret = vfio_container_dma_map(bcontainer, iova, 321 iotlb->addr_mask + 1, vaddr, 322 read_only); 323 if (ret) { 324 error_report("vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " 325 "0x%"HWADDR_PRIx", %p) = %d (%s)", 326 bcontainer, iova, 327 iotlb->addr_mask + 1, vaddr, ret, strerror(-ret)); 328 } 329 } else { 330 ret = vfio_container_dma_unmap(bcontainer, iova, 331 iotlb->addr_mask + 1, iotlb); 332 if (ret) { 333 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 334 "0x%"HWADDR_PRIx") = %d (%s)", 335 bcontainer, iova, 336 iotlb->addr_mask + 1, ret, strerror(-ret)); 337 vfio_set_migration_error(ret); 338 } 339 } 340 out: 341 rcu_read_unlock(); 342 } 343 344 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, 345 MemoryRegionSection *section) 346 { 347 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 348 listener); 349 VFIOContainerBase *bcontainer = vrdl->bcontainer; 350 const hwaddr size = int128_get64(section->size); 351 const hwaddr iova = section->offset_within_address_space; 352 int ret; 353 354 /* Unmap with a single call. */ 355 ret = vfio_container_dma_unmap(bcontainer, iova, size , NULL); 356 if (ret) { 357 error_report("%s: vfio_container_dma_unmap() failed: %s", __func__, 358 strerror(-ret)); 359 } 360 } 361 362 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, 363 MemoryRegionSection *section) 364 { 365 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 366 listener); 367 VFIOContainerBase *bcontainer = vrdl->bcontainer; 368 const hwaddr end = section->offset_within_region + 369 int128_get64(section->size); 370 hwaddr start, next, iova; 371 void *vaddr; 372 int ret; 373 374 /* 375 * Map in (aligned within memory region) minimum granularity, so we can 376 * unmap in minimum granularity later. 377 */ 378 for (start = section->offset_within_region; start < end; start = next) { 379 next = ROUND_UP(start + 1, vrdl->granularity); 380 next = MIN(next, end); 381 382 iova = start - section->offset_within_region + 383 section->offset_within_address_space; 384 vaddr = memory_region_get_ram_ptr(section->mr) + start; 385 386 ret = vfio_container_dma_map(bcontainer, iova, next - start, 387 vaddr, section->readonly); 388 if (ret) { 389 /* Rollback */ 390 vfio_ram_discard_notify_discard(rdl, section); 391 return ret; 392 } 393 } 394 return 0; 395 } 396 397 static void vfio_register_ram_discard_listener(VFIOContainerBase *bcontainer, 398 MemoryRegionSection *section) 399 { 400 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 401 VFIORamDiscardListener *vrdl; 402 403 /* Ignore some corner cases not relevant in practice. */ 404 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); 405 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, 406 TARGET_PAGE_SIZE)); 407 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); 408 409 vrdl = g_new0(VFIORamDiscardListener, 1); 410 vrdl->bcontainer = bcontainer; 411 vrdl->mr = section->mr; 412 vrdl->offset_within_address_space = section->offset_within_address_space; 413 vrdl->size = int128_get64(section->size); 414 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, 415 section->mr); 416 417 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); 418 g_assert(bcontainer->pgsizes && 419 vrdl->granularity >= 1ULL << ctz64(bcontainer->pgsizes)); 420 421 ram_discard_listener_init(&vrdl->listener, 422 vfio_ram_discard_notify_populate, 423 vfio_ram_discard_notify_discard, true); 424 ram_discard_manager_register_listener(rdm, &vrdl->listener, section); 425 QLIST_INSERT_HEAD(&bcontainer->vrdl_list, vrdl, next); 426 427 /* 428 * Sanity-check if we have a theoretically problematic setup where we could 429 * exceed the maximum number of possible DMA mappings over time. We assume 430 * that each mapped section in the same address space as a RamDiscardManager 431 * section consumes exactly one DMA mapping, with the exception of 432 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections 433 * in the same address space as RamDiscardManager sections. 434 * 435 * We assume that each section in the address space consumes one memslot. 436 * We take the number of KVM memory slots as a best guess for the maximum 437 * number of sections in the address space we could have over time, 438 * also consuming DMA mappings. 439 */ 440 if (bcontainer->dma_max_mappings) { 441 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; 442 443 #ifdef CONFIG_KVM 444 if (kvm_enabled()) { 445 max_memslots = kvm_get_max_memslots(); 446 } 447 #endif 448 449 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 450 hwaddr start, end; 451 452 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, 453 vrdl->granularity); 454 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, 455 vrdl->granularity); 456 vrdl_mappings += (end - start) / vrdl->granularity; 457 vrdl_count++; 458 } 459 460 if (vrdl_mappings + max_memslots - vrdl_count > 461 bcontainer->dma_max_mappings) { 462 warn_report("%s: possibly running out of DMA mappings. E.g., try" 463 " increasing the 'block-size' of virtio-mem devies." 