xref: /openbmc/qemu/hw/vfio/common.c (revision b14df228)
1 /*
2  * generic functions used by VFIO devices
3  *
4  * Copyright Red Hat, Inc. 2012
5  *
6  * Authors:
7  *  Alex Williamson <alex.williamson@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Based on qemu-kvm device-assignment:
13  *  Adapted for KVM by Qumranet.
14  *  Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15  *  Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16  *  Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17  *  Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18  *  Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 #ifdef CONFIG_KVM
24 #include <linux/kvm.h>
25 #endif
26 #include <linux/vfio.h>
27 
28 #include "hw/vfio/vfio-common.h"
29 #include "hw/vfio/vfio.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "exec/ram_addr.h"
33 #include "hw/hw.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/range.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "trace.h"
41 #include "qapi/error.h"
42 #include "migration/migration.h"
43 #include "sysemu/tpm.h"
44 
45 VFIOGroupList vfio_group_list =
46     QLIST_HEAD_INITIALIZER(vfio_group_list);
47 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces =
48     QLIST_HEAD_INITIALIZER(vfio_address_spaces);
49 
50 #ifdef CONFIG_KVM
51 /*
52  * We have a single VFIO pseudo device per KVM VM.  Once created it lives
53  * for the life of the VM.  Closing the file descriptor only drops our
54  * reference to it and the device's reference to kvm.  Therefore once
55  * initialized, this file descriptor is only released on QEMU exit and
56  * we'll re-use it should another vfio device be attached before then.
57  */
58 static int vfio_kvm_device_fd = -1;
59 #endif
60 
61 /*
62  * Common VFIO interrupt disable
63  */
64 void vfio_disable_irqindex(VFIODevice *vbasedev, int index)
65 {
66     struct vfio_irq_set irq_set = {
67         .argsz = sizeof(irq_set),
68         .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
69         .index = index,
70         .start = 0,
71         .count = 0,
72     };
73 
74     ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
75 }
76 
77 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index)
78 {
79     struct vfio_irq_set irq_set = {
80         .argsz = sizeof(irq_set),
81         .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK,
82         .index = index,
83         .start = 0,
84         .count = 1,
85     };
86 
87     ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
88 }
89 
90 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index)
91 {
92     struct vfio_irq_set irq_set = {
93         .argsz = sizeof(irq_set),
94         .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK,
95         .index = index,
96         .start = 0,
97         .count = 1,
98     };
99 
100     ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
101 }
102 
103 static inline const char *action_to_str(int action)
104 {
105     switch (action) {
106     case VFIO_IRQ_SET_ACTION_MASK:
107         return "MASK";
108     case VFIO_IRQ_SET_ACTION_UNMASK:
109         return "UNMASK";
110     case VFIO_IRQ_SET_ACTION_TRIGGER:
111         return "TRIGGER";
112     default:
113         return "UNKNOWN ACTION";
114     }
115 }
116 
117 static const char *index_to_str(VFIODevice *vbasedev, int index)
118 {
119     if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
120         return NULL;
121     }
122 
123     switch (index) {
124     case VFIO_PCI_INTX_IRQ_INDEX:
125         return "INTX";
126     case VFIO_PCI_MSI_IRQ_INDEX:
127         return "MSI";
128     case VFIO_PCI_MSIX_IRQ_INDEX:
129         return "MSIX";
130     case VFIO_PCI_ERR_IRQ_INDEX:
131         return "ERR";
132     case VFIO_PCI_REQ_IRQ_INDEX:
133         return "REQ";
134     default:
135         return NULL;
136     }
137 }
138 
139 static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state)
140 {
141     switch (container->iommu_type) {
142     case VFIO_TYPE1v2_IOMMU:
143     case VFIO_TYPE1_IOMMU:
144         /*
145          * We support coordinated discarding of RAM via the RamDiscardManager.
146          */
147         return ram_block_uncoordinated_discard_disable(state);
148     default:
149         /*
150          * VFIO_SPAPR_TCE_IOMMU most probably works just fine with
151          * RamDiscardManager, however, it is completely untested.
152          *
153          * VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does
154          * completely the opposite of managing mapping/pinning dynamically as
155          * required by RamDiscardManager. We would have to special-case sections
156          * with a RamDiscardManager.
157          */
158         return ram_block_discard_disable(state);
159     }
160 }
161 
162 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex,
163                            int action, int fd, Error **errp)
164 {
165     struct vfio_irq_set *irq_set;
166     int argsz, ret = 0;
167     const char *name;
168     int32_t *pfd;
169 
170     argsz = sizeof(*irq_set) + sizeof(*pfd);
171 
172     irq_set = g_malloc0(argsz);
173     irq_set->argsz = argsz;
174     irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action;
175     irq_set->index = index;
176     irq_set->start = subindex;
177     irq_set->count = 1;
178     pfd = (int32_t *)&irq_set->data;
179     *pfd = fd;
180 
181     if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
182         ret = -errno;
183     }
184     g_free(irq_set);
185 
186     if (!ret) {
187         return 0;
188     }
189 
190     error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure");
191 
192     name = index_to_str(vbasedev, index);
193     if (name) {
194         error_prepend(errp, "%s-%d: ", name, subindex);
195     } else {
196         error_prepend(errp, "index %d-%d: ", index, subindex);
197     }
198     error_prepend(errp,
199                   "Failed to %s %s eventfd signaling for interrupt ",
200                   fd < 0 ? "tear down" : "set up", action_to_str(action));
201     return ret;
202 }
203 
204 /*
205  * IO Port/MMIO - Beware of the endians, VFIO is always little endian
206  */
207 void vfio_region_write(void *opaque, hwaddr addr,
208                        uint64_t data, unsigned size)
209 {
210     VFIORegion *region = opaque;
211     VFIODevice *vbasedev = region->vbasedev;
212     union {
213         uint8_t byte;
214         uint16_t word;
215         uint32_t dword;
216         uint64_t qword;
217     } buf;
218 
219     switch (size) {
220     case 1:
221         buf.byte = data;
222         break;
223     case 2:
224         buf.word = cpu_to_le16(data);
225         break;
226     case 4:
227         buf.dword = cpu_to_le32(data);
228         break;
229     case 8:
230         buf.qword = cpu_to_le64(data);
231         break;
232     default:
233         hw_error("vfio: unsupported write size, %u bytes", size);
234         break;
235     }
236 
237     if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
238         error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64
239                      ",%d) failed: %m",
240                      __func__, vbasedev->name, region->nr,
241                      addr, data, size);
242     }
243 
244     trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size);
245 
246     /*
247      * A read or write to a BAR always signals an INTx EOI.  This will
248      * do nothing if not pending (including not in INTx mode).  We assume
249      * that a BAR access is in response to an interrupt and that BAR
250      * accesses will service the interrupt.  Unfortunately, we don't know
251      * which access will service the interrupt, so we're potentially
252      * getting quite a few host interrupts per guest interrupt.
