1 /* 2 * generic functions used by VFIO devices 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 #ifdef CONFIG_KVM 24 #include <linux/kvm.h> 25 #endif 26 #include <linux/vfio.h> 27 28 #include "hw/vfio/vfio-common.h" 29 #include "hw/vfio/pci.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "exec/ram_addr.h" 33 #include "hw/hw.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/range.h" 37 #include "sysemu/kvm.h" 38 #include "sysemu/reset.h" 39 #include "sysemu/runstate.h" 40 #include "trace.h" 41 #include "qapi/error.h" 42 #include "migration/misc.h" 43 #include "migration/blocker.h" 44 #include "migration/qemu-file.h" 45 #include "sysemu/tpm.h" 46 47 VFIODeviceList vfio_device_list = 48 QLIST_HEAD_INITIALIZER(vfio_device_list); 49 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = 50 QLIST_HEAD_INITIALIZER(vfio_address_spaces); 51 52 #ifdef CONFIG_KVM 53 /* 54 * We have a single VFIO pseudo device per KVM VM. Once created it lives 55 * for the life of the VM. Closing the file descriptor only drops our 56 * reference to it and the device's reference to kvm. Therefore once 57 * initialized, this file descriptor is only released on QEMU exit and 58 * we'll re-use it should another vfio device be attached before then. 59 */ 60 int vfio_kvm_device_fd = -1; 61 #endif 62 63 /* 64 * Device state interfaces 65 */ 66 67 bool vfio_mig_active(void) 68 { 69 VFIODevice *vbasedev; 70 71 if (QLIST_EMPTY(&vfio_device_list)) { 72 return false; 73 } 74 75 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 76 if (vbasedev->migration_blocker) { 77 return false; 78 } 79 } 80 return true; 81 } 82 83 static Error *multiple_devices_migration_blocker; 84 85 /* 86 * Multiple devices migration is allowed only if all devices support P2P 87 * migration. Single device migration is allowed regardless of P2P migration 88 * support. 89 */ 90 static bool vfio_multiple_devices_migration_is_supported(void) 91 { 92 VFIODevice *vbasedev; 93 unsigned int device_num = 0; 94 bool all_support_p2p = true; 95 96 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 97 if (vbasedev->migration) { 98 device_num++; 99 100 if (!(vbasedev->migration->mig_flags & VFIO_MIGRATION_P2P)) { 101 all_support_p2p = false; 102 } 103 } 104 } 105 106 return all_support_p2p || device_num <= 1; 107 } 108 109 int vfio_block_multiple_devices_migration(VFIODevice *vbasedev, Error **errp) 110 { 111 int ret; 112 113 if (vfio_multiple_devices_migration_is_supported()) { 114 return 0; 115 } 116 117 if (vbasedev->enable_migration == ON_OFF_AUTO_ON) { 118 error_setg(errp, "Multiple VFIO devices migration is supported only if " 119 "all of them support P2P migration"); 120 return -EINVAL; 121 } 122 123 if (multiple_devices_migration_blocker) { 124 return 0; 125 } 126 127 error_setg(&multiple_devices_migration_blocker, 128 "Multiple VFIO devices migration is supported only if all of " 129 "them support P2P migration"); 130 ret = migrate_add_blocker_normal(&multiple_devices_migration_blocker, errp); 131 132 return ret; 133 } 134 135 void vfio_unblock_multiple_devices_migration(void) 136 { 137 if (!multiple_devices_migration_blocker || 138 !vfio_multiple_devices_migration_is_supported()) { 139 return; 140 } 141 142 migrate_del_blocker(&multiple_devices_migration_blocker); 143 } 144 145 bool vfio_viommu_preset(VFIODevice *vbasedev) 146 { 147 return vbasedev->bcontainer->space->as != &address_space_memory; 148 } 149 150 static void vfio_set_migration_error(int ret) 151 { 152 if (migration_is_setup_or_active()) { 153 migration_file_set_error(ret, NULL); 154 } 155 } 156 157 bool vfio_device_state_is_running(VFIODevice *vbasedev) 158 { 159 VFIOMigration *migration = vbasedev->migration; 160 161 return migration->device_state == VFIO_DEVICE_STATE_RUNNING || 162 migration->device_state == VFIO_DEVICE_STATE_RUNNING_P2P; 163 } 164 165 bool vfio_device_state_is_precopy(VFIODevice *vbasedev) 166 { 167 VFIOMigration *migration = vbasedev->migration; 168 169 return migration->device_state == VFIO_DEVICE_STATE_PRE_COPY || 170 migration->device_state == VFIO_DEVICE_STATE_PRE_COPY_P2P; 171 } 172 173 static bool vfio_devices_all_dirty_tracking(VFIOContainerBase *bcontainer) 174 { 175 VFIODevice *vbasedev; 176 177 if (!migration_is_active() && !migration_is_device()) { 178 return false; 179 } 180 181 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 182 VFIOMigration *migration = vbasedev->migration; 183 184 if (!migration) { 185 return false; 186 } 187 188 if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF && 189 (vfio_device_state_is_running(vbasedev) || 190 vfio_device_state_is_precopy(vbasedev))) { 191 return false; 192 } 193 } 194 return true; 195 } 196 197 bool vfio_devices_all_device_dirty_tracking(const VFIOContainerBase *bcontainer) 198 { 199 VFIODevice *vbasedev; 200 201 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 202 if (!vbasedev->dirty_pages_supported) { 203 return false; 204 } 205 } 206 207 return true; 208 } 209 210 /* 211 * Check if all VFIO devices are running and migration is active, which is 212 * essentially equivalent to the migration being in pre-copy phase. 