464 " Maximum possible DMA mappings: %d, Maximum possible" 465 " memslots: %d", __func__, bcontainer->dma_max_mappings, 466 max_memslots); 467 } 468 } 469 } 470 471 static void vfio_unregister_ram_discard_listener(VFIOContainerBase *bcontainer, 472 MemoryRegionSection *section) 473 { 474 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 475 VFIORamDiscardListener *vrdl = NULL; 476 477 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 478 if (vrdl->mr == section->mr && 479 vrdl->offset_within_address_space == 480 section->offset_within_address_space) { 481 break; 482 } 483 } 484 485 if (!vrdl) { 486 hw_error("vfio: Trying to unregister missing RAM discard listener"); 487 } 488 489 ram_discard_manager_unregister_listener(rdm, &vrdl->listener); 490 QLIST_REMOVE(vrdl, next); 491 g_free(vrdl); 492 } 493 494 static bool vfio_known_safe_misalignment(MemoryRegionSection *section) 495 { 496 MemoryRegion *mr = section->mr; 497 498 if (!TPM_IS_CRB(mr->owner)) { 499 return false; 500 } 501 502 /* this is a known safe misaligned region, just trace for debug purpose */ 503 trace_vfio_known_safe_misalignment(memory_region_name(mr), 504 section->offset_within_address_space, 505 section->offset_within_region, 506 qemu_real_host_page_size()); 507 return true; 508 } 509 510 static bool vfio_listener_valid_section(MemoryRegionSection *section, 511 const char *name) 512 { 513 if (vfio_listener_skipped_section(section)) { 514 trace_vfio_listener_region_skip(name, 515 section->offset_within_address_space, 516 section->offset_within_address_space + 517 int128_get64(int128_sub(section->size, int128_one()))); 518 return false; 519 } 520 521 if (unlikely((section->offset_within_address_space & 522 ~qemu_real_host_page_mask()) != 523 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 524 if (!vfio_known_safe_misalignment(section)) { 525 error_report("%s received unaligned region %s iova=0x%"PRIx64 526 " offset_within_region=0x%"PRIx64 527 " qemu_real_host_page_size=0x%"PRIxPTR, 528 __func__, memory_region_name(section->mr), 529 section->offset_within_address_space, 530 section->offset_within_region, 531 qemu_real_host_page_size()); 532 } 533 return false; 534 } 535 536 return true; 537 } 538 539 static bool vfio_get_section_iova_range(VFIOContainerBase *bcontainer, 540 MemoryRegionSection *section, 541 hwaddr *out_iova, hwaddr *out_end, 542 Int128 *out_llend) 543 { 544 Int128 llend; 545 hwaddr iova; 546 547 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 548 llend = int128_make64(section->offset_within_address_space); 549 llend = int128_add(llend, section->size); 550 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 551 552 if (int128_ge(int128_make64(iova), llend)) { 553 return false; 554 } 555 556 *out_iova = iova; 557 *out_end = int128_get64(int128_sub(llend, int128_one())); 558 if (out_llend) { 559 *out_llend = llend; 560 } 561 return true; 562 } 563 564 static void vfio_listener_region_add(MemoryListener *listener, 565 MemoryRegionSection *section) 566 { 567 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 568 listener); 569 hwaddr iova, end; 570 Int128 llend, llsize; 571 void *vaddr; 572 int ret; 573 Error *err = NULL; 574 575 if (!vfio_listener_valid_section(section, "region_add")) { 576 return; 577 } 578 579 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, 580 &llend)) { 581 if (memory_region_is_ram_device(section->mr)) { 582 trace_vfio_listener_region_add_no_dma_map( 583 memory_region_name(section->mr), 584 section->offset_within_address_space, 585 int128_getlo(section->size), 586 qemu_real_host_page_size()); 587 } 588 return; 589 } 590 591 if (!vfio_container_add_section_window(bcontainer, section, &err)) { 592 goto fail; 593 } 594 595 memory_region_ref(section->mr); 596 597 if (memory_region_is_iommu(section->mr)) { 598 VFIOGuestIOMMU *giommu; 599 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 600 int iommu_idx; 601 602 trace_vfio_listener_region_add_iommu(section->mr->name, iova, end); 603 /* 604 * FIXME: For VFIO iommu types which have KVM acceleration to 605 * avoid bouncing all map/unmaps through qemu this way, this 606 * would be the right place to wire that up (tell the KVM 607 * device emulation the VFIO iommu handles to use). 