253      */
254     vbasedev->ops->vfio_eoi(vbasedev);
255 }
256 
257 uint64_t vfio_region_read(void *opaque,
258                           hwaddr addr, unsigned size)
259 {
260     VFIORegion *region = opaque;
261     VFIODevice *vbasedev = region->vbasedev;
262     union {
263         uint8_t byte;
264         uint16_t word;
265         uint32_t dword;
266         uint64_t qword;
267     } buf;
268     uint64_t data = 0;
269 
270     if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
271         error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m",
272                      __func__, vbasedev->name, region->nr,
273                      addr, size);
274         return (uint64_t)-1;
275     }
276     switch (size) {
277     case 1:
278         data = buf.byte;
279         break;
280     case 2:
281         data = le16_to_cpu(buf.word);
282         break;
283     case 4:
284         data = le32_to_cpu(buf.dword);
285         break;
286     case 8:
287         data = le64_to_cpu(buf.qword);
288         break;
289     default:
290         hw_error("vfio: unsupported read size, %u bytes", size);
291         break;
292     }
293 
294     trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data);
295 
296     /* Same as write above */
297     vbasedev->ops->vfio_eoi(vbasedev);
298 
299     return data;
300 }
301 
302 const MemoryRegionOps vfio_region_ops = {
303     .read = vfio_region_read,
304     .write = vfio_region_write,
305     .endianness = DEVICE_LITTLE_ENDIAN,
306     .valid = {
307         .min_access_size = 1,
308         .max_access_size = 8,
309     },
310     .impl = {
311         .min_access_size = 1,
312         .max_access_size = 8,
313     },
314 };
315 
316 /*
317  * Device state interfaces
318  */
319 
320 bool vfio_mig_active(void)
321 {
322     VFIOGroup *group;
323     VFIODevice *vbasedev;
324 
325     if (QLIST_EMPTY(&vfio_group_list)) {
326         return false;
327     }
328 
329     QLIST_FOREACH(group, &vfio_group_list, next) {
330         QLIST_FOREACH(vbasedev, &group->device_list, next) {
331             if (vbasedev->migration_blocker) {
332                 return false;
333             }
334         }
335     }
336     return true;
337 }
338 
339 static bool vfio_devices_all_dirty_tracking(VFIOContainer *container)
340 {
341     VFIOGroup *group;
342     VFIODevice *vbasedev;
343     MigrationState *ms = migrate_get_current();
344 
345     if (!migration_is_setup_or_active(ms->state)) {
346         return false;
347     }
348 
349     QLIST_FOREACH(group, &container->group_list, container_next) {
350         QLIST_FOREACH(vbasedev, &group->device_list, next) {
351             VFIOMigration *migration = vbasedev->migration;
352 
353             if (!migration) {
354                 return false;
355             }
356 
357             if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF)
358                 && (migration->device_state & VFIO_DEVICE_STATE_V1_RUNNING)) {
359                 return false;
360             }
361         }
362     }
363     return true;
364 }
365 
366 static bool vfio_devices_all_running_and_saving(VFIOContainer *container)
367 {
368     VFIOGroup *group;
369     VFIODevice *vbasedev;
370     MigrationState *ms = migrate_get_current();
371 
372     if (!migration_is_setup_or_active(ms->state)) {
373         return false;
374     }
375 
376     QLIST_FOREACH(group, &container->group_list, container_next) {
377         QLIST_FOREACH(vbasedev, &group->device_list, next) {
378             VFIOMigration *migration = vbasedev->migration;
379 
380             if (!migration) {
381                 return false;
382             }
383 
384             if ((migration->device_state & VFIO_DEVICE_STATE_V1_SAVING) &&
385                 (migration->device_state & VFIO_DEVICE_STATE_V1_RUNNING)) {
386                 continue;
387             } else {
388                 return false;
389             }
390         }
391     }
392     return true;
393 }
394 
395 static int vfio_dma_unmap_bitmap(VFIOContainer *container,
396                                  hwaddr iova, ram_addr_t size,
397                                  IOMMUTLBEntry *iotlb)
398 {
399     struct vfio_iommu_type1_dma_unmap *unmap;
400     struct vfio_bitmap *bitmap;
401     uint64_t pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size();
402     int ret;
403 
404     unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap));
405 
406     unmap->argsz = sizeof(*unmap) + sizeof(*bitmap);
407     unmap->iova = iova;
408     unmap->size = size;
409     unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP;
410     bitmap = (struct vfio_bitmap *)&unmap->data;
411 
412     /*
413      * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
414      * qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize
415      * to qemu_real_host_page_size.
416      */
417 
418     bitmap->pgsize = qemu_real_host_page_size();
419     bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
420                    BITS_PER_BYTE;
421 
422     if (bitmap->size > container->max_dirty_bitmap_size) {
423         error_report("UNMAP: Size of bitmap too big 0x%"PRIx64,
424                      (uint64_t)bitmap->size);
425         ret = -E2BIG;
426         goto unmap_exit;
427     }
428 
429     bitmap->data = g_try_malloc0(bitmap->size);
430     if (!bitmap->data) {
431         ret = -ENOMEM;
432         goto unmap_exit;
433     }
434 
435     ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap);
436     if (!ret) {
437         cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data,
438                 iotlb->translated_addr, pages);
439     } else {
440         error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m");
441     }
442 
443     g_free(bitmap->data);
444 unmap_exit:
445     g_free(unmap);
446     return ret;
447 }
448 
449 /*
450  * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86
451  */
452 static int vfio_dma_unmap(VFIOContainer *container,
453                           hwaddr iova, ram_addr_t size,
454                           IOMMUTLBEntry *iotlb)
455 {
456     struct vfio_iommu_type1_dma_unmap unmap = {
457         .argsz = sizeof(unmap),
458         .flags = 0,
459         .iova = iova,
460         .size = size,
461     };
462 
463     if (iotlb && container->dirty_pages_supported &&
464         vfio_devices_all_running_and_saving(container)) {
465         return vfio_dma_unmap_bitmap(container, iova, size, iotlb);
466     }
467 
468     while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) {
469         /*
470          * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c
471          * v4.15) where an overflow in its wrap-around check prevents us from
472          * unmapping the last page of the address space.  Test for the error
473          * condition and re-try the unmap excluding the last page.  The
474          * expectation is that we've never mapped the last page anyway and this
475          * unmap request comes via vIOMMU support which also makes it unlikely
476          * that this page is used.  This bug was introduced well after type1 v2
477          * support was introduced, so we shouldn't need to test for v1.  A fix
478          * is queued for kernel v5.0 so this workaround can be removed once
479          * affected kernels are sufficiently deprecated.
480          */
481         if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) &&
482             container->iommu_type == VFIO_TYPE1v2_IOMMU) {
483             trace_vfio_dma_unmap_overflow_workaround();
484             unmap.size -= 1ULL << ctz64(container->pgsizes);
485             continue;
486         }
487         error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno));
488         return -errno;
489     }
490 
491     return 0;
492 }
493 
494 static int vfio_dma_map(VFIOContainer *container, hwaddr iova,
495                         ram_addr_t size, void *vaddr, bool readonly)
496 {
497     struct vfio_iommu_type1_dma_map map = {
498         .argsz = sizeof(map),
499         .flags = VFIO_DMA_MAP_FLAG_READ,
500         .vaddr = (__u64)(uintptr_t)vaddr,
501         .iova = iova,
502         .size = size,
503     };
504 
505     if (!readonly) {
506         map.flags |= VFIO_DMA_MAP_FLAG_WRITE;
507     }
508 
509     /*
510      * Try the mapping, if it fails with EBUSY, unmap the region and try
511      * again.  This shouldn't be necessary, but we sometimes see it in
512      * the VGA ROM space.
513      */
514     if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 ||
515         (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 &&
516          ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) {
517         return 0;
518     }
519 
520     error_report("VFIO_MAP_DMA failed: %s", strerror(errno));
521     return -errno;
522 }
523 
524 static void vfio_host_win_add(VFIOContainer *container,
525                               hwaddr min_iova, hwaddr max_iova,
526                               uint64_t iova_pgsizes)
527 {
528     VFIOHostDMAWindow *hostwin;
529 
530     QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
531         if (ranges_overlap(hostwin->min_iova,
532                            hostwin->max_iova - hostwin->min_iova + 1,
533                            min_iova,
534                            max_iova - min_iova + 1)) {
535             hw_error("%s: Overlapped IOMMU are not enabled", __func__);
536         }
537     }
538 
539     hostwin = g_malloc0(sizeof(*hostwin));
540 
541     hostwin->min_iova = min_iova;
542     hostwin->max_iova = max_iova;
543     hostwin->iova_pgsizes = iova_pgsizes;
544     QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next);
545 }
546 
547 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova,
548                              hwaddr max_iova)
549 {
550     VFIOHostDMAWindow *hostwin;
551 
552     QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
553         if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) {
554             QLIST_REMOVE(hostwin, hostwin_next);
555             g_free(hostwin);
556             return 0;
557         }
558     }
559 
560     return -1;
561 }
562 
563 static bool vfio_listener_skipped_section(MemoryRegionSection *section)
564 {
565     return (!memory_region_is_ram(section->mr) &&
566             !memory_region_is_iommu(section->mr)) ||
567            memory_region_is_protected(section->mr) ||
568            /*
569             * Sizing an enabled 64-bit BAR can cause spurious mappings to
570             * addresses in the upper part of the 64-bit address space.  These
571             * are never accessed by the CPU and beyond the address width of
572             * some IOMMU hardware.  TODO: VFIO should tell us the IOMMU width.
573             */
574            section->offset_within_address_space & (1ULL << 63);
575 }
576 
577 /* Called with rcu_read_lock held.  */
578 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
579                                ram_addr_t *ram_addr, bool *read_only)
580 {
581     MemoryRegion *mr;
582     hwaddr xlat;
583     hwaddr len = iotlb->addr_mask + 1;
584     bool writable = iotlb->perm & IOMMU_WO;
585 
586     /*
587      * The IOMMU TLB entry we have just covers translation through
588      * this IOMMU to its immediate target.  We need to translate
589      * it the rest of the way through to memory.
590      */
591     mr = address_space_translate(&address_space_memory,
592                                  iotlb->translated_addr,
593                                  &xlat, &len, writable,
594                                  MEMTXATTRS_UNSPECIFIED);
595     if (!memory_region_is_ram(mr)) {
596         error_report("iommu map to non memory area %"HWADDR_PRIx"",
597                      xlat);
598         return false;
599     } else if (memory_region_has_ram_discard_manager(mr)) {
600         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
601         MemoryRegionSection tmp = {
602             .mr = mr,
603             .offset_within_region = xlat,
604             .size = int128_make64(len),
605         };
606 
607         /*
608          * Malicious VMs can map memory into the IOMMU, which is expected
609          * to remain discarded. vfio will pin all pages, populating memory.
610          * Disallow that. vmstate priorities make sure any RamDiscardManager
611          * were already restored before IOMMUs are restored.