213 */ 214 bool 215 vfio_devices_all_running_and_mig_active(const VFIOContainerBase *bcontainer) 216 { 217 VFIODevice *vbasedev; 218 219 if (!migration_is_active()) { 220 return false; 221 } 222 223 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 224 VFIOMigration *migration = vbasedev->migration; 225 226 if (!migration) { 227 return false; 228 } 229 230 if (vfio_device_state_is_running(vbasedev) || 231 vfio_device_state_is_precopy(vbasedev)) { 232 continue; 233 } else { 234 return false; 235 } 236 } 237 return true; 238 } 239 240 static bool vfio_listener_skipped_section(MemoryRegionSection *section) 241 { 242 return (!memory_region_is_ram(section->mr) && 243 !memory_region_is_iommu(section->mr)) || 244 memory_region_is_protected(section->mr) || 245 /* 246 * Sizing an enabled 64-bit BAR can cause spurious mappings to 247 * addresses in the upper part of the 64-bit address space. These 248 * are never accessed by the CPU and beyond the address width of 249 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. 250 */ 251 section->offset_within_address_space & (1ULL << 63); 252 } 253 254 /* Called with rcu_read_lock held. */ 255 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 256 ram_addr_t *ram_addr, bool *read_only, 257 Error **errp) 258 { 259 bool ret, mr_has_discard_manager; 260 261 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only, 262 &mr_has_discard_manager, errp); 263 if (ret && mr_has_discard_manager) { 264 /* 265 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The 266 * pages will remain pinned inside vfio until unmapped, resulting in a 267 * higher memory consumption than expected. If memory would get 268 * populated again later, there would be an inconsistency between pages 269 * pinned by vfio and pages seen by QEMU. This is the case until 270 * unmapped from the IOMMU (e.g., during device reset). 271 * 272 * With malicious guests, we really only care about pinning more memory 273 * than expected. RLIMIT_MEMLOCK set for the user/process can never be 274 * exceeded and can be used to mitigate this problem. 275 */ 276 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" 277 " RAM (e.g., virtio-mem) works, however, malicious" 278 " guests can trigger pinning of more memory than" 279 " intended via an IOMMU. It's possible to mitigate " 280 " by setting/adjusting RLIMIT_MEMLOCK."); 281 } 282 return ret; 283 } 284 285 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 286 { 287 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); 288 VFIOContainerBase *bcontainer = giommu->bcontainer; 289 hwaddr iova = iotlb->iova + giommu->iommu_offset; 290 void *vaddr; 291 int ret; 292 Error *local_err = NULL; 293 294 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", 295 iova, iova + iotlb->addr_mask); 296 297 if (iotlb->target_as != &address_space_memory) { 298 error_report("Wrong target AS \"%s\", only system memory is allowed", 299 iotlb->target_as->name ? iotlb->target_as->name : "none"); 300 vfio_set_migration_error(-EINVAL); 301 return; 302 } 303 304 rcu_read_lock(); 305 306 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 307 bool read_only; 308 309 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only, &local_err)) { 310 error_report_err(local_err); 311 goto out; 312 } 313 /* 314 * vaddr is only valid until rcu_read_unlock(). But after 315 * vfio_dma_map has set up the mapping the pages will be 316 * pinned by the kernel. This makes sure that the RAM backend 317 * of vaddr will always be there, even if the memory object is 318 * destroyed and its backing memory munmap-ed. 319 */ 320 ret = vfio_container_dma_map(bcontainer, iova, 321 iotlb->addr_mask + 1, vaddr, 322 read_only); 323 if (ret) { 324 error_report("vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " 325 "0x%"HWADDR_PRIx", %p) = %d (%s)", 326 bcontainer, iova, 327 iotlb->addr_mask + 1, vaddr, ret, strerror(-ret)); 328 } 329 } else { 330 ret = vfio_container_dma_unmap(bcontainer, iova, 331 iotlb->addr_mask + 1, iotlb); 332 if (ret) { 333 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 334 "0x%"HWADDR_PRIx") = %d (%s)", 335 bcontainer, iova, 336 iotlb->addr_mask + 1, ret, strerror(-ret)); 337 vfio_set_migration_error(ret); 338 } 339 } 340 out: 341 rcu_read_unlock(); 342 } 343 344 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, 345 MemoryRegionSection *section) 346 { 347 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 348 listener); 349 VFIOContainerBase *bcontainer = vrdl->bcontainer; 350 const hwaddr size = int128_get64(section->size); 351 const hwaddr iova = section->offset_within_address_space; 352 int ret; 353 354 /* Unmap with a single call. */ 355 ret = vfio_container_dma_unmap(bcontainer, iova, size , NULL); 356 if (ret) { 357 error_report("%s: vfio_container_dma_unmap() failed: %s", __func__, 358 strerror(-ret)); 359 } 360 } 361 362 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, 363 MemoryRegionSection *section) 364 { 365 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 366 listener); 367 VFIOContainerBase *bcontainer = vrdl->bcontainer; 368 const hwaddr end = section->offset_within_region + 369 int128_get64(section->size); 370 hwaddr start, next, iova; 371 void *vaddr; 372 int ret; 373 374 /* 375 * Map in (aligned within memory region) minimum granularity, so we can 376 * unmap in minimum granularity later. 