608 */ 609 giommu = g_malloc0(sizeof(*giommu)); 610 giommu->iommu_mr = iommu_mr; 611 giommu->iommu_offset = section->offset_within_address_space - 612 section->offset_within_region; 613 giommu->bcontainer = bcontainer; 614 llend = int128_add(int128_make64(section->offset_within_region), 615 section->size); 616 llend = int128_sub(llend, int128_one()); 617 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 618 MEMTXATTRS_UNSPECIFIED); 619 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, 620 IOMMU_NOTIFIER_IOTLB_EVENTS, 621 section->offset_within_region, 622 int128_get64(llend), 623 iommu_idx); 624 625 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, 626 &err); 627 if (ret) { 628 g_free(giommu); 629 goto fail; 630 } 631 QLIST_INSERT_HEAD(&bcontainer->giommu_list, giommu, giommu_next); 632 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n); 633 634 return; 635 } 636 637 /* Here we assume that memory_region_is_ram(section->mr)==true */ 638 639 /* 640 * For RAM memory regions with a RamDiscardManager, we only want to map the 641 * actually populated parts - and update the mapping whenever we're notified 642 * about changes. 643 */ 644 if (memory_region_has_ram_discard_manager(section->mr)) { 645 vfio_register_ram_discard_listener(bcontainer, section); 646 return; 647 } 648 649 vaddr = memory_region_get_ram_ptr(section->mr) + 650 section->offset_within_region + 651 (iova - section->offset_within_address_space); 652 653 trace_vfio_listener_region_add_ram(iova, end, vaddr); 654 655 llsize = int128_sub(llend, int128_make64(iova)); 656 657 if (memory_region_is_ram_device(section->mr)) { 658 hwaddr pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; 659 660 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { 661 trace_vfio_listener_region_add_no_dma_map( 662 memory_region_name(section->mr), 663 section->offset_within_address_space, 664 int128_getlo(section->size), 665 pgmask + 1); 666 return; 667 } 668 } 669 670 ret = vfio_container_dma_map(bcontainer, iova, int128_get64(llsize), 671 vaddr, section->readonly); 672 if (ret) { 673 error_setg(&err, "vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " 674 "0x%"HWADDR_PRIx", %p) = %d (%s)", 675 bcontainer, iova, int128_get64(llsize), vaddr, ret, 676 strerror(-ret)); 677 if (memory_region_is_ram_device(section->mr)) { 678 /* Allow unexpected mappings not to be fatal for RAM devices */ 679 error_report_err(err); 680 return; 681 } 682 goto fail; 683 } 684 685 return; 686 687 fail: 688 if (memory_region_is_ram_device(section->mr)) { 689 error_reportf_err(err, "PCI p2p may not work: "); 690 return; 691 } 692 /* 693 * On the initfn path, store the first error in the container so we 694 * can gracefully fail. Runtime, there's not much we can do other 695 * than throw a hardware error. 696 */ 697 if (!bcontainer->initialized) { 698 if (!bcontainer->error) { 699 error_propagate_prepend(&bcontainer->error, err, 700 "Region %s: ", 701 memory_region_name(section->mr)); 702 } else { 703 error_free(err); 704 } 705 } else { 706 error_report_err(err); 707 hw_error("vfio: DMA mapping failed, unable to continue"); 708 } 709 } 710 711 static void vfio_listener_region_del(MemoryListener *listener, 712 MemoryRegionSection *section) 713 { 714 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 715 listener); 716 hwaddr iova, end; 717 Int128 llend, llsize; 718 int ret; 719 bool try_unmap = true; 720 721 if (!vfio_listener_valid_section(section, "region_del")) { 722 return; 723 } 724 725 if (memory_region_is_iommu(section->mr)) { 726 VFIOGuestIOMMU *giommu; 727 728 trace_vfio_listener_region_del_iommu(section->mr->name); 729 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { 730 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 731 giommu->n.start == section->offset_within_region) { 732 memory_region_unregister_iommu_notifier(section->mr, 733 &giommu->n); 734 QLIST_REMOVE(giommu, giommu_next); 735 g_free(giommu); 736 break; 737 } 738 } 739 740 /* 741 * FIXME: We assume the one big unmap below is adequate to 742 * remove any individual page mappings in the IOMMU which 743 * might have been copied into VFIO. This works for a page table 744 * based IOMMU where a big unmap flattens a large range of IO-PTEs. 745 * That may not be true for all IOMMU types. 