612          */
613         if (!ram_discard_manager_is_populated(rdm, &tmp)) {
614             error_report("iommu map to discarded memory (e.g., unplugged via"
615                          " virtio-mem): %"HWADDR_PRIx"",
616                          iotlb->translated_addr);
617             return false;
618         }
619 
620         /*
621          * Malicious VMs might trigger discarding of IOMMU-mapped memory. The
622          * pages will remain pinned inside vfio until unmapped, resulting in a
623          * higher memory consumption than expected. If memory would get
624          * populated again later, there would be an inconsistency between pages
625          * pinned by vfio and pages seen by QEMU. This is the case until
626          * unmapped from the IOMMU (e.g., during device reset).
627          *
628          * With malicious guests, we really only care about pinning more memory
629          * than expected. RLIMIT_MEMLOCK set for the user/process can never be
630          * exceeded and can be used to mitigate this problem.
631          */
632         warn_report_once("Using vfio with vIOMMUs and coordinated discarding of"
633                          " RAM (e.g., virtio-mem) works, however, malicious"
634                          " guests can trigger pinning of more memory than"
635                          " intended via an IOMMU. It's possible to mitigate "
636                          " by setting/adjusting RLIMIT_MEMLOCK.");
637     }
638 
639     /*
640      * Translation truncates length to the IOMMU page size,
641      * check that it did not truncate too much.
642      */
643     if (len & iotlb->addr_mask) {
644         error_report("iommu has granularity incompatible with target AS");
645         return false;
646     }
647 
648     if (vaddr) {
649         *vaddr = memory_region_get_ram_ptr(mr) + xlat;
650     }
651 
652     if (ram_addr) {
653         *ram_addr = memory_region_get_ram_addr(mr) + xlat;
654     }
655 
656     if (read_only) {
657         *read_only = !writable || mr->readonly;
658     }
659 
660     return true;
661 }
662 
663 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
664 {
665     VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n);
666     VFIOContainer *container = giommu->container;
667     hwaddr iova = iotlb->iova + giommu->iommu_offset;
668     void *vaddr;
669     int ret;
670 
671     trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP",
672                                 iova, iova + iotlb->addr_mask);
673 
674     if (iotlb->target_as != &address_space_memory) {
675         error_report("Wrong target AS \"%s\", only system memory is allowed",
676                      iotlb->target_as->name ? iotlb->target_as->name : "none");
677         return;
678     }
679 
680     rcu_read_lock();
681 
682     if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
683         bool read_only;
684 
685         if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) {
686             goto out;
687         }
688         /*
689          * vaddr is only valid until rcu_read_unlock(). But after
690          * vfio_dma_map has set up the mapping the pages will be
691          * pinned by the kernel. This makes sure that the RAM backend
692          * of vaddr will always be there, even if the memory object is
693          * destroyed and its backing memory munmap-ed.
694          */
695         ret = vfio_dma_map(container, iova,
696                            iotlb->addr_mask + 1, vaddr,
697                            read_only);
698         if (ret) {
699             error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
700                          "0x%"HWADDR_PRIx", %p) = %d (%m)",
701                          container, iova,
702                          iotlb->addr_mask + 1, vaddr, ret);
703         }
704     } else {
705         ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb);
706         if (ret) {
707             error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
708                          "0x%"HWADDR_PRIx") = %d (%m)",
709                          container, iova,
710                          iotlb->addr_mask + 1, ret);
711         }
712     }
713 out:
714     rcu_read_unlock();
715 }
716 
717 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl,
718                                             MemoryRegionSection *section)
719 {
720     VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
721                                                 listener);
722     const hwaddr size = int128_get64(section->size);
723     const hwaddr iova = section->offset_within_address_space;
724     int ret;
725 
726     /* Unmap with a single call. */
727     ret = vfio_dma_unmap(vrdl->container, iova, size , NULL);
728     if (ret) {
729         error_report("%s: vfio_dma_unmap() failed: %s", __func__,
730                      strerror(-ret));
731     }
732 }
733 
734 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl,
735                                             MemoryRegionSection *section)
736 {
737     VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
738                                                 listener);
739     const hwaddr end = section->offset_within_region +
740                        int128_get64(section->size);
741     hwaddr start, next, iova;
742     void *vaddr;
743     int ret;
744 
745     /*
746      * Map in (aligned within memory region) minimum granularity, so we can
747      * unmap in minimum granularity later.
748      */
749     for (start = section->offset_within_region; start < end; start = next) {
750         next = ROUND_UP(start + 1, vrdl->granularity);
751         next = MIN(next, end);
752 
753         iova = start - section->offset_within_region +
754                section->offset_within_address_space;
755         vaddr = memory_region_get_ram_ptr(section->mr) + start;
756 
757         ret = vfio_dma_map(vrdl->container, iova, next - start,
758                            vaddr, section->readonly);
759         if (ret) {
760             /* Rollback */
761             vfio_ram_discard_notify_discard(rdl, section);
762             return ret;
763         }
764     }
765     return 0;
766 }
767 
768 static void vfio_register_ram_discard_listener(VFIOContainer *container,
769                                                MemoryRegionSection *section)
770 {
771     RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
772     VFIORamDiscardListener *vrdl;
773 
774     /* Ignore some corner cases not relevant in practice. */
775     g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE));
776     g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space,
777                              TARGET_PAGE_SIZE));
778     g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE));
779 
780     vrdl = g_new0(VFIORamDiscardListener, 1);
781     vrdl->container = container;
782     vrdl->mr = section->mr;
783     vrdl->offset_within_address_space = section->offset_within_address_space;
784     vrdl->size = int128_get64(section->size);
785     vrdl->granularity = ram_discard_manager_get_min_granularity(rdm,
786                                                                 section->mr);
787 
788     g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity));
789     g_assert(container->pgsizes &&
790              vrdl->granularity >= 1ULL << ctz64(container->pgsizes));
791 
792     ram_discard_listener_init(&vrdl->listener,
793                               vfio_ram_discard_notify_populate,
794                               vfio_ram_discard_notify_discard, true);
795     ram_discard_manager_register_listener(rdm, &vrdl->listener, section);
796     QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next);
797 
798     /*
799      * Sanity-check if we have a theoretically problematic setup where we could
800      * exceed the maximum number of possible DMA mappings over time. We assume
801      * that each mapped section in the same address space as a RamDiscardManager
802      * section consumes exactly one DMA mapping, with the exception of
803      * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections
804      * in the same address space as RamDiscardManager sections.
805      *
806      * We assume that each section in the address space consumes one memslot.
807      * We take the number of KVM memory slots as a best guess for the maximum
808      * number of sections in the address space we could have over time,
809      * also consuming DMA mappings.
810      */
811     if (container->dma_max_mappings) {
812         unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512;
813 
814 #ifdef CONFIG_KVM
815         if (kvm_enabled()) {
816             max_memslots = kvm_get_max_memslots();
817         }
818 #endif
819 
820         QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
821             hwaddr start, end;
822 
823             start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space,
824                                     vrdl->granularity);
825             end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size,
826                            vrdl->granularity);
827             vrdl_mappings += (end - start) / vrdl->granularity;
828             vrdl_count++;
829         }
830 
831         if (vrdl_mappings + max_memslots - vrdl_count >
832             container->dma_max_mappings) {
833             warn_report("%s: possibly running out of DMA mappings. E.g., try"
834                         " increasing the 'block-size' of virtio-mem devies."