377 */ 378 for (start = section->offset_within_region; start < end; start = next) { 379 next = ROUND_UP(start + 1, vrdl->granularity); 380 next = MIN(next, end); 381 382 iova = start - section->offset_within_region + 383 section->offset_within_address_space; 384 vaddr = memory_region_get_ram_ptr(section->mr) + start; 385 386 ret = vfio_container_dma_map(bcontainer, iova, next - start, 387 vaddr, section->readonly); 388 if (ret) { 389 /* Rollback */ 390 vfio_ram_discard_notify_discard(rdl, section); 391 return ret; 392 } 393 } 394 return 0; 395 } 396 397 static void vfio_register_ram_discard_listener(VFIOContainerBase *bcontainer, 398 MemoryRegionSection *section) 399 { 400 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 401 VFIORamDiscardListener *vrdl; 402 403 /* Ignore some corner cases not relevant in practice. */ 404 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); 405 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, 406 TARGET_PAGE_SIZE)); 407 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); 408 409 vrdl = g_new0(VFIORamDiscardListener, 1); 410 vrdl->bcontainer = bcontainer; 411 vrdl->mr = section->mr; 412 vrdl->offset_within_address_space = section->offset_within_address_space; 413 vrdl->size = int128_get64(section->size); 414 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, 415 section->mr); 416 417 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); 418 g_assert(bcontainer->pgsizes && 419 vrdl->granularity >= 1ULL << ctz64(bcontainer->pgsizes)); 420 421 ram_discard_listener_init(&vrdl->listener, 422 vfio_ram_discard_notify_populate, 423 vfio_ram_discard_notify_discard, true); 424 ram_discard_manager_register_listener(rdm, &vrdl->listener, section); 425 QLIST_INSERT_HEAD(&bcontainer->vrdl_list, vrdl, next); 426 427 /* 428 * Sanity-check if we have a theoretically problematic setup where we could 429 * exceed the maximum number of possible DMA mappings over time. We assume 430 * that each mapped section in the same address space as a RamDiscardManager 431 * section consumes exactly one DMA mapping, with the exception of 432 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections 433 * in the same address space as RamDiscardManager sections. 434 * 435 * We assume that each section in the address space consumes one memslot. 436 * We take the number of KVM memory slots as a best guess for the maximum 437 * number of sections in the address space we could have over time, 438 * also consuming DMA mappings. 439 */ 440 if (bcontainer->dma_max_mappings) { 441 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; 442 443 #ifdef CONFIG_KVM 444 if (kvm_enabled()) { 445 max_memslots = kvm_get_max_memslots(); 446 } 447 #endif 448 449 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 450 hwaddr start, end; 451 452 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, 453 vrdl->granularity); 454 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, 455 vrdl->granularity); 456 vrdl_mappings += (end - start) / vrdl->granularity; 457 vrdl_count++; 458 } 459 460 if (vrdl_mappings + max_memslots - vrdl_count > 461 bcontainer->dma_max_mappings) { 462 warn_report("%s: possibly running out of DMA mappings. E.g., try" 463 " increasing the 'block-size' of virtio-mem devies." 464 " Maximum possible DMA mappings: %d, Maximum possible" 465 " memslots: %d", __func__, bcontainer->dma_max_mappings, 466 max_memslots); 467 } 468 } 469 } 470 471 static void vfio_unregister_ram_discard_listener(VFIOContainerBase *bcontainer, 472 MemoryRegionSection *section) 473 { 474 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 475 VFIORamDiscardListener *vrdl = NULL; 476 477 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 478 if (vrdl->mr == section->mr && 479 vrdl->offset_within_address_space == 480 section->offset_within_address_space) { 481 break; 482 } 483 } 484 485 if (!vrdl) { 486 hw_error("vfio: Trying to unregister missing RAM discard listener"); 487 } 488 489 ram_discard_manager_unregister_listener(rdm, &vrdl->listener); 490 QLIST_REMOVE(vrdl, next); 491 g_free(vrdl); 492 } 493 494 static bool vfio_known_safe_misalignment(MemoryRegionSection *section) 495 { 496 MemoryRegion *mr = section->mr; 497 498 if (!TPM_IS_CRB(mr->owner)) { 499 return false; 500 } 501 502 /* this is a known safe misaligned region, just trace for debug purpose */ 503 trace_vfio_known_safe_misalignment(memory_region_name(mr), 504 section->offset_within_address_space, 505 section->offset_within_region, 506 qemu_real_host_page_size()); 507 return true; 508 } 509 510 static bool vfio_listener_valid_section(MemoryRegionSection *section, 511 const char *name) 512 { 513 if (vfio_listener_skipped_section(section)) { 514 trace_vfio_listener_region_skip(name, 515 section->offset_within_address_space, 516 section->offset_within_address_space + 517 int128_get64(int128_sub(section->size, int128_one()))); 518 return false; 519 } 520 521 if (unlikely((section->offset_within_address_space & 522 ~qemu_real_host_page_mask()) != 523 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 524 if (!vfio_known_safe_misalignment(section)) { 525 error_report("%s received unaligned region %s iova=0x%"PRIx64 526 " offset_within_region=0x%"PRIx64 527 " qemu_real_host_page_size=0x%"PRIxPTR, 528 __func__, memory_region_name(section->mr), 529 section->offset_within_address_space, 530 section->offset_within_region, 531 qemu_real_host_page_size()); 532 } 533 return false; 534 } 535 536 return true; 537 } 538 539 static bool vfio_get_section_iova_range(VFIOContainerBase *bcontainer, 540 MemoryRegionSection *section, 541 hwaddr *out_iova, hwaddr *out_end, 542 Int128 *out_llend) 543 { 544 Int128 llend; 545 hwaddr iova; 546 547 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 548 llend = int128_make64(section->offset_within_address_space); 549 llend = int128_add(llend, section->size); 550 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 551 552 if (int128_ge(int128_make64(iova), llend)) { 553 return false; 554 } 555 556 *out_iova = iova; 557 *out_end = int128_get64(int128_sub(llend, int128_one())); 558 if (out_llend) { 559 *out_llend = llend; 560 } 561 return true; 562 } 563 564 static void vfio_listener_region_add(MemoryListener *listener, 565 MemoryRegionSection *section) 566 { 567 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 568 listener); 569 hwaddr iova, end; 570 Int128 llend, llsize; 571 void *vaddr; 572 int ret; 573 Error *err = NULL; 574 575 if (!vfio_listener_valid_section(section, "region_add")) { 576 return; 577 } 578 579 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, 580 &llend)) { 581 if (memory_region_is_ram_device(section->mr)) { 582 trace_vfio_listener_region_add_no_dma_map( 583 memory_region_name(section->mr), 584 section->offset_within_address_space, 585 int128_getlo(section->size), 586 qemu_real_host_page_size()); 587 } 588 return; 589 } 590 591 if (!vfio_container_add_section_window(bcontainer, section, &err)) { 592 goto fail; 593 } 594 595 memory_region_ref(section->mr); 596 597 if (memory_region_is_iommu(section->mr)) { 598 VFIOGuestIOMMU *giommu; 599 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 600 int iommu_idx; 601 602 trace_vfio_listener_region_add_iommu(iova, end); 603 /* 604 * FIXME: For VFIO iommu types which have KVM acceleration to 605 * avoid bouncing all map/unmaps through qemu this way, this 606 * would be the right place to wire that up (tell the KVM 607 * device emulation the VFIO iommu handles to use). 608 */ 609 giommu = g_malloc0(sizeof(*giommu)); 610 giommu->iommu_mr = iommu_mr; 611 giommu->iommu_offset = section->offset_within_address_space - 612 section->offset_within_region; 613 giommu->bcontainer = bcontainer; 614 llend = int128_add(int128_make64(section->offset_within_region), 615 section->size); 616 llend = int128_sub(llend, int128_one()); 617 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 618 MEMTXATTRS_UNSPECIFIED); 619 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, 620 IOMMU_NOTIFIER_IOTLB_EVENTS, 621 section->offset_within_region, 622 int128_get64(llend), 623 iommu_idx); 624 625 ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr, 626 bcontainer->pgsizes, 627 &err); 628 if (ret) { 629 g_free(giommu); 630 goto fail; 631 } 632 633 if (bcontainer->iova_ranges) { 634 ret = memory_region_iommu_set_iova_ranges(giommu->iommu_mr, 635 bcontainer->iova_ranges, 636 &err); 637 if (ret) { 638 g_free(giommu); 639 goto fail; 640 } 641 } 642 643 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, 644 &err); 645 if (ret) { 646 g_free(giommu); 647 goto fail; 648 } 649 QLIST_INSERT_HEAD(&bcontainer->giommu_list, giommu, giommu_next); 650 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n); 651 652 return; 653 } 654 655 /* Here we assume that memory_region_is_ram(section->mr)==true */ 656 657 /* 658 * For RAM memory regions with a RamDiscardManager, we only want to map the 659 * actually populated parts - and update the mapping whenever we're notified 660 * about changes. 661 */ 662 if (memory_region_has_ram_discard_manager(section->mr)) { 663 vfio_register_ram_discard_listener(bcontainer, section); 664 return; 665 } 666 667 vaddr = memory_region_get_ram_ptr(section->mr) + 668 section->offset_within_region + 669 (iova - section->offset_within_address_space); 670 671 trace_vfio_listener_region_add_ram(iova, end, vaddr); 672 673 llsize = int128_sub(llend, int128_make64(iova)); 674 675 if (memory_region_is_ram_device(section->mr)) { 676 hwaddr pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; 677 678 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { 679 trace_vfio_listener_region_add_no_dma_map( 680 memory_region_name(section->mr), 681 section->offset_within_address_space, 682 int128_getlo(section->size), 683 pgmask + 1); 684 return; 685 } 686 } 687 688 ret = vfio_container_dma_map(bcontainer, iova, int128_get64(llsize), 689 vaddr, section->readonly); 690 if (ret) { 691 error_setg(&err, "vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " 692 "0x%"HWADDR_PRIx", %p) = %d (%s)", 693 bcontainer, iova, int128_get64(llsize), vaddr, ret, 694 strerror(-ret)); 695 if (memory_region_is_ram_device(section->mr)) { 696 /* Allow unexpected mappings not to be fatal for RAM devices */ 697 error_report_err(err); 698 return; 699 } 700 goto fail; 701 } 702 703 return; 704 705 fail: 706 if (memory_region_is_ram_device(section->mr)) { 707 error_reportf_err(err, "PCI p2p may not work: "); 708 return; 709 } 710 /* 711 * On the initfn path, store the first error in the container so we 712 * can gracefully fail. Runtime, there's not much we can do other 713 * than throw a hardware error. 714 */ 715 if (!bcontainer->initialized) { 716 if (!bcontainer->error) { 717 error_propagate_prepend(&bcontainer->error, err, 718 "Region %s: ", 719 memory_region_name(section->mr)); 720 } else { 721 error_free(err); 722 } 723 } else { 724 error_report_err(err); 725 hw_error("vfio: DMA mapping failed, unable to continue"); 726 } 727 } 728 729 static void vfio_listener_region_del(MemoryListener *listener, 730 MemoryRegionSection *section) 731 { 732 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 733 listener); 734 hwaddr iova, end; 735 Int128 llend, llsize; 736 int ret; 737 bool try_unmap = true; 738 739 if (!vfio_listener_valid_section(section, "region_del")) { 740 return; 741 } 742 743 if (memory_region_is_iommu(section->mr)) { 744 VFIOGuestIOMMU *giommu; 745 746 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { 747 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 748 giommu->n.start == section->offset_within_region) { 749 memory_region_unregister_iommu_notifier(section->mr, 750 &giommu->n); 751 QLIST_REMOVE(giommu, giommu_next); 752 g_free(giommu); 753 break; 754 } 755 } 756 757 /* 758 * FIXME: We assume the one big unmap below is adequate to 759 * remove any individual page mappings in the IOMMU which 760 * might have been copied into VFIO. This works for a page table 761 * based IOMMU where a big unmap flattens a large range of IO-PTEs. 762 * That may not be true for all IOMMU types. 