746 */ 747 } 748 749 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, 750 &llend)) { 751 return; 752 } 753 754 llsize = int128_sub(llend, int128_make64(iova)); 755 756 trace_vfio_listener_region_del(iova, end); 757 758 if (memory_region_is_ram_device(section->mr)) { 759 hwaddr pgmask; 760 761 pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; 762 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); 763 } else if (memory_region_has_ram_discard_manager(section->mr)) { 764 vfio_unregister_ram_discard_listener(bcontainer, section); 765 /* Unregistering will trigger an unmap. */ 766 try_unmap = false; 767 } 768 769 if (try_unmap) { 770 if (int128_eq(llsize, int128_2_64())) { 771 /* The unmap ioctl doesn't accept a full 64-bit span. */ 772 llsize = int128_rshift(llsize, 1); 773 ret = vfio_container_dma_unmap(bcontainer, iova, 774 int128_get64(llsize), NULL); 775 if (ret) { 776 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 777 "0x%"HWADDR_PRIx") = %d (%s)", 778 bcontainer, iova, int128_get64(llsize), ret, 779 strerror(-ret)); 780 } 781 iova += int128_get64(llsize); 782 } 783 ret = vfio_container_dma_unmap(bcontainer, iova, 784 int128_get64(llsize), NULL); 785 if (ret) { 786 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 787 "0x%"HWADDR_PRIx") = %d (%s)", 788 bcontainer, iova, int128_get64(llsize), ret, 789 strerror(-ret)); 790 } 791 } 792 793 memory_region_unref(section->mr); 794 795 vfio_container_del_section_window(bcontainer, section); 796 } 797 798 typedef struct VFIODirtyRanges { 799 hwaddr min32; 800 hwaddr max32; 801 hwaddr min64; 802 hwaddr max64; 803 hwaddr minpci64; 804 hwaddr maxpci64; 805 } VFIODirtyRanges; 806 807 typedef struct VFIODirtyRangesListener { 808 VFIOContainerBase *bcontainer; 809 VFIODirtyRanges ranges; 810 MemoryListener listener; 811 } VFIODirtyRangesListener; 812 813 static bool vfio_section_is_vfio_pci(MemoryRegionSection *section, 814 VFIOContainerBase *bcontainer) 815 { 816 VFIOPCIDevice *pcidev; 817 VFIODevice *vbasedev; 818 Object *owner; 819 820 owner = memory_region_owner(section->mr); 821 822 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 823 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { 824 continue; 825 } 826 pcidev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 827 if (OBJECT(pcidev) == owner) { 828 return true; 829 } 830 } 831 832 return false; 833 } 834 835 static void vfio_dirty_tracking_update_range(VFIODirtyRanges *range, 836 hwaddr iova, hwaddr end, 837 bool update_pci) 838 { 839 hwaddr *min, *max; 840 841 /* 842 * The address space passed to the dirty tracker is reduced to three ranges: 843 * one for 32-bit DMA ranges, one for 64-bit DMA ranges and one for the 844 * PCI 64-bit hole. 845 * 846 * The underlying reports of dirty will query a sub-interval of each of 847 * these ranges. 848 * 849 * The purpose of the three range handling is to handle known cases of big 850 * holes in the address space, like the x86 AMD 1T hole, and firmware (like 851 * OVMF) which may relocate the pci-hole64 to the end of the address space. 852 * The latter would otherwise generate large ranges for tracking, stressing 853 * the limits of supported hardware. The pci-hole32 will always be below 4G 854 * (overlapping or not) so it doesn't need special handling and is part of 855 * the 32-bit range. 856 * 857 * The alternative would be an IOVATree but that has a much bigger runtime 858 * overhead and unnecessary complexity. 859 */ 860 if (update_pci && iova >= UINT32_MAX) { 861 min = &range->minpci64; 862 max = &range->maxpci64; 863 } else { 864 min = (end <= UINT32_MAX) ? &range->min32 : &range->min64; 865 max = (end <= UINT32_MAX) ? &range->max32 : &range->max64; 866 } 867 if (*min > iova) { 868 *min = iova; 869 } 870 if (*max < end) { 871 *max = end; 872 } 873 874 trace_vfio_device_dirty_tracking_update(iova, end, *min, *max); 875 } 876 877 static void vfio_dirty_tracking_update(MemoryListener *listener, 878 MemoryRegionSection *section) 879 { 880 VFIODirtyRangesListener *dirty = 881 container_of(listener, VFIODirtyRangesListener, listener); 882 hwaddr iova, end; 883 884 if (!vfio_listener_valid_section(section, "tracking_update") || 885 !vfio_get_section_iova_range(dirty->bcontainer, section, 886 &iova, &end, NULL)) { 887 return; 888 } 889 890 vfio_dirty_tracking_update_range(&dirty->ranges, iova, end, 891 vfio_section_is_vfio_pci(section, dirty->bcontainer)); 892 } 893 894 static const MemoryListener vfio_dirty_tracking_listener = { 895 .name = "vfio-tracking", 896 .region_add = vfio_dirty_tracking_update, 897 }; 898 899 static void vfio_dirty_tracking_init(VFIOContainerBase *bcontainer, 900 VFIODirtyRanges *ranges) 901 { 902 VFIODirtyRangesListener dirty; 903 904 memset(&dirty, 0, sizeof(dirty)); 905 dirty.ranges.min32 = UINT32_MAX; 906 dirty.ranges.min64 = UINT64_MAX; 907 dirty.ranges.minpci64 = UINT64_MAX; 908 dirty.listener = vfio_dirty_tracking_listener; 909 dirty.bcontainer = bcontainer; 910 911 memory_listener_register(&dirty.listener, 912 bcontainer->space->as); 913 914 *ranges = dirty.ranges; 915 916 /* 917 * The memory listener is synchronous, and used to calculate the range 918 * to dirty tracking. Unregister it after we are done as we are not 919 * interested in any follow-up updates. 