835                         " Maximum possible DMA mappings: %d, Maximum possible"
836                         " memslots: %d", __func__, container->dma_max_mappings,
837                         max_memslots);
838         }
839     }
840 }
841 
842 static void vfio_unregister_ram_discard_listener(VFIOContainer *container,
843                                                  MemoryRegionSection *section)
844 {
845     RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
846     VFIORamDiscardListener *vrdl = NULL;
847 
848     QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
849         if (vrdl->mr == section->mr &&
850             vrdl->offset_within_address_space ==
851             section->offset_within_address_space) {
852             break;
853         }
854     }
855 
856     if (!vrdl) {
857         hw_error("vfio: Trying to unregister missing RAM discard listener");
858     }
859 
860     ram_discard_manager_unregister_listener(rdm, &vrdl->listener);
861     QLIST_REMOVE(vrdl, next);
862     g_free(vrdl);
863 }
864 
865 static bool vfio_known_safe_misalignment(MemoryRegionSection *section)
866 {
867     MemoryRegion *mr = section->mr;
868 
869     if (!TPM_IS_CRB(mr->owner)) {
870         return false;
871     }
872 
873     /* this is a known safe misaligned region, just trace for debug purpose */
874     trace_vfio_known_safe_misalignment(memory_region_name(mr),
875                                        section->offset_within_address_space,
876                                        section->offset_within_region,
877                                        qemu_real_host_page_size());
878     return true;
879 }
880 
881 static void vfio_listener_region_add(MemoryListener *listener,
882                                      MemoryRegionSection *section)
883 {
884     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
885     hwaddr iova, end;
886     Int128 llend, llsize;
887     void *vaddr;
888     int ret;
889     VFIOHostDMAWindow *hostwin;
890     bool hostwin_found;
891     Error *err = NULL;
892 
893     if (vfio_listener_skipped_section(section)) {
894         trace_vfio_listener_region_add_skip(
895                 section->offset_within_address_space,
896                 section->offset_within_address_space +
897                 int128_get64(int128_sub(section->size, int128_one())));
898         return;
899     }
900 
901     if (unlikely((section->offset_within_address_space &
902                   ~qemu_real_host_page_mask()) !=
903                  (section->offset_within_region & ~qemu_real_host_page_mask()))) {
904         if (!vfio_known_safe_misalignment(section)) {
905             error_report("%s received unaligned region %s iova=0x%"PRIx64
906                          " offset_within_region=0x%"PRIx64
907                          " qemu_real_host_page_size=0x%"PRIxPTR,
908                          __func__, memory_region_name(section->mr),
909                          section->offset_within_address_space,
910                          section->offset_within_region,
911                          qemu_real_host_page_size());
912         }
913         return;
914     }
915 
916     iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
917     llend = int128_make64(section->offset_within_address_space);
918     llend = int128_add(llend, section->size);
919     llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask()));
920 
921     if (int128_ge(int128_make64(iova), llend)) {
922         if (memory_region_is_ram_device(section->mr)) {
923             trace_vfio_listener_region_add_no_dma_map(
924                 memory_region_name(section->mr),
925                 section->offset_within_address_space,
926                 int128_getlo(section->size),
927                 qemu_real_host_page_size());
928         }
929         return;
930     }
931     end = int128_get64(int128_sub(llend, int128_one()));
932 
933     if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
934         hwaddr pgsize = 0;
935 
936         /* For now intersections are not allowed, we may relax this later */
937         QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
938             if (ranges_overlap(hostwin->min_iova,
939                                hostwin->max_iova - hostwin->min_iova + 1,
940                                section->offset_within_address_space,
941                                int128_get64(section->size))) {
942                 error_setg(&err,
943                     "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing"
944                     "host DMA window [0x%"PRIx64",0x%"PRIx64"]",
945                     section->offset_within_address_space,
946                     section->offset_within_address_space +
947                         int128_get64(section->size) - 1,
948                     hostwin->min_iova, hostwin->max_iova);
949                 goto fail;
950             }
951         }
952 
953         ret = vfio_spapr_create_window(container, section, &pgsize);
954         if (ret) {
955             error_setg_errno(&err, -ret, "Failed to create SPAPR window");
956             goto fail;
957         }
958 
959         vfio_host_win_add(container, section->offset_within_address_space,
960                           section->offset_within_address_space +
961                           int128_get64(section->size) - 1, pgsize);
962 #ifdef CONFIG_KVM
963         if (kvm_enabled()) {
964             VFIOGroup *group;
965             IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
966             struct kvm_vfio_spapr_tce param;
967             struct kvm_device_attr attr = {
968                 .group = KVM_DEV_VFIO_GROUP,
969                 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE,
970                 .addr = (uint64_t)(unsigned long)&param,
971             };
972 
973             if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD,
974                                               &param.tablefd)) {
975                 QLIST_FOREACH(group, &container->group_list, container_next) {
976                     param.groupfd = group->fd;
977                     if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
978                         error_report("vfio: failed to setup fd %d "
979                                      "for a group with fd %d: %s",
980                                      param.tablefd, param.groupfd,
981                                      strerror(errno));
982                         return;
983                     }
984                     trace_vfio_spapr_group_attach(param.groupfd, param.tablefd);
985                 }
986             }
987         }
988 #endif
989     }
990 
991     hostwin_found = false;
992     QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
993         if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
994             hostwin_found = true;
995             break;
996         }
997     }
998 
999     if (!hostwin_found) {
1000         error_setg(&err, "Container %p can't map guest IOVA region"
1001                    " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end);
1002         goto fail;
1003     }
1004 
1005     memory_region_ref(section->mr);
1006 
1007     if (memory_region_is_iommu(section->mr)) {
1008         VFIOGuestIOMMU *giommu;
1009         IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
1010         int iommu_idx;
1011 
1012         trace_vfio_listener_region_add_iommu(iova, end);
1013         /*
1014          * FIXME: For VFIO iommu types which have KVM acceleration to
1015          * avoid bouncing all map/unmaps through qemu this way, this
1016          * would be the right place to wire that up (tell the KVM
1017          * device emulation the VFIO iommu handles to use).
1018          */
1019         giommu = g_malloc0(sizeof(*giommu));
1020         giommu->iommu_mr = iommu_mr;
1021         giommu->iommu_offset = section->offset_within_address_space -
1022                                section->offset_within_region;
1023         giommu->container = container;
1024         llend = int128_add(int128_make64(section->offset_within_region),
1025                            section->size);
1026         llend = int128_sub(llend, int128_one());
1027         iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
1028                                                        MEMTXATTRS_UNSPECIFIED);
1029         iommu_notifier_init(&giommu->n, vfio_iommu_map_notify,
1030                             IOMMU_NOTIFIER_IOTLB_EVENTS,
1031                             section->offset_within_region,
1032                             int128_get64(llend),
1033                             iommu_idx);
1034 
1035         ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr,
1036                                                      container->pgsizes,
1037                                                      &err);
1038         if (ret) {
1039             g_free(giommu);
1040             goto fail;
1041         }
1042 
1043         ret = memory_region_register_iommu_notifier(section->mr, &giommu->n,
1044                                                     &err);
1045         if (ret) {
1046             g_free(giommu);
1047             goto fail;
1048         }
1049         QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next);
1050         memory_region_iommu_replay(giommu->iommu_mr, &giommu->n);
1051 
1052         return;
1053     }
1054 
1055     /* Here we assume that memory_region_is_ram(section->mr)==true */
1056 
1057     /*
1058      * For RAM memory regions with a RamDiscardManager, we only want to map the
1059      * actually populated parts - and update the mapping whenever we're notified
1060      * about changes.
1061      */
1062     if (memory_region_has_ram_discard_manager(section->mr)) {
1063         vfio_register_ram_discard_listener(container, section);
1064         return;
1065     }
1066 
1067     vaddr = memory_region_get_ram_ptr(section->mr) +
1068             section->offset_within_region +
1069             (iova - section->offset_within_address_space);
1070 
1071     trace_vfio_listener_region_add_ram(iova, end, vaddr);
1072 
1073     llsize = int128_sub(llend, int128_make64(iova));
1074 
1075     if (memory_region_is_ram_device(section->mr)) {
1076         hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1077 
1078         if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) {
1079             trace_vfio_listener_region_add_no_dma_map(
1080                 memory_region_name(section->mr),
1081                 section->offset_within_address_space,
1082                 int128_getlo(section->size),
1083                 pgmask + 1);
1084             return;
1085         }
1086     }
1087 
1088     ret = vfio_dma_map(container, iova, int128_get64(llsize),
1089                        vaddr, section->readonly);
1090     if (ret) {
1091         error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
1092                    "0x%"HWADDR_PRIx", %p) = %d (%m)",
1093                    container, iova, int128_get64(llsize), vaddr, ret);
1094         if (memory_region_is_ram_device(section->mr)) {
1095             /* Allow unexpected mappings not to be fatal for RAM devices */
1096             error_report_err(err);
1097             return;
1098         }
1099         goto fail;
1100     }
1101 
1102     return;
1103 
1104 fail:
1105     if (memory_region_is_ram_device(section->mr)) {
1106         error_report("failed to vfio_dma_map. pci p2p may not work");
1107         return;
1108     }
1109     /*
1110      * On the initfn path, store the first error in the container so we
1111      * can gracefully fail.  Runtime, there's not much we can do other
1112      * than throw a hardware error.
1113      */
1114     if (!container->initialized) {
1115         if (!container->error) {
1116             error_propagate_prepend(&container->error, err,
1117                                     "Region %s: ",
1118                                     memory_region_name(section->mr));
1119         } else {
1120             error_free(err);
1121         }
1122     } else {
1123         error_report_err(err);
1124         hw_error("vfio: DMA mapping failed, unable to continue");
1125     }
1126 }
1127 
1128 static void vfio_listener_region_del(MemoryListener *listener,
1129                                      MemoryRegionSection *section)
1130 {
1131     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1132     hwaddr iova, end;
1133     Int128 llend, llsize;
1134     int ret;
1135     bool try_unmap = true;
1136 
1137     if (vfio_listener_skipped_section(section)) {
1138         trace_vfio_listener_region_del_skip(
1139                 section->offset_within_address_space,
1140                 section->offset_within_address_space +
1141                 int128_get64(int128_sub(section->size, int128_one())));
1142         return;
1143     }
1144 
1145     if (unlikely((section->offset_within_address_space &
1146                   ~qemu_real_host_page_mask()) !=
1147                  (section->offset_within_region & ~qemu_real_host_page_mask()))) {
1148         if (!vfio_known_safe_misalignment(section)) {
1149             error_report("%s received unaligned region %s iova=0x%"PRIx64
1150                          " offset_within_region=0x%"PRIx64
1151                          " qemu_real_host_page_size=0x%"PRIxPTR,
1152                          __func__, memory_region_name(section->mr),
1153                          section->offset_within_address_space,
1154                          section->offset_within_region,
1155                          qemu_real_host_page_size());
1156         }
1157         return;
1158     }
1159 
1160     if (memory_region_is_iommu(section->mr)) {
1161         VFIOGuestIOMMU *giommu;
1162 
1163         QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1164             if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
1165                 giommu->n.start == section->offset_within_region) {
1166                 memory_region_unregister_iommu_notifier(section->mr,
1167                                                         &giommu->n);
1168                 QLIST_REMOVE(giommu, giommu_next);
1169                 g_free(giommu);
1170                 break;
1171             }
1172         }
1173 
1174         /*
1175          * FIXME: We assume the one big unmap below is adequate to
1176          * remove any individual page mappings in the IOMMU which
1177          * might have been copied into VFIO. This works for a page table
1178          * based IOMMU where a big unmap flattens a large range of IO-PTEs.