763 */ 764 } 765 766 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, 767 &llend)) { 768 return; 769 } 770 771 llsize = int128_sub(llend, int128_make64(iova)); 772 773 trace_vfio_listener_region_del(iova, end); 774 775 if (memory_region_is_ram_device(section->mr)) { 776 hwaddr pgmask; 777 778 pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; 779 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); 780 } else if (memory_region_has_ram_discard_manager(section->mr)) { 781 vfio_unregister_ram_discard_listener(bcontainer, section); 782 /* Unregistering will trigger an unmap. */ 783 try_unmap = false; 784 } 785 786 if (try_unmap) { 787 if (int128_eq(llsize, int128_2_64())) { 788 /* The unmap ioctl doesn't accept a full 64-bit span. */ 789 llsize = int128_rshift(llsize, 1); 790 ret = vfio_container_dma_unmap(bcontainer, iova, 791 int128_get64(llsize), NULL); 792 if (ret) { 793 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 794 "0x%"HWADDR_PRIx") = %d (%s)", 795 bcontainer, iova, int128_get64(llsize), ret, 796 strerror(-ret)); 797 } 798 iova += int128_get64(llsize); 799 } 800 ret = vfio_container_dma_unmap(bcontainer, iova, 801 int128_get64(llsize), NULL); 802 if (ret) { 803 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 804 "0x%"HWADDR_PRIx") = %d (%s)", 805 bcontainer, iova, int128_get64(llsize), ret, 806 strerror(-ret)); 807 } 808 } 809 810 memory_region_unref(section->mr); 811 812 vfio_container_del_section_window(bcontainer, section); 813 } 814 815 typedef struct VFIODirtyRanges { 816 hwaddr min32; 817 hwaddr max32; 818 hwaddr min64; 819 hwaddr max64; 820 hwaddr minpci64; 821 hwaddr maxpci64; 822 } VFIODirtyRanges; 823 824 typedef struct VFIODirtyRangesListener { 825 VFIOContainerBase *bcontainer; 826 VFIODirtyRanges ranges; 827 MemoryListener listener; 828 } VFIODirtyRangesListener; 829 830 static bool vfio_section_is_vfio_pci(MemoryRegionSection *section, 831 VFIOContainerBase *bcontainer) 832 { 833 VFIOPCIDevice *pcidev; 834 VFIODevice *vbasedev; 835 Object *owner; 836 837 owner = memory_region_owner(section->mr); 838 839 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 840 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { 841 continue; 842 } 843 pcidev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 844 if (OBJECT(pcidev) == owner) { 845 return true; 846 } 847 } 848 849 return false; 850 } 851 852 static void vfio_dirty_tracking_update(MemoryListener *listener, 853 MemoryRegionSection *section) 854 { 855 VFIODirtyRangesListener *dirty = container_of(listener, 856 VFIODirtyRangesListener, 857 listener); 858 VFIODirtyRanges *range = &dirty->ranges; 859 hwaddr iova, end, *min, *max; 860 861 if (!vfio_listener_valid_section(section, "tracking_update") || 862 !vfio_get_section_iova_range(dirty->bcontainer, section, 863 &iova, &end, NULL)) { 864 return; 865 } 866 867 /* 868 * The address space passed to the dirty tracker is reduced to three ranges: 869 * one for 32-bit DMA ranges, one for 64-bit DMA ranges and one for the 870 * PCI 64-bit hole. 871 * 872 * The underlying reports of dirty will query a sub-interval of each of 873 * these ranges. 874 * 875 * The purpose of the three range handling is to handle known cases of big 876 * holes in the address space, like the x86 AMD 1T hole, and firmware (like 877 * OVMF) which may relocate the pci-hole64 to the end of the address space. 878 * The latter would otherwise generate large ranges for tracking, stressing 879 * the limits of supported hardware. The pci-hole32 will always be below 4G 880 * (overlapping or not) so it doesn't need special handling and is part of 881 * the 32-bit range. 882 * 883 * The alternative would be an IOVATree but that has a much bigger runtime 884 * overhead and unnecessary complexity. 885 */ 886 if (vfio_section_is_vfio_pci(section, dirty->bcontainer) && 887 iova >= UINT32_MAX) { 888 min = &range->minpci64; 889 max = &range->maxpci64; 890 } else { 891 min = (end <= UINT32_MAX) ? &range->min32 : &range->min64; 892 max = (end <= UINT32_MAX) ? &range->max32 : &range->max64; 893 } 894 if (*min > iova) { 895 *min = iova; 896 } 897 if (*max < end) { 898 *max = end; 899 } 900 901 trace_vfio_device_dirty_tracking_update(iova, end, *min, *max); 902 return; 903 } 904 905 static const MemoryListener vfio_dirty_tracking_listener = { 906 .name = "vfio-tracking", 907 .region_add = vfio_dirty_tracking_update, 908 }; 909 910 static void vfio_dirty_tracking_init(VFIOContainerBase *bcontainer, 911 VFIODirtyRanges *ranges) 912 { 913 VFIODirtyRangesListener dirty; 914 915 memset(&dirty, 0, sizeof(dirty)); 916 dirty.ranges.min32 = UINT32_MAX; 917 dirty.ranges.min64 = UINT64_MAX; 918 dirty.ranges.minpci64 = UINT64_MAX; 919 dirty.listener = vfio_dirty_tracking_listener; 920 dirty.bcontainer = bcontainer; 921 922 memory_listener_register(&dirty.listener, 923 bcontainer->space->as); 924 925 *ranges = dirty.ranges; 926 927 /* 928 * The memory listener is synchronous, and used to calculate the range 929 * to dirty tracking. Unregister it after we are done as we are not 930 * interested in any follow-up updates. 