920 */ 921 memory_listener_unregister(&dirty.listener); 922 } 923 924 static void vfio_devices_dma_logging_stop(VFIOContainerBase *bcontainer) 925 { 926 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature), 927 sizeof(uint64_t))] = {}; 928 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 929 VFIODevice *vbasedev; 930 931 feature->argsz = sizeof(buf); 932 feature->flags = VFIO_DEVICE_FEATURE_SET | 933 VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP; 934 935 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 936 if (!vbasedev->dirty_tracking) { 937 continue; 938 } 939 940 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 941 warn_report("%s: Failed to stop DMA logging, err %d (%s)", 942 vbasedev->name, -errno, strerror(errno)); 943 } 944 vbasedev->dirty_tracking = false; 945 } 946 } 947 948 static struct vfio_device_feature * 949 vfio_device_feature_dma_logging_start_create(VFIOContainerBase *bcontainer, 950 VFIODirtyRanges *tracking) 951 { 952 struct vfio_device_feature *feature; 953 size_t feature_size; 954 struct vfio_device_feature_dma_logging_control *control; 955 struct vfio_device_feature_dma_logging_range *ranges; 956 957 feature_size = sizeof(struct vfio_device_feature) + 958 sizeof(struct vfio_device_feature_dma_logging_control); 959 feature = g_try_malloc0(feature_size); 960 if (!feature) { 961 errno = ENOMEM; 962 return NULL; 963 } 964 feature->argsz = feature_size; 965 feature->flags = VFIO_DEVICE_FEATURE_SET | 966 VFIO_DEVICE_FEATURE_DMA_LOGGING_START; 967 968 control = (struct vfio_device_feature_dma_logging_control *)feature->data; 969 control->page_size = qemu_real_host_page_size(); 970 971 /* 972 * DMA logging uAPI guarantees to support at least a number of ranges that 973 * fits into a single host kernel base page. 974 */ 975 control->num_ranges = !!tracking->max32 + !!tracking->max64 + 976 !!tracking->maxpci64; 977 ranges = g_try_new0(struct vfio_device_feature_dma_logging_range, 978 control->num_ranges); 979 if (!ranges) { 980 g_free(feature); 981 errno = ENOMEM; 982 983 return NULL; 984 } 985 986 control->ranges = (uintptr_t)ranges; 987 if (tracking->max32) { 988 ranges->iova = tracking->min32; 989 ranges->length = (tracking->max32 - tracking->min32) + 1; 990 ranges++; 991 } 992 if (tracking->max64) { 993 ranges->iova = tracking->min64; 994 ranges->length = (tracking->max64 - tracking->min64) + 1; 995 ranges++; 996 } 997 if (tracking->maxpci64) { 998 ranges->iova = tracking->minpci64; 999 ranges->length = (tracking->maxpci64 - tracking->minpci64) + 1; 1000 } 1001 1002 trace_vfio_device_dirty_tracking_start(control->num_ranges, 1003 tracking->min32, tracking->max32, 1004 tracking->min64, tracking->max64, 1005 tracking->minpci64, tracking->maxpci64); 1006 1007 return feature; 1008 } 1009 1010 static void vfio_device_feature_dma_logging_start_destroy( 1011 struct vfio_device_feature *feature) 1012 { 1013 struct vfio_device_feature_dma_logging_control *control = 1014 (struct vfio_device_feature_dma_logging_control *)feature->data; 1015 struct vfio_device_feature_dma_logging_range *ranges = 1016 (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges; 1017 1018 g_free(ranges); 1019 g_free(feature); 1020 } 1021 1022 static bool vfio_devices_dma_logging_start(VFIOContainerBase *bcontainer, 1023 Error **errp) 1024 { 1025 struct vfio_device_feature *feature; 1026 VFIODirtyRanges ranges; 1027 VFIODevice *vbasedev; 1028 int ret = 0; 1029 1030 vfio_dirty_tracking_init(bcontainer, &ranges); 1031 feature = vfio_device_feature_dma_logging_start_create(bcontainer, 1032 &ranges); 1033 if (!feature) { 1034 error_setg_errno(errp, errno, "Failed to prepare DMA logging"); 1035 return false; 1036 } 1037 1038 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 1039 if (vbasedev->dirty_tracking) { 1040 continue; 1041 } 1042 1043 ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature); 1044 if (ret) { 1045 ret = -errno; 1046 error_setg_errno(errp, errno, "%s: Failed to start DMA logging", 1047 vbasedev->name); 1048 goto out; 1049 } 1050 vbasedev->dirty_tracking = true; 1051 } 1052 1053 out: 1054 if (ret) { 1055 vfio_devices_dma_logging_stop(bcontainer); 1056 } 1057 1058 vfio_device_feature_dma_logging_start_destroy(feature); 1059 1060 return ret == 0; 1061 } 1062 1063 static bool vfio_listener_log_global_start(MemoryListener *listener, 1064 Error **errp) 1065 { 1066 ERRP_GUARD(); 1067 