1179          * That may not be true for all IOMMU types.
1180          */
1181     }
1182 
1183     iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
1184     llend = int128_make64(section->offset_within_address_space);
1185     llend = int128_add(llend, section->size);
1186     llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask()));
1187 
1188     if (int128_ge(int128_make64(iova), llend)) {
1189         return;
1190     }
1191     end = int128_get64(int128_sub(llend, int128_one()));
1192 
1193     llsize = int128_sub(llend, int128_make64(iova));
1194 
1195     trace_vfio_listener_region_del(iova, end);
1196 
1197     if (memory_region_is_ram_device(section->mr)) {
1198         hwaddr pgmask;
1199         VFIOHostDMAWindow *hostwin;
1200         bool hostwin_found = false;
1201 
1202         QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
1203             if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
1204                 hostwin_found = true;
1205                 break;
1206             }
1207         }
1208         assert(hostwin_found); /* or region_add() would have failed */
1209 
1210         pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1211         try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
1212     } else if (memory_region_has_ram_discard_manager(section->mr)) {
1213         vfio_unregister_ram_discard_listener(container, section);
1214         /* Unregistering will trigger an unmap. */
1215         try_unmap = false;
1216     }
1217 
1218     if (try_unmap) {
1219         if (int128_eq(llsize, int128_2_64())) {
1220             /* The unmap ioctl doesn't accept a full 64-bit span. */
1221             llsize = int128_rshift(llsize, 1);
1222             ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1223             if (ret) {
1224                 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1225                              "0x%"HWADDR_PRIx") = %d (%m)",
1226                              container, iova, int128_get64(llsize), ret);
1227             }
1228             iova += int128_get64(llsize);
1229         }
1230         ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1231         if (ret) {
1232             error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1233                          "0x%"HWADDR_PRIx") = %d (%m)",
1234                          container, iova, int128_get64(llsize), ret);
1235         }
1236     }
1237 
1238     memory_region_unref(section->mr);
1239 
1240     if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1241         vfio_spapr_remove_window(container,
1242                                  section->offset_within_address_space);
1243         if (vfio_host_win_del(container,
1244                               section->offset_within_address_space,
1245                               section->offset_within_address_space +
1246                               int128_get64(section->size) - 1) < 0) {
1247             hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx,
1248                      __func__, section->offset_within_address_space);
1249         }
1250     }
1251 }
1252 
1253 static void vfio_set_dirty_page_tracking(VFIOContainer *container, bool start)
1254 {
1255     int ret;
1256     struct vfio_iommu_type1_dirty_bitmap dirty = {
1257         .argsz = sizeof(dirty),
1258     };
1259 
1260     if (start) {
1261         dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START;
1262     } else {
1263         dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP;
1264     }
1265 
1266     ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty);
1267     if (ret) {
1268         error_report("Failed to set dirty tracking flag 0x%x errno: %d",
1269                      dirty.flags, errno);
1270     }
1271 }
1272 
1273 static void vfio_listener_log_global_start(MemoryListener *listener)
1274 {
1275     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1276 
1277     vfio_set_dirty_page_tracking(container, true);
1278 }
1279 
1280 static void vfio_listener_log_global_stop(MemoryListener *listener)
1281 {
1282     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1283 
1284     vfio_set_dirty_page_tracking(container, false);
1285 }
1286 
1287 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova,
1288                                  uint64_t size, ram_addr_t ram_addr)
1289 {
1290     struct vfio_iommu_type1_dirty_bitmap *dbitmap;
1291     struct vfio_iommu_type1_dirty_bitmap_get *range;
1292     uint64_t pages;
1293     int ret;
1294 
1295     dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range));
1296 
1297     dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range);
1298     dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
1299     range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data;
1300     range->iova = iova;
1301     range->size = size;
1302 
1303     /*
1304      * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
1305      * qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize
1306      * to qemu_real_host_page_size.
1307      */
1308     range->bitmap.pgsize = qemu_real_host_page_size();
1309 
1310     pages = REAL_HOST_PAGE_ALIGN(range->size) / qemu_real_host_page_size();
1311     range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
1312                                          BITS_PER_BYTE;
1313     range->bitmap.data = g_try_malloc0(range->bitmap.size);
1314     if (!range->bitmap.data) {
1315         ret = -ENOMEM;
1316         goto err_out;
1317     }
1318 
1319     ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap);
1320     if (ret) {
1321         error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64
1322                 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova,
1323                 (uint64_t)range->size, errno);
1324         goto err_out;
1325     }
1326 
1327     cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data,
1328                                             ram_addr, pages);
1329 
1330     trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size,
1331                                 range->bitmap.size, ram_addr);
1332 err_out:
1333     g_free(range->bitmap.data);
1334     g_free(dbitmap);
1335 
1336     return ret;
1337 }
1338 
1339 typedef struct {
1340     IOMMUNotifier n;
1341     VFIOGuestIOMMU *giommu;
1342 } vfio_giommu_dirty_notifier;
1343 
1344 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
1345 {
1346     vfio_giommu_dirty_notifier *gdn = container_of(n,
1347                                                 vfio_giommu_dirty_notifier, n);
1348     VFIOGuestIOMMU *giommu = gdn->giommu;
1349     VFIOContainer *container = giommu->container;
1350     hwaddr iova = iotlb->iova + giommu->iommu_offset;
1351     ram_addr_t translated_addr;
1352 
1353     trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask);
1354 
1355     if (iotlb->target_as != &address_space_memory) {
1356         error_report("Wrong target AS \"%s\", only system memory is allowed",
1357                      iotlb->target_as->name ? iotlb->target_as->name : "none");
1358         return;
1359     }
1360 
1361     rcu_read_lock();
1362     if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) {
1363         int ret;
1364 
1365         ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1,
1366                                     translated_addr);
1367         if (ret) {
1368             error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", "
1369                          "0x%"HWADDR_PRIx") = %d (%m)",
1370                          container, iova,
1371                          iotlb->addr_mask + 1, ret);
1372         }
1373     }
1374     rcu_read_unlock();
1375 }
1376 
1377 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section,
1378                                              void *opaque)
1379 {
1380     const hwaddr size = int128_get64(section->size);
1381     const hwaddr iova = section->offset_within_address_space;
1382     const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) +
1383                                 section->offset_within_region;
1384     VFIORamDiscardListener *vrdl = opaque;
1385 
1386     /*
1387      * Sync the whole mapped region (spanning multiple individual mappings)
1388      * in one go.
1389      */
1390     return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr);
1391 }
1392 
1393 static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container,
1394                                                    MemoryRegionSection *section)
1395 {
1396     RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
1397     VFIORamDiscardListener *vrdl = NULL;
1398 
1399     QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
1400         if (vrdl->mr == section->mr &&
1401             vrdl->offset_within_address_space ==
1402             section->offset_within_address_space) {
1403             break;
1404         }
1405     }
1406 
1407     if (!vrdl) {
1408         hw_error("vfio: Trying to sync missing RAM discard listener");
1409     }
1410 
1411     /*
1412      * We only want/can synchronize the bitmap for actually mapped parts -
1413      * which correspond to populated parts. Replay all populated parts.