931 */ 932 memory_listener_unregister(&dirty.listener); 933 } 934 935 static void vfio_devices_dma_logging_stop(VFIOContainerBase *bcontainer) 936 { 937 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature), 938 sizeof(uint64_t))] = {}; 939 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 940 VFIODevice *vbasedev; 941 942 feature->argsz = sizeof(buf); 943 feature->flags = VFIO_DEVICE_FEATURE_SET | 944 VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP; 945 946 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 947 if (!vbasedev->dirty_tracking) { 948 continue; 949 } 950 951 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 952 warn_report("%s: Failed to stop DMA logging, err %d (%s)", 953 vbasedev->name, -errno, strerror(errno)); 954 } 955 vbasedev->dirty_tracking = false; 956 } 957 } 958 959 static struct vfio_device_feature * 960 vfio_device_feature_dma_logging_start_create(VFIOContainerBase *bcontainer, 961 VFIODirtyRanges *tracking) 962 { 963 struct vfio_device_feature *feature; 964 size_t feature_size; 965 struct vfio_device_feature_dma_logging_control *control; 966 struct vfio_device_feature_dma_logging_range *ranges; 967 968 feature_size = sizeof(struct vfio_device_feature) + 969 sizeof(struct vfio_device_feature_dma_logging_control); 970 feature = g_try_malloc0(feature_size); 971 if (!feature) { 972 errno = ENOMEM; 973 return NULL; 974 } 975 feature->argsz = feature_size; 976 feature->flags = VFIO_DEVICE_FEATURE_SET | 977 VFIO_DEVICE_FEATURE_DMA_LOGGING_START; 978 979 control = (struct vfio_device_feature_dma_logging_control *)feature->data; 980 control->page_size = qemu_real_host_page_size(); 981 982 /* 983 * DMA logging uAPI guarantees to support at least a number of ranges that 984 * fits into a single host kernel base page. 985 */ 986 control->num_ranges = !!tracking->max32 + !!tracking->max64 + 987 !!tracking->maxpci64; 988 ranges = g_try_new0(struct vfio_device_feature_dma_logging_range, 989 control->num_ranges); 990 if (!ranges) { 991 g_free(feature); 992 errno = ENOMEM; 993 994 return NULL; 995 } 996 997 control->ranges = (uintptr_t)ranges; 998 if (tracking->max32) { 999 ranges->iova = tracking->min32; 1000 ranges->length = (tracking->max32 - tracking->min32) + 1; 1001 ranges++; 1002 } 1003 if (tracking->max64) { 1004 ranges->iova = tracking->min64; 1005 ranges->length = (tracking->max64 - tracking->min64) + 1; 1006 ranges++; 1007 } 1008 if (tracking->maxpci64) { 1009 ranges->iova = tracking->minpci64; 1010 ranges->length = (tracking->maxpci64 - tracking->minpci64) + 1; 1011 } 1012 1013 trace_vfio_device_dirty_tracking_start(control->num_ranges, 1014 tracking->min32, tracking->max32, 1015 tracking->min64, tracking->max64, 1016 tracking->minpci64, tracking->maxpci64); 1017 1018 return feature; 1019 } 1020 1021 static void vfio_device_feature_dma_logging_start_destroy( 1022 struct vfio_device_feature *feature) 1023 { 1024 struct vfio_device_feature_dma_logging_control *control = 1025 (struct vfio_device_feature_dma_logging_control *)feature->data; 1026 struct vfio_device_feature_dma_logging_range *ranges = 1027 (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges; 1028 1029 g_free(ranges); 1030 g_free(feature); 1031 } 1032 1033 static int vfio_devices_dma_logging_start(VFIOContainerBase *bcontainer, 1034 Error **errp) 1035 { 1036 struct vfio_device_feature *feature; 1037 VFIODirtyRanges ranges; 1038 VFIODevice *vbasedev; 1039 int ret = 0; 1040 1041 vfio_dirty_tracking_init(bcontainer, &ranges); 1042 feature = vfio_device_feature_dma_logging_start_create(bcontainer, 1043 &ranges); 1044 if (!feature) { 1045 error_setg_errno(errp, errno, "Failed to prepare DMA logging"); 1046 return -errno; 1047 } 1048 1049 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 1050 if (vbasedev->dirty_tracking) { 1051 continue; 1052 } 1053 1054 ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature); 1055 if (ret) { 1056 ret = -errno; 1057 error_setg_errno(errp, errno, "%s: Failed to start DMA logging", 1058 vbasedev->name); 1059 goto out; 1060 } 1061 vbasedev->dirty_tracking = true; 1062 } 1063 1064 out: 1065 if (ret) { 1066 vfio_devices_dma_logging_stop(bcontainer); 1067 } 1068 1069 vfio_device_feature_dma_logging_start_destroy(feature); 1070 1071 return ret; 1072 } 1073 1074 static bool vfio_listener_log_global_start(MemoryListener *listener, 1075 Error **errp) 1076 { 1077 ERRP_GUARD(); 1078 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1079 listener); 1080 int ret; 1081 1082 if (vfio_devices_all_device_dirty_tracking(bcontainer)) { 1083 ret = vfio_devices_dma_logging_start(bcontainer, errp); 1084 } else { 1085 ret = vfio_container_set_dirty_page_tracking(bcontainer, true, errp); 1086 } 1087 1088 if (ret) { 1089 error_prepend(errp, "vfio: Could not start dirty page tracking - "); 1090 } 1091 return !ret; 1092 } 1093 1094 static void vfio_listener_log_global_stop(MemoryListener *listener) 1095 { 1096 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1097 listener); 1098 Error *local_err = NULL; 1099 int ret = 0; 1100 1101 if (vfio_devices_all_device_dirty_tracking(bcontainer)) { 1102 vfio_devices_dma_logging_stop(bcontainer); 1103 } else { 1104 ret = vfio_container_set_dirty_page_tracking(bcontainer, false, 1105 &local_err); 1106 } 1107 1108 if (ret) { 1109 error_prepend(&local_err, 1110 "vfio: Could not stop dirty page tracking - "); 1111 error_report_err(local_err); 1112 vfio_set_migration_error(ret); 1113 } 1114 } 1115 1116 static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova, 1117 hwaddr size, void *bitmap) 1118 { 1119 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) + 1120 sizeof(struct vfio_device_feature_dma_logging_report), 1121 sizeof(uint64_t))] = {}; 1122 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 1123 struct vfio_device_feature_dma_logging_report *report = 1124 (struct vfio_device_feature_dma_logging_report *)feature->data; 1125 1126 report->iova = iova; 1127 report->length = size; 1128 report->page_size = qemu_real_host_page_size(); 1129 report->bitmap = (uintptr_t)bitmap; 1130 1131 feature->argsz = sizeof(buf); 1132 feature->flags = VFIO_DEVICE_FEATURE_GET | 1133 VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT; 1134 1135 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 1136 return -errno; 1137 } 1138 1139 return 0; 1140 } 1141 1142 int vfio_devices_query_dirty_bitmap(const VFIOContainerBase *bcontainer, 1143 VFIOBitmap *vbmap, hwaddr iova, hwaddr size, Error **errp) 1144 { 1145 VFIODevice *vbasedev; 1146 int ret; 1147 1148 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 1149 ret = vfio_device_dma_logging_report(vbasedev, iova, size, 1150 vbmap->bitmap); 1151 if (ret) { 1152 error_setg_errno(errp, -ret, 1153 "%s: Failed to get DMA logging report, iova: " 1154 "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx, 1155 vbasedev->name, iova, size); 1156 1157 return ret; 1158 } 1159 } 1160 1161 return 0; 1162 } 1163 1164 int vfio_get_dirty_bitmap(const VFIOContainerBase *bcontainer, uint64_t iova, 1165 uint64_t size, ram_addr_t ram_addr, Error **errp) 1166 { 1167 bool all_device_dirty_tracking = 1168 vfio_devices_all_device_dirty_tracking(bcontainer); 1169 uint64_t dirty_pages; 1170 VFIOBitmap vbmap; 1171 int ret; 1172 1173 if (!bcontainer->dirty_pages_supported && !all_device_dirty_tracking) { 1174 cpu_physical_memory_set_dirty_range(ram_addr, size, 1175 tcg_enabled() ? DIRTY_CLIENTS_ALL : 1176 DIRTY_CLIENTS_NOCODE); 1177 return 0; 1178 } 1179 1180 ret = vfio_bitmap_alloc(&vbmap, size); 1181 if (ret) { 1182 error_setg_errno(errp, -ret, 1183 "Failed to allocate dirty tracking bitmap"); 1184 return ret; 1185 } 1186 1187 if (all_device_dirty_tracking) { 1188 ret = vfio_devices_query_dirty_bitmap(bcontainer, &vbmap, iova, size, 1189 errp); 1190 } else { 1191 ret = vfio_container_query_dirty_bitmap(bcontainer, &vbmap, iova, size, 1192 errp); 1193 } 1194 1195 if (ret) { 1196 goto out; 1197 } 1198 1199 dirty_pages = cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr, 1200 vbmap.pages); 1201 1202 trace_vfio_get_dirty_bitmap(iova, size, vbmap.size, ram_addr, dirty_pages); 1203 out: 1204 g_free(vbmap.bitmap); 1205 1206 return ret; 1207 } 1208 1209 typedef struct { 1210 IOMMUNotifier n; 1211 VFIOGuestIOMMU *giommu; 1212 } vfio_giommu_dirty_notifier; 1213 1214 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 1215 { 1216 vfio_giommu_dirty_notifier *gdn = container_of(n, 1217 vfio_giommu_dirty_notifier, n); 1218 VFIOGuestIOMMU *giommu = gdn->giommu; 1219 VFIOContainerBase *bcontainer = giommu->bcontainer; 1220 hwaddr iova = iotlb->iova + giommu->iommu_offset; 1221 ram_addr_t translated_addr; 1222 Error *local_err = NULL; 1223 int ret = -EINVAL; 1224 1225 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); 1226 1227 if (iotlb->target_as != &address_space_memory) { 1228 error_report("Wrong target AS \"%s\", only system memory is allowed", 1229 iotlb->target_as->name ? iotlb->target_as->name : "none"); 1230 goto out; 1231 } 1232 1233 rcu_read_lock(); 1234 if (!vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL, &local_err)) { 1235 error_report_err(local_err); 1236 goto out_unlock; 1237 } 1238 1239 ret = vfio_get_dirty_bitmap(bcontainer, iova, iotlb->addr_mask + 1, 1240 translated_addr, &local_err); 1241 if (ret) { 1242 error_prepend(&local_err, 1243 "vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " 1244 "0x%"HWADDR_PRIx") failed - ", bcontainer, iova, 1245 iotlb->addr_mask + 1); 1246 error_report_err(local_err); 1247 } 1248 1249 out_unlock: 1250 rcu_read_unlock(); 1251 1252 out: 1253 if (ret) { 1254 vfio_set_migration_error(ret); 1255 } 1256 } 1257 1258 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, 1259 void *opaque) 1260 { 1261 const hwaddr size = int128_get64(section->size); 1262 const hwaddr iova = section->offset_within_address_space; 1263 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + 1264 section->offset_within_region; 1265 VFIORamDiscardListener *vrdl = opaque; 1266 Error *local_err = NULL; 1267 int ret; 1268 1269 /* 1270 * Sync the whole mapped region (spanning multiple individual mappings) 1271 * in one go. 1272 */ 1273 ret = vfio_get_dirty_bitmap(vrdl->bcontainer, iova, size, ram_addr, 1274 &local_err); 1275 if (ret) { 1276 error_report_err(local_err); 1277 } 1278 return ret; 1279 } 1280 1281 static int 1282 vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainerBase *bcontainer, 1283 MemoryRegionSection *section) 1284 { 1285 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 1286 VFIORamDiscardListener *vrdl = NULL; 1287 1288 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 1289 if (vrdl->mr == section->mr && 1290 vrdl->offset_within_address_space == 1291 section->offset_within_address_space) { 1292 break; 1293 } 1294 } 1295 1296 if (!vrdl) { 1297 hw_error("vfio: Trying to sync missing RAM discard listener"); 1298 } 1299 1300 /* 1301 * We only want/can synchronize the bitmap for actually mapped parts - 1302 * which correspond to populated parts. Replay all populated parts. 