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1068 listener); 1069 bool ret; 1070 1071 if (vfio_devices_all_device_dirty_tracking(bcontainer)) { 1072 ret = vfio_devices_dma_logging_start(bcontainer, errp); 1073 } else { 1074 ret = vfio_container_set_dirty_page_tracking(bcontainer, true, errp) == 0; 1075 } 1076 1077 if (!ret) { 1078 error_prepend(errp, "vfio: Could not start dirty page tracking - "); 1079 } 1080 return ret; 1081 } 1082 1083 static void vfio_listener_log_global_stop(MemoryListener *listener) 1084 { 1085 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1086 listener); 1087 Error *local_err = NULL; 1088 int ret = 0; 1089 1090 if (vfio_devices_all_device_dirty_tracking(bcontainer)) { 1091 vfio_devices_dma_logging_stop(bcontainer); 1092 } else { 1093 ret = vfio_container_set_dirty_page_tracking(bcontainer, false, 1094 &local_err); 1095 } 1096 1097 if (ret) { 1098 error_prepend(&local_err, 1099 "vfio: Could not stop dirty page tracking - "); 1100 error_report_err(local_err); 1101 vfio_set_migration_error(ret); 1102 } 1103 } 1104 1105 static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova, 1106 hwaddr size, void *bitmap) 1107 { 1108 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) + 1109 sizeof(struct vfio_device_feature_dma_logging_report), 1110 sizeof(uint64_t))] = {}; 1111 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 1112 struct vfio_device_feature_dma_logging_report *report = 1113 (struct vfio_device_feature_dma_logging_report *)feature->data; 1114 1115 report->iova = iova; 1116 report->length = size; 1117 report->page_size = qemu_real_host_page_size(); 1118 report->bitmap = (uintptr_t)bitmap; 1119 1120 feature->argsz = sizeof(buf); 1121 feature->flags = VFIO_DEVICE_FEATURE_GET | 1122 VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT; 1123 1124 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 1125 return -errno; 1126 } 1127 1128 return 0; 1129 } 1130 1131 int vfio_devices_query_dirty_bitmap(const VFIOContainerBase *bcontainer, 1132 VFIOBitmap *vbmap, hwaddr iova, hwaddr size, Error **errp) 1133 { 1134 VFIODevice *vbasedev; 1135 int ret; 1136 1137 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 1138 ret = vfio_device_dma_logging_report(vbasedev, iova, size, 1139 vbmap->bitmap); 1140 if (ret) { 1141 error_setg_errno(errp, -ret, 1142 "%s: Failed to get DMA logging report, iova: " 1143 "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx, 1144 vbasedev->name, iova, size); 1145 1146 return ret; 1147 } 1148 } 1149 1150 return 0; 1151 } 1152 1153 int vfio_get_dirty_bitmap(const VFIOContainerBase *bcontainer, uint64_t iova, 1154 uint64_t size, ram_addr_t ram_addr, Error **errp) 1155 { 1156 bool all_device_dirty_tracking = 1157 vfio_devices_all_device_dirty_tracking(bcontainer); 1158 uint64_t dirty_pages; 1159 VFIOBitmap vbmap; 1160 int ret; 1161 1162 if (!bcontainer->dirty_pages_supported && !all_device_dirty_tracking) { 1163 cpu_physical_memory_set_dirty_range(ram_addr, size, 1164 tcg_enabled() ? DIRTY_CLIENTS_ALL : 1165 DIRTY_CLIENTS_NOCODE); 1166 return 0; 1167 } 1168 1169 ret = vfio_bitmap_alloc(&vbmap, size); 1170 if (ret) { 1171 error_setg_errno(errp, -ret, 1172 "Failed to allocate dirty tracking bitmap"); 1173 return ret; 1174 } 1175 1176 if (all_device_dirty_tracking) { 1177 ret = vfio_devices_query_dirty_bitmap(bcontainer, &vbmap, iova, size, 1178 errp); 1179 } else { 1180 ret = vfio_container_query_dirty_bitmap(bcontainer, &vbmap, iova, size, 1181 errp); 1182 } 1183 1184 if (ret) { 1185 goto out; 1186 } 1187 1188 dirty_pages = cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr, 1189 vbmap.pages); 1190 1191 trace_vfio_get_dirty_bitmap(iova, size, vbmap.size, ram_addr, dirty_pages); 1192 out: 1193 g_free(vbmap.bitmap); 1194 1195 return ret; 1196 } 1197 1198 typedef struct { 1199 IOMMUNotifier n; 1200 VFIOGuestIOMMU *giommu; 1201 } vfio_giommu_dirty_notifier; 1202 1203 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 1204 { 1205 vfio_giommu_dirty_notifier *gdn = container_of(n, 1206 vfio_giommu_dirty_notifier, n); 1207 VFIOGuestIOMMU *giommu = gdn->giommu; 1208 VFIOContainerBase *bcontainer = giommu->bcontainer; 1209 hwaddr iova = iotlb->iova + giommu->iommu_offset; 1210 ram_addr_t translated_addr; 1211 Error *local_err = NULL; 1212 int ret = -EINVAL; 1213 1214 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); 1215 1216 if (iotlb->target_as != &address_space_memory) { 1217 error_report("Wrong target AS \"%s\", only system memory is allowed", 1218 iotlb->target_as->name ? iotlb->target_as->name : "none"); 1219 goto out; 1220 } 1221 1222 rcu_read_lock(); 1223 if (!vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL, &local_err)) { 