1414      */
1415     return ram_discard_manager_replay_populated(rdm, section,
1416                                               vfio_ram_discard_get_dirty_bitmap,
1417                                                 &vrdl);
1418 }
1419 
1420 static int vfio_sync_dirty_bitmap(VFIOContainer *container,
1421                                   MemoryRegionSection *section)
1422 {
1423     ram_addr_t ram_addr;
1424 
1425     if (memory_region_is_iommu(section->mr)) {
1426         VFIOGuestIOMMU *giommu;
1427 
1428         QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1429             if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
1430                 giommu->n.start == section->offset_within_region) {
1431                 Int128 llend;
1432                 vfio_giommu_dirty_notifier gdn = { .giommu = giommu };
1433                 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr,
1434                                                        MEMTXATTRS_UNSPECIFIED);
1435 
1436                 llend = int128_add(int128_make64(section->offset_within_region),
1437                                    section->size);
1438                 llend = int128_sub(llend, int128_one());
1439 
1440                 iommu_notifier_init(&gdn.n,
1441                                     vfio_iommu_map_dirty_notify,
1442                                     IOMMU_NOTIFIER_MAP,
1443                                     section->offset_within_region,
1444                                     int128_get64(llend),
1445                                     idx);
1446                 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n);
1447                 break;
1448             }
1449         }
1450         return 0;
1451     } else if (memory_region_has_ram_discard_manager(section->mr)) {
1452         return vfio_sync_ram_discard_listener_dirty_bitmap(container, section);
1453     }
1454 
1455     ram_addr = memory_region_get_ram_addr(section->mr) +
1456                section->offset_within_region;
1457 
1458     return vfio_get_dirty_bitmap(container,
1459                    REAL_HOST_PAGE_ALIGN(section->offset_within_address_space),
1460                    int128_get64(section->size), ram_addr);
1461 }
1462 
1463 static void vfio_listener_log_sync(MemoryListener *listener,
1464         MemoryRegionSection *section)
1465 {
1466     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1467 
1468     if (vfio_listener_skipped_section(section) ||
1469         !container->dirty_pages_supported) {
1470         return;
1471     }
1472 
1473     if (vfio_devices_all_dirty_tracking(container)) {
1474         vfio_sync_dirty_bitmap(container, section);
1475     }
1476 }
1477 
1478 static const MemoryListener vfio_memory_listener = {
1479     .name = "vfio",
1480     .region_add = vfio_listener_region_add,
1481     .region_del = vfio_listener_region_del,
1482     .log_global_start = vfio_listener_log_global_start,
1483     .log_global_stop = vfio_listener_log_global_stop,
1484     .log_sync = vfio_listener_log_sync,
1485 };
1486 
1487 static void vfio_listener_release(VFIOContainer *container)
1488 {
1489     memory_listener_unregister(&container->listener);
1490     if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1491         memory_listener_unregister(&container->prereg_listener);
1492     }
1493 }
1494 
1495 static struct vfio_info_cap_header *
1496 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id)
1497 {
1498     struct vfio_info_cap_header *hdr;
1499 
1500     for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1501         if (hdr->id == id) {
1502             return hdr;
1503         }
1504     }
1505 
1506     return NULL;
1507 }
1508 
1509 struct vfio_info_cap_header *
1510 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id)
1511 {
1512     if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) {
1513         return NULL;
1514     }
1515 
1516     return vfio_get_cap((void *)info, info->cap_offset, id);
1517 }
1518 
1519 static struct vfio_info_cap_header *
1520 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1521 {
1522     if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1523         return NULL;
1524     }
1525 
1526     return vfio_get_cap((void *)info, info->cap_offset, id);
1527 }
1528 
1529 struct vfio_info_cap_header *
1530 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id)
1531 {
1532     if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) {
1533         return NULL;
1534     }
1535 
1536     return vfio_get_cap((void *)info, info->cap_offset, id);
1537 }
1538 
1539 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info,
1540                              unsigned int *avail)
1541 {
1542     struct vfio_info_cap_header *hdr;
1543     struct vfio_iommu_type1_info_dma_avail *cap;
1544 
1545     /* If the capability cannot be found, assume no DMA limiting */
1546     hdr = vfio_get_iommu_type1_info_cap(info,
1547                                         VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL);
1548     if (hdr == NULL) {
1549         return false;
1550     }
1551 
1552     if (avail != NULL) {
1553         cap = (void *) hdr;
1554         *avail = cap->avail;
1555     }
1556 
1557     return true;
1558 }
1559 
1560 static int vfio_setup_region_sparse_mmaps(VFIORegion *region,
1561                                           struct vfio_region_info *info)
1562 {
1563     struct vfio_info_cap_header *hdr;
1564     struct vfio_region_info_cap_sparse_mmap *sparse;
1565     int i, j;
1566 
1567     hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP);
1568     if (!hdr) {
1569         return -ENODEV;
1570     }
1571 
1572     sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header);
1573 
1574     trace_vfio_region_sparse_mmap_header(region->vbasedev->name,
1575                                          region->nr, sparse->nr_areas);
1576 
1577     region->mmaps = g_new0(VFIOMmap, sparse->nr_areas);
1578 
1579     for (i = 0, j = 0; i < sparse->nr_areas; i++) {
1580         if (sparse->areas[i].size) {
1581             trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset,
1582                                             sparse->areas[i].offset +
1583                                             sparse->areas[i].size - 1);
1584             region->mmaps[j].offset = sparse->areas[i].offset;
1585             region->mmaps[j].size = sparse->areas[i].size;
1586             j++;
1587         }
1588     }
1589 
1590     region->nr_mmaps = j;
1591     region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap));
1592 
1593     return 0;
1594 }
1595 
1596 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region,
1597                       int index, const char *name)
1598 {
1599     struct vfio_region_info *info;
1600     int ret;
1601 
1602     ret = vfio_get_region_info(vbasedev, index, &info);
1603     if (ret) {
1604         return ret;
1605     }
1606 
1607     region->vbasedev = vbasedev;
1608     region->flags = info->flags;
1609     region->size = info->size;
1610     region->fd_offset = info->offset;
1611     region->nr = index;
1612 
1613     if (region->size) {
1614         region->mem = g_new0(MemoryRegion, 1);
1615         memory_region_init_io(region->mem, obj, &vfio_region_ops,
1616                               region, name, region->size);
1617 
1618         if (!vbasedev->no_mmap &&
1619             region->flags & VFIO_REGION_INFO_FLAG_MMAP) {
1620 
1621             ret = vfio_setup_region_sparse_mmaps(region, info);
1622 
1623             if (ret) {
1624                 region->nr_mmaps = 1;
1625                 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps);
1626                 region->mmaps[0].offset = 0;
1627                 region->mmaps[0].size = region->size;
1628             }
1629         }
1630     }
1631 
1632     g_free(info);
1633 
1634     trace_vfio_region_setup(vbasedev->name, index, name,
1635                             region->flags, region->fd_offset, region->size);
1636     return 0;
1637 }
1638 
1639 static void vfio_subregion_unmap(VFIORegion *region, int index)
1640 {
1641     trace_vfio_region_unmap(memory_region_name(&region->mmaps[index].mem),
1642                             region->mmaps[index].offset,
1643                             region->mmaps[index].offset +
1644                             region->mmaps[index].size - 1);
1645     memory_region_del_subregion(region->mem, &region->mmaps[index].mem);
1646     munmap(region->mmaps[index].mmap, region->mmaps[index].size);
1647     object_unparent(OBJECT(&region->mmaps[index].mem));
1648     region->mmaps[index].mmap = NULL;
1649 }
1650 
1651 int vfio_region_mmap(VFIORegion *region)
1652 {
1653     int i, prot = 0;
1654     char *name;
1655 
1656     if (!region->mem) {
1657         return 0;
1658     }
1659 
1660     prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0;
1661     prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0;
1662 
1663     for (i = 0; i < region->nr_mmaps; i++) {
1664         region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot,
1665                                      MAP_SHARED, region->vbasedev->fd,
1666                                      region->fd_offset +
1667                                      region->mmaps[i].offset);
1668         if (region->mmaps[i].mmap == MAP_FAILED) {
1669             int ret = -errno;
1670 
1671             trace_vfio_region_mmap_fault(memory_region_name(region->mem), i,
1672                                          region->fd_offset +
1673                                          region->mmaps[i].offset,
1674                                          region->fd_offset +
1675                                          region->mmaps[i].offset +
1676                                          region->mmaps[i].size - 1, ret);
1677 
1678             region->mmaps[i].mmap = NULL;
1679 
1680             for (i--; i >= 0; i--) {
1681                 vfio_subregion_unmap(region, i);
1682             }
1683 
1684             return ret;
1685         }
1686 
1687         name = g_strdup_printf("%s mmaps[%d]",
1688                                memory_region_name(region->mem), i);
1689         memory_region_init_ram_device_ptr(&region->mmaps[i].mem,
1690                                           memory_region_owner(region->mem),
1691                                           name, region->mmaps[i].size,
1692                                           region->mmaps[i].mmap);
1693         g_free(name);
1694         memory_region_add_subregion(region->mem, region->mmaps[i].offset,
1695                                     &region->mmaps[i].mem);
1696 