1303 */ 1304 return ram_discard_manager_replay_populated(rdm, section, 1305 vfio_ram_discard_get_dirty_bitmap, 1306 &vrdl); 1307 } 1308 1309 static int vfio_sync_dirty_bitmap(VFIOContainerBase *bcontainer, 1310 MemoryRegionSection *section, Error **errp) 1311 { 1312 ram_addr_t ram_addr; 1313 1314 if (memory_region_is_iommu(section->mr)) { 1315 VFIOGuestIOMMU *giommu; 1316 1317 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { 1318 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1319 giommu->n.start == section->offset_within_region) { 1320 Int128 llend; 1321 vfio_giommu_dirty_notifier gdn = { .giommu = giommu }; 1322 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr, 1323 MEMTXATTRS_UNSPECIFIED); 1324 1325 llend = int128_add(int128_make64(section->offset_within_region), 1326 section->size); 1327 llend = int128_sub(llend, int128_one()); 1328 1329 iommu_notifier_init(&gdn.n, 1330 vfio_iommu_map_dirty_notify, 1331 IOMMU_NOTIFIER_MAP, 1332 section->offset_within_region, 1333 int128_get64(llend), 1334 idx); 1335 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n); 1336 break; 1337 } 1338 } 1339 return 0; 1340 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1341 int ret; 1342 1343 ret = vfio_sync_ram_discard_listener_dirty_bitmap(bcontainer, section); 1344 if (ret) { 1345 error_setg(errp, 1346 "Failed to sync dirty bitmap with RAM discard listener"); 1347 } 1348 return ret; 1349 } 1350 1351 ram_addr = memory_region_get_ram_addr(section->mr) + 1352 section->offset_within_region; 1353 1354 return vfio_get_dirty_bitmap(bcontainer, 1355 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), 1356 int128_get64(section->size), ram_addr, errp); 1357 } 1358 1359 static void vfio_listener_log_sync(MemoryListener *listener, 1360 MemoryRegionSection *section) 1361 { 1362 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1363 listener); 1364 int ret; 1365 Error *local_err = NULL; 1366 1367 if (vfio_listener_skipped_section(section)) { 1368 return; 1369 } 1370 1371 if (vfio_devices_all_dirty_tracking(bcontainer)) { 1372 ret = vfio_sync_dirty_bitmap(bcontainer, section, &local_err); 1373 if (ret) { 1374 error_report_err(local_err); 1375 vfio_set_migration_error(ret); 1376 } 1377 } 1378 } 1379 1380 const MemoryListener vfio_memory_listener = { 1381 .name = "vfio", 1382 .region_add = vfio_listener_region_add, 1383 .region_del = vfio_listener_region_del, 1384 .log_global_start = vfio_listener_log_global_start, 1385 .log_global_stop = vfio_listener_log_global_stop, 1386 .log_sync = vfio_listener_log_sync, 1387 }; 1388 1389 void vfio_reset_handler(void *opaque) 1390 { 1391 VFIODevice *vbasedev; 1392 1393 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 1394 if (vbasedev->dev->realized) { 1395 vbasedev->ops->vfio_compute_needs_reset(vbasedev); 1396 } 1397 } 1398 1399 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 1400 if (vbasedev->dev->realized && vbasedev->needs_reset) { 1401 vbasedev->ops->vfio_hot_reset_multi(vbasedev); 1402 } 1403 } 1404 } 1405 1406 int vfio_kvm_device_add_fd(int fd, Error **errp) 1407 { 1408 #ifdef CONFIG_KVM 1409 struct kvm_device_attr attr = { 1410 .group = KVM_DEV_VFIO_FILE, 1411 .attr = KVM_DEV_VFIO_FILE_ADD, 1412 .addr = (uint64_t)(unsigned long)&fd, 1413 }; 1414 1415 if (!kvm_enabled()) { 1416 return 0; 1417 } 1418 1419 if (vfio_kvm_device_fd < 0) { 1420 struct kvm_create_device cd = { 1421 .type = KVM_DEV_TYPE_VFIO, 1422 }; 1423 1424 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { 1425 error_setg_errno(errp, errno, "Failed to create KVM VFIO device"); 1426 return -errno; 1427 } 1428 1429 vfio_kvm_device_fd = cd.fd; 1430 } 1431 1432 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1433 error_setg_errno(errp, errno, "Failed to add fd %d to KVM VFIO device", 1434 fd); 1435 return -errno; 1436 } 1437 #endif 1438 return 0; 1439 } 1440 1441 int vfio_kvm_device_del_fd(int fd, Error **errp) 1442 { 1443 #ifdef CONFIG_KVM 1444 struct kvm_device_attr attr = { 1445 .group = KVM_DEV_VFIO_FILE, 1446 .attr = KVM_DEV_VFIO_FILE_DEL, 1447 .addr = (uint64_t)(unsigned long)&fd, 1448 }; 1449 1450 if (vfio_kvm_device_fd < 0) { 1451 error_setg(errp, "KVM VFIO device isn't created yet"); 1452 return -EINVAL; 1453 } 1454 1455 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1456 error_setg_errno(errp, errno, 1457 "Failed to remove fd %d from KVM VFIO device", fd); 1458 return -errno; 1459 } 1460 #endif 1461 return 0; 1462 } 1463 1464 VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) 1465 { 1466 VFIOAddressSpace *space; 1467 1468 QLIST_FOREACH(space, &vfio_address_spaces, list) { 1469 if (space->as == as) { 1470 return space; 1471 } 1472 } 1473 1474 /* No suitable VFIOAddressSpace, create a new one */ 1475 space = g_malloc0(sizeof(*space)); 1476 space->as = as; 1477 QLIST_INIT(&space->containers); 1478 1479 if (QLIST_EMPTY(&vfio_address_spaces)) { 1480 qemu_register_reset(vfio_reset_handler, NULL); 1481 } 1482 1483 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); 1484 1485 return space; 1486 } 1487 1488 void vfio_put_address_space(VFIOAddressSpace *space) 1489 { 1490 if (!QLIST_EMPTY(&space->containers)) { 1491 return; 1492 } 1493 1494 QLIST_REMOVE(space, list); 1495 g_free(space); 1496 1497 if (QLIST_EMPTY(&vfio_address_spaces)) { 1498 qemu_unregister_reset(vfio_reset_handler, NULL); 1499 } 1500 } 1501 1502 struct vfio_device_info *vfio_get_device_info(int fd) 1503 { 1504 struct vfio_device_info *info; 1505 uint32_t argsz = sizeof(*info); 1506 1507 info = g_malloc0(argsz); 1508 1509 retry: 1510 info->argsz = argsz; 1511 1512 if (ioctl(fd, VFIO_DEVICE_GET_INFO, info)) { 1513 g_free(info); 1514 return NULL; 1515 } 1516 1517 if (info->argsz > argsz) { 1518 argsz = info->argsz; 1519 info = g_realloc(info, argsz); 1520 goto retry; 1521 } 1522 1523 return info; 1524 } 1525 1526 bool vfio_attach_device(char *name, VFIODevice *vbasedev, 1527 AddressSpace *as, Error **errp) 1528 { 1529 const VFIOIOMMUClass *ops = 1530 VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_LEGACY)); 1531 1532 if (vbasedev->iommufd) { 1533 ops = VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_IOMMUFD)); 1534 } 1535 1536 assert(ops); 1537 1538 return ops->attach_device(name, vbasedev, as, errp); 1539 } 1540 1541 void vfio_detach_device(VFIODevice *vbasedev) 1542 { 1543 if (!vbasedev->bcontainer) { 1544 return; 1545 } 1546 vbasedev->bcontainer->ops->detach_device(vbasedev); 1547 } 1548