1224 error_report_err(local_err); 1225 goto out_unlock; 1226 } 1227 1228 ret = vfio_get_dirty_bitmap(bcontainer, iova, iotlb->addr_mask + 1, 1229 translated_addr, &local_err); 1230 if (ret) { 1231 error_prepend(&local_err, 1232 "vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " 1233 "0x%"HWADDR_PRIx") failed - ", bcontainer, iova, 1234 iotlb->addr_mask + 1); 1235 error_report_err(local_err); 1236 } 1237 1238 out_unlock: 1239 rcu_read_unlock(); 1240 1241 out: 1242 if (ret) { 1243 vfio_set_migration_error(ret); 1244 } 1245 } 1246 1247 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, 1248 void *opaque) 1249 { 1250 const hwaddr size = int128_get64(section->size); 1251 const hwaddr iova = section->offset_within_address_space; 1252 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + 1253 section->offset_within_region; 1254 VFIORamDiscardListener *vrdl = opaque; 1255 Error *local_err = NULL; 1256 int ret; 1257 1258 /* 1259 * Sync the whole mapped region (spanning multiple individual mappings) 1260 * in one go. 1261 */ 1262 ret = vfio_get_dirty_bitmap(vrdl->bcontainer, iova, size, ram_addr, 1263 &local_err); 1264 if (ret) { 1265 error_report_err(local_err); 1266 } 1267 return ret; 1268 } 1269 1270 static int 1271 vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainerBase *bcontainer, 1272 MemoryRegionSection *section) 1273 { 1274 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 1275 VFIORamDiscardListener *vrdl = NULL; 1276 1277 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 1278 if (vrdl->mr == section->mr && 1279 vrdl->offset_within_address_space == 1280 section->offset_within_address_space) { 1281 break; 1282 } 1283 } 1284 1285 if (!vrdl) { 1286 hw_error("vfio: Trying to sync missing RAM discard listener"); 1287 } 1288 1289 /* 1290 * We only want/can synchronize the bitmap for actually mapped parts - 1291 * which correspond to populated parts. Replay all populated parts. 1292 */ 1293 return ram_discard_manager_replay_populated(rdm, section, 1294 vfio_ram_discard_get_dirty_bitmap, 1295 &vrdl); 1296 } 1297 1298 static int vfio_sync_iommu_dirty_bitmap(VFIOContainerBase *bcontainer, 1299 MemoryRegionSection *section) 1300 { 1301 VFIOGuestIOMMU *giommu; 1302 bool found = false; 1303 Int128 llend; 1304 vfio_giommu_dirty_notifier gdn; 1305 int idx; 1306 1307 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { 1308 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1309 giommu->n.start == section->offset_within_region) { 1310 found = true; 1311 break; 1312 } 1313 } 1314 1315 if (!found) { 1316 return 0; 1317 } 1318 1319 gdn.giommu = giommu; 1320 idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr, 1321 MEMTXATTRS_UNSPECIFIED); 1322 1323 llend = int128_add(int128_make64(section->offset_within_region), 1324 section->size); 1325 llend = int128_sub(llend, int128_one()); 1326 1327 iommu_notifier_init(&gdn.n, vfio_iommu_map_dirty_notify, IOMMU_NOTIFIER_MAP, 1328 section->offset_within_region, int128_get64(llend), 1329 idx); 1330 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n); 1331 1332 return 0; 1333 } 1334 1335 static int vfio_sync_dirty_bitmap(VFIOContainerBase *bcontainer, 1336 MemoryRegionSection *section, Error **errp) 1337 { 1338 ram_addr_t ram_addr; 1339 1340 if (memory_region_is_iommu(section->mr)) { 1341 return vfio_sync_iommu_dirty_bitmap(bcontainer, section); 1342 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1343 int ret; 1344 1345 ret = vfio_sync_ram_discard_listener_dirty_bitmap(bcontainer, section); 1346 if (ret) { 1347 error_setg(errp, 1348 "Failed to sync dirty bitmap with RAM discard listener"); 1349 } 1350 return ret; 1351 } 1352 1353 ram_addr = memory_region_get_ram_addr(section->mr) + 1354 section->offset_within_region; 1355 1356 return vfio_get_dirty_bitmap(bcontainer, 1357 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), 1358 int128_get64(section->size), ram_addr, errp); 1359 } 1360 1361 static void vfio_listener_log_sync(MemoryListener *listener, 1362 MemoryRegionSection *section) 1363 { 1364 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1365 listener); 1366 int ret; 1367 Error *local_err = NULL; 1368 1369 if (vfio_listener_skipped_section(section)) { 1370 return; 1371 } 1372 1373 if (vfio_devices_all_dirty_tracking(bcontainer)) { 1374 ret = vfio_sync_dirty_bitmap(bcontainer, section, &local_err); 1375 if (ret) { 1376 error_report_err(local_err); 1377 vfio_set_migration_error(ret); 1378 } 1379 } 1380 } 1381 1382 const MemoryListener vfio_memory_listener = { 1383 .name = "vfio", 1384 .region_add = vfio_listener_region_add, 1385 .region_del = vfio_listener_region_del, 1386 .log_global_start = vfio_listener_log_global_start, 1387 .log_global_stop = vfio_listener_log_global_stop, 1388 .log_sync = vfio_listener_log_sync, 1389 }; 1390 1391 void vfio_reset_handler(void *opaque) 1392 { 1393 VFIODevice *vbasedev; 1394 1395 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 1396 if (vbasedev->dev->realized) { 1397 vbasedev->ops->vfio_compute_needs_reset(vbasedev); 1398 } 1399 } 1400 1401 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 1402 if (vbasedev->dev->realized && vbasedev->needs_reset) { 1403 vbasedev->ops->vfio_hot_reset_multi(vbasedev); 1404 } 1405 } 1406 } 1407 1408 int vfio_kvm_device_add_fd(int fd, Error **errp) 1409 { 1410 #ifdef CONFIG_KVM 1411 struct kvm_device_attr attr = { 1412 .group = KVM_DEV_VFIO_FILE, 1413 .attr = KVM_DEV_VFIO_FILE_ADD, 1414 .addr = (uint64_t)(unsigned long)&fd, 1415 }; 1416 1417 if (!kvm_enabled()) { 1418 return 0; 1419 } 1420 1421 if (vfio_kvm_device_fd < 0) { 1422 struct kvm_create_device cd = { 1423 .type = KVM_DEV_TYPE_VFIO, 1424 }; 1425 1426 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { 1427 error_setg_errno(errp, errno, "Failed to create KVM VFIO device"); 1428 return -errno; 1429 } 1430 1431 vfio_kvm_device_fd = cd.fd; 1432 } 1433 1434 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1435 error_setg_errno(errp, errno, "Failed to add fd %d to KVM VFIO device", 1436 fd); 1437 return -errno; 1438 } 1439 #endif 1440 return 0; 1441 } 1442 1443 int vfio_kvm_device_del_fd(int fd, Error **errp) 1444 { 1445 #ifdef CONFIG_KVM 1446 struct kvm_device_attr attr = { 1447 .group = KVM_DEV_VFIO_FILE, 1448 .attr = KVM_DEV_VFIO_FILE_DEL, 1449 .addr = (uint64_t)(unsigned long)&fd, 1450 }; 1451 1452 if (vfio_kvm_device_fd < 0) { 1453 error_setg(errp, "KVM VFIO device isn't created yet"); 1454 return -EINVAL; 1455 } 1456 1457 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1458 error_setg_errno(errp, errno, 1459 "Failed to remove fd %d from KVM VFIO device", fd); 1460 return -errno; 1461 } 1462 #endif 1463 return 0; 1464 } 1465 1466 VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) 1467 { 1468 VFIOAddressSpace *space; 1469 1470 QLIST_FOREACH(space, &vfio_address_spaces, list) { 1471 if (space->as == as) { 1472 return space; 1473 } 1474 } 1475 1476 /* No suitable VFIOAddressSpace, create a new one */ 1477 space = g_malloc0(sizeof(*space)); 1478 space->as = as; 1479 QLIST_INIT(&space->containers); 1480 1481 if (QLIST_EMPTY(&vfio_address_spaces)) { 1482 qemu_register_reset(vfio_reset_handler, NULL); 1483 } 1484 1485 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); 1486 1487 return space; 1488 } 1489 1490 void vfio_put_address_space(VFIOAddressSpace *space) 1491 { 1492 if (!QLIST_EMPTY(&space->containers)) { 1493 return; 1494 } 1495 1496 QLIST_REMOVE(space, list); 1497 g_free(space); 1498 1499 if (QLIST_EMPTY(&vfio_address_spaces)) { 1500 qemu_unregister_reset(vfio_reset_handler, NULL); 1501 } 1502 } 1503 1504 void vfio_address_space_insert(VFIOAddressSpace *space, 1505 VFIOContainerBase *bcontainer) 1506 { 1507 QLIST_INSERT_HEAD(&space->containers, bcontainer, next); 1508 bcontainer->space = space; 1509 } 1510 1511 struct vfio_device_info *vfio_get_device_info(int fd) 1512 { 1513 struct vfio_device_info *info; 1514 uint32_t argsz = sizeof(*info); 1515 1516 info = g_malloc0(argsz); 1517 1518 retry: 1519 info->argsz = argsz; 1520 1521 if (ioctl(fd, VFIO_DEVICE_GET_INFO, info)) { 1522 g_free(info); 1523 return NULL; 1524 } 1525 1526 if (info->argsz > argsz) { 1527 argsz = info->argsz; 1528 info = g_realloc(info, argsz); 1529 goto retry; 1530 } 1531 1532 return info; 1533 } 1534 1535 bool vfio_attach_device(char *name, VFIODevice *vbasedev, 1536 AddressSpace *as, Error **errp) 1537 { 1538 const VFIOIOMMUClass *ops = 1539 VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_LEGACY)); 1540 HostIOMMUDevice *hiod; 1541 1542 if (vbasedev->iommufd) { 1543 ops = VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_IOMMUFD)); 1544 } 1545 1546 assert(ops); 1547 1548 if (!ops->attach_device(name, vbasedev, as, errp)) { 1549 return false; 1550 } 1551 1552 hiod = HOST_IOMMU_DEVICE(object_new(ops->hiod_typename)); 1553 if (!HOST_IOMMU_DEVICE_GET_CLASS(hiod)->realize(hiod, vbasedev, errp)) { 1554 object_unref(hiod); 1555 ops->detach_device(vbasedev); 1556 return false; 1557 } 1558 vbasedev->hiod = hiod; 1559 1560 return true; 1561 } 1562 1563 void vfio_detach_device(VFIODevice *vbasedev) 1564 { 1565 if (!vbasedev->bcontainer) { 1566 return; 1567 } 1568 object_unref(vbasedev->hiod); 1569 VFIO_IOMMU_GET_CLASS(vbasedev->bcontainer)->detach_device(vbasedev); 1570 } 1571