1697         trace_vfio_region_mmap(memory_region_name(&region->mmaps[i].mem),
1698                                region->mmaps[i].offset,
1699                                region->mmaps[i].offset +
1700                                region->mmaps[i].size - 1);
1701     }
1702 
1703     return 0;
1704 }
1705 
1706 void vfio_region_unmap(VFIORegion *region)
1707 {
1708     int i;
1709 
1710     if (!region->mem) {
1711         return;
1712     }
1713 
1714     for (i = 0; i < region->nr_mmaps; i++) {
1715         if (region->mmaps[i].mmap) {
1716             vfio_subregion_unmap(region, i);
1717         }
1718     }
1719 }
1720 
1721 void vfio_region_exit(VFIORegion *region)
1722 {
1723     int i;
1724 
1725     if (!region->mem) {
1726         return;
1727     }
1728 
1729     for (i = 0; i < region->nr_mmaps; i++) {
1730         if (region->mmaps[i].mmap) {
1731             memory_region_del_subregion(region->mem, &region->mmaps[i].mem);
1732         }
1733     }
1734 
1735     trace_vfio_region_exit(region->vbasedev->name, region->nr);
1736 }
1737 
1738 void vfio_region_finalize(VFIORegion *region)
1739 {
1740     int i;
1741 
1742     if (!region->mem) {
1743         return;
1744     }
1745 
1746     for (i = 0; i < region->nr_mmaps; i++) {
1747         if (region->mmaps[i].mmap) {
1748             munmap(region->mmaps[i].mmap, region->mmaps[i].size);
1749             object_unparent(OBJECT(&region->mmaps[i].mem));
1750         }
1751     }
1752 
1753     object_unparent(OBJECT(region->mem));
1754 
1755     g_free(region->mem);
1756     g_free(region->mmaps);
1757 
1758     trace_vfio_region_finalize(region->vbasedev->name, region->nr);
1759 
1760     region->mem = NULL;
1761     region->mmaps = NULL;
1762     region->nr_mmaps = 0;
1763     region->size = 0;
1764     region->flags = 0;
1765     region->nr = 0;
1766 }
1767 
1768 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled)
1769 {
1770     int i;
1771 
1772     if (!region->mem) {
1773         return;
1774     }
1775 
1776     for (i = 0; i < region->nr_mmaps; i++) {
1777         if (region->mmaps[i].mmap) {
1778             memory_region_set_enabled(&region->mmaps[i].mem, enabled);
1779         }
1780     }
1781 
1782     trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem),
1783                                         enabled);
1784 }
1785 
1786 void vfio_reset_handler(void *opaque)
1787 {
1788     VFIOGroup *group;
1789     VFIODevice *vbasedev;
1790 
1791     QLIST_FOREACH(group, &vfio_group_list, next) {
1792         QLIST_FOREACH(vbasedev, &group->device_list, next) {
1793             if (vbasedev->dev->realized) {
1794                 vbasedev->ops->vfio_compute_needs_reset(vbasedev);
1795             }
1796         }
1797     }
1798 
1799     QLIST_FOREACH(group, &vfio_group_list, next) {
1800         QLIST_FOREACH(vbasedev, &group->device_list, next) {
1801             if (vbasedev->dev->realized && vbasedev->needs_reset) {
1802                 vbasedev->ops->vfio_hot_reset_multi(vbasedev);
1803             }
1804         }
1805     }
1806 }
1807 
1808 static void vfio_kvm_device_add_group(VFIOGroup *group)
1809 {
1810 #ifdef CONFIG_KVM
1811     struct kvm_device_attr attr = {
1812         .group = KVM_DEV_VFIO_GROUP,
1813         .attr = KVM_DEV_VFIO_GROUP_ADD,
1814         .addr = (uint64_t)(unsigned long)&group->fd,
1815     };
1816 
1817     if (!kvm_enabled()) {
1818         return;
1819     }
1820 
1821     if (vfio_kvm_device_fd < 0) {
1822         struct kvm_create_device cd = {
1823             .type = KVM_DEV_TYPE_VFIO,
1824         };
1825 
1826         if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) {
1827             error_report("Failed to create KVM VFIO device: %m");
1828             return;
1829         }
1830 
1831         vfio_kvm_device_fd = cd.fd;
1832     }
1833 
1834     if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1835         error_report("Failed to add group %d to KVM VFIO device: %m",
1836                      group->groupid);
1837     }
1838 #endif
1839 }
1840 
1841 static void vfio_kvm_device_del_group(VFIOGroup *group)
1842 {
1843 #ifdef CONFIG_KVM
1844     struct kvm_device_attr attr = {
1845         .group = KVM_DEV_VFIO_GROUP,
1846         .attr = KVM_DEV_VFIO_GROUP_DEL,
1847         .addr = (uint64_t)(unsigned long)&group->fd,
1848     };
1849 
1850     if (vfio_kvm_device_fd < 0) {
1851         return;
1852     }
1853 
1854     if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1855         error_report("Failed to remove group %d from KVM VFIO device: %m",
1856                      group->groupid);
1857     }
1858 #endif
1859 }
1860 
1861 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as)
1862 {
1863     VFIOAddressSpace *space;
1864 
1865     QLIST_FOREACH(space, &vfio_address_spaces, list) {
1866         if (space->as == as) {
1867             return space;
1868         }
1869     }
1870 
1871     /* No suitable VFIOAddressSpace, create a new one */
1872     space = g_malloc0(sizeof(*space));
1873     space->as = as;
1874     QLIST_INIT(&space->containers);
1875 
1876     QLIST_INSERT_HEAD(&vfio_address_spaces, space, list);
1877 
1878     return space;
1879 }
1880 
1881 static void vfio_put_address_space(VFIOAddressSpace *space)
1882 {
1883     if (QLIST_EMPTY(&space->containers)) {
1884         QLIST_REMOVE(space, list);
1885         g_free(space);
1886     }
1887 }
1888 
1889 /*
1890  * vfio_get_iommu_type - selects the richest iommu_type (v2 first)
1891  */
1892 static int vfio_get_iommu_type(VFIOContainer *container,
1893                                Error **errp)
1894 {
1895     int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU,
1896                           VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU };
1897     int i;
1898 
1899     for (i = 0; i < ARRAY_SIZE(iommu_types); i++) {
1900         if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) {
1901             return iommu_types[i];
1902         }
1903     }
1904     error_setg(errp, "No available IOMMU models");
1905     return -EINVAL;
1906 }
1907 
1908 static int vfio_init_container(VFIOContainer *container, int group_fd,
1909                                Error **errp)
1910 {
1911     int iommu_type, ret;
1912 
1913     iommu_type = vfio_get_iommu_type(container, errp);
1914     if (iommu_type < 0) {
1915         return iommu_type;
1916     }
1917 
1918     ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd);
1919     if (ret) {
1920         error_setg_errno(errp, errno, "Failed to set group container");
1921         return -errno;
1922     }
1923 
1924     while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) {
1925         if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1926             /*
1927              * On sPAPR, despite the IOMMU subdriver always advertises v1 and
1928              * v2, the running platform may not support v2 and there is no
1929              * way to guess it until an IOMMU group gets added to the container.
1930              * So in case it fails with v2, try v1 as a fallback.
1931              */
1932             iommu_type = VFIO_SPAPR_TCE_IOMMU;
1933             continue;
1934         }
1935         error_setg_errno(errp, errno, "Failed to set iommu for container");
1936         return -errno;
1937     }
1938 
1939     container->iommu_type = iommu_type;
1940     return 0;
1941 }
1942 
1943 static int vfio_get_iommu_info(VFIOContainer *container,
1944                                struct vfio_iommu_type1_info **info)
1945 {
1946 
1947     size_t argsz = sizeof(struct vfio_iommu_type1_info);
1948 
1949     *info = g_new0(struct vfio_iommu_type1_info, 1);
1950 again:
1951     (*info)->argsz = argsz;
1952 
1953     if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) {
1954         g_free(*info);
1955         *info = NULL;
1956         return -errno;
1957     }
1958 
1959     if (((*info)->argsz > argsz)) {
1960         argsz = (*info)->argsz;
1961         *info = g_realloc(*info, argsz);
1962         goto again;
1963     }
1964 
1965     return 0;
1966 }
1967 
1968 static struct vfio_info_cap_header *
1969 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1970 {
1971     struct vfio_info_cap_header *hdr;
1972     void *ptr = info;
1973 
1974     if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1975         return NULL;
1976     }
1977 
1978     for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1979         if (hdr->id == id) {
1980             return hdr;
1981         }
1982     }
1983 
1984     return NULL;
1985 }
1986 
1987 static void vfio_get_iommu_info_migration(VFIOContainer *container,
1988                                          struct vfio_iommu_type1_info *info)
1989 {
1990     struct vfio_info_cap_header *hdr;
1991     struct vfio_iommu_type1_info_cap_migration *cap_mig;
1992 
1993     hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION);
1994     if (!hdr) {
1995         return;
1996     }
1997 
1998     cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration,
1999                             header);
2000 
2001     /*
2002      * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
2003      * qemu_real_host_page_size to mark those dirty.
2004      */
2005     if (cap_mig->pgsize_bitmap & qemu_real_host_page_size()) {
2006         container->dirty_pages_supported = true;
2007         container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size;
2008         container->dirty_pgsizes = cap_mig->pgsize_bitmap;
2009     }
2010 }
2011 
2012 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
2013                                   Error **errp)
2014 {
2015     VFIOContainer *container;
2016     int ret, fd;
2017     VFIOAddressSpace *space;
2018 
2019     space = vfio_get_address_space(as);
2020 
2021     /*
2022      * VFIO is currently incompatible with discarding of RAM insofar as the
2023      * madvise to purge (zap) the page from QEMU's address space does not
2024      * interact with the memory API and therefore leaves stale virtual to
2025      * physical mappings in the IOMMU if the page was previously pinned.  We
2026      * therefore set discarding broken for each group added to a container,
2027      * whether the container is used individually or shared.  This provides
2028      * us with options to allow devices within a group to opt-in and allow
2029      * discarding, so long as it is done consistently for a group (for instance
2030      * if the device is an mdev device where it is known that the host vendor
2031      * driver will never pin pages outside of the working set of the guest
2032      * driver, which would thus not be discarding candidates).
2033      *
2034      * The first opportunity to induce pinning occurs here where we attempt to
2035      * attach the group to existing containers within the AddressSpace.  If any
2036      * pages are already zapped from the virtual address space, such as from
2037      * previous discards, new pinning will cause valid mappings to be
2038      * re-established.  Likewise, when the overall MemoryListener for a new
2039      * container is registered, a replay of mappings within the AddressSpace
2040      * will occur, re-establishing any previously zapped pages as well.
2041      *
2042      * Especially virtio-balloon is currently only prevented from discarding
2043      * new memory, it will not yet set ram_block_discard_set_required() and
2044      * therefore, neither stops us here or deals with the sudden memory
2045      * consumption of inflated memory.
2046      *
2047      * We do support discarding of memory coordinated via the RamDiscardManager
2048      * with some IOMMU types. vfio_ram_block_discard_disable() handles the
2049      * details once we know which type of IOMMU we are using.
2050      */
2051 
2052     QLIST_FOREACH(container, &space->containers, next) {
2053         if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) {
2054             ret = vfio_ram_block_discard_disable(container, true);
2055             if (ret) {
2056                 error_setg_errno(errp, -ret,
2057                                  "Cannot set discarding of RAM broken");
2058                 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER,
2059                           &container->fd)) {
2060                     error_report("vfio: error disconnecting group %d from"
2061                                  " container", group->groupid);
2062                 }
2063                 return ret;
2064             }
2065             group->container = container;
2066             QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2067             vfio_kvm_device_add_group(group);
2068             return 0;
2069         }
2070     }
2071 
2072     fd = qemu_open_old("/dev/vfio/vfio", O_RDWR);
2073     if (fd < 0) {
2074         error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio");
2075         ret = -errno;
2076         goto put_space_exit;
2077     }
2078 
2079     ret = ioctl(fd, VFIO_GET_API_VERSION);
2080     if (ret != VFIO_API_VERSION) {
2081         error_setg(errp, "supported vfio version: %d, "
2082                    "reported version: %d", VFIO_API_VERSION, ret);
2083         ret = -EINVAL;
2084         goto close_fd_exit;
2085     }
2086 
2087     container = g_malloc0(sizeof(*container));
2088     container->space = space;
2089     container->fd = fd;
2090     container->error = NULL;
2091     container->dirty_pages_supported = false;
2092     container->dma_max_mappings = 0;
2093     QLIST_INIT(&container->giommu_list);
2094     QLIST_INIT(&container->hostwin_list);
2095     QLIST_INIT(&container->vrdl_list);
2096 
2097     ret = vfio_init_container(container, group->fd, errp);
2098     if (ret) {
2099         goto free_container_exit;
2100     }
2101 
2102     ret = vfio_ram_block_discard_disable(container, true);
2103     if (ret) {
2104         error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken");
2105         goto free_container_exit;
2106     }
2107 
2108     switch (container->iommu_type) {
2109     case VFIO_TYPE1v2_IOMMU:
2110     case VFIO_TYPE1_IOMMU:
2111     {
2112         struct vfio_iommu_type1_info *info;
2113 
2114         /*
2115          * FIXME: This assumes that a Type1 IOMMU can map any 64-bit
2116          * IOVA whatsoever.  That's not actually true, but the current
2117          * kernel interface doesn't tell us what it can map, and the
2118          * existing Type1 IOMMUs generally support any IOVA we're
2119          * going to actually try in practice.
2120          */
2121         ret = vfio_get_iommu_info(container, &info);
2122 
2123         if (ret || !(info->flags & VFIO_IOMMU_INFO_PGSIZES)) {
2124             /* Assume 4k IOVA page size */
2125             info->iova_pgsizes = 4096;
2126         }
2127         vfio_host_win_add(container, 0, (hwaddr)-1, info->iova_pgsizes);
2128         container->pgsizes = info->iova_pgsizes;
2129 
2130         /* The default in the kernel ("dma_entry_limit") is 65535. */
2131         container->dma_max_mappings = 65535;
2132         if (!ret) {
2133             vfio_get_info_dma_avail(info, &container->dma_max_mappings);
2134             vfio_get_iommu_info_migration(container, info);
2135         }
2136         g_free(info);
2137         break;
2138     }
2139     case VFIO_SPAPR_TCE_v2_IOMMU:
2140     case VFIO_SPAPR_TCE_IOMMU:
2141     {
2142         struct vfio_iommu_spapr_tce_info info;
2143         bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU;
2144 
2145         /*
2146          * The host kernel code implementing VFIO_IOMMU_DISABLE is called
2147          * when container fd is closed so we do not call it explicitly
2148          * in this file.
2149          */
2150         if (!v2) {
2151             ret = ioctl(fd, VFIO_IOMMU_ENABLE);
2152             if (ret) {
2153                 error_setg_errno(errp, errno, "failed to enable container");
2154                 ret = -errno;
2155                 goto enable_discards_exit;
2156             }
2157         } else {
2158             container->prereg_listener = vfio_prereg_listener;
2159 
2160             memory_listener_register(&container->prereg_listener,
2161                                      &address_space_memory);
2162             if (container->error) {
2163                 memory_listener_unregister(&container->prereg_listener);
2164                 ret = -1;
2165                 error_propagate_prepend(errp, container->error,
2166                     "RAM memory listener initialization failed: ");
2167                 goto enable_discards_exit;
2168             }
2169         }
2170 
2171         info.argsz = sizeof(info);
2172         ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
2173         if (ret) {
2174             error_setg_errno(errp, errno,
2175                              "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed");
2176             ret = -errno;
2177             if (v2) {
2178                 memory_listener_unregister(&container->prereg_listener);
2179             }
2180             goto enable_discards_exit;
2181         }
2182 
2183         if (v2) {
2184             container->pgsizes = info.ddw.pgsizes;
2185             /*
2186              * There is a default window in just created container.
2187              * To make region_add/del simpler, we better remove this
2188              * window now and let those iommu_listener callbacks
2189              * create/remove them when needed.
2190              */
2191             ret = vfio_spapr_remove_window(container, info.dma32_window_start);
2192             if (ret) {
2193                 error_setg_errno(errp, -ret,
2194                                  "failed to remove existing window");
2195                 goto enable_discards_exit;
2196             }
2197         } else {
2198             /* The default table uses 4K pages */
2199             container->pgsizes = 0x1000;
2200             vfio_host_win_add(container, info.dma32_window_start,
2201                               info.dma32_window_start +
2202                               info.dma32_window_size - 1,
2203                               0x1000);
2204         }
2205     }
2206     }
2207 
2208     vfio_kvm_device_add_group(group);
2209 
2210     QLIST_INIT(&container->group_list);
2211     QLIST_INSERT_HEAD(&space->containers, container, next);
2212 
2213     group->container = container;
2214     QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2215 
2216     container->listener = vfio_memory_listener;
2217 
2218     memory_listener_register(&container->listener, container->space->as);
2219 
2220     if (container->error) {
2221         ret = -1;
2222         error_propagate_prepend(errp, container->error,
2223             "memory listener initialization failed: ");
2224         goto listener_release_exit;
2225     }
2226 
2227     container->initialized = true;
2228 
2229     return 0;
2230 listener_release_exit:
2231     QLIST_REMOVE(group, container_next);
2232     QLIST_REMOVE(container, next);
2233     vfio_kvm_device_del_group(group);
2234     vfio_listener_release(container);
2235 
2236 enable_discards_exit:
2237     vfio_ram_block_discard_disable(container, false);
2238 
2239 free_container_exit:
2240     g_free(container);
2241 
2242 close_fd_exit:
2243     close(fd);
2244 
2245 put_space_exit:
2246     vfio_put_address_space(space);
2247 
2248     return ret;
2249 }
2250 
2251 static void vfio_disconnect_container(VFIOGroup *group)
2252 {
2253     VFIOContainer *container = group->container;
2254 
2255     QLIST_REMOVE(group, container_next);
2256     group->container = NULL;
2257 
2258     /*
2259      * Explicitly release the listener first before unset container,
2260      * since unset may destroy the backend container if it's the last
2261      * group.
2262      */
2263     if (QLIST_EMPTY(&container->group_list)) {
2264         vfio_listener_release(container);
2265     }
2266 
2267     if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) {
2268         error_report("vfio: error disconnecting group %d from container",
2269                      group->groupid);
2270     }
2271 
2272     if (QLIST_EMPTY(&container->group_list)) {
2273         VFIOAddressSpace *space = container->space;
2274         VFIOGuestIOMMU *giommu, *tmp;
2275         VFIOHostDMAWindow *hostwin, *next;
2276 
2277         QLIST_REMOVE(container, next);
2278 
2279         QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) {
2280             memory_region_unregister_iommu_notifier(
2281                     MEMORY_REGION(giommu->iommu_mr), &giommu->n);
2282             QLIST_REMOVE(giommu, giommu_next);
2283             g_free(giommu);
2284         }
2285 
2286         QLIST_FOREACH_SAFE(hostwin, &container->hostwin_list, hostwin_next,
2287                            next) {
2288             QLIST_REMOVE(hostwin, hostwin_next);
2289             g_free(hostwin);
2290         }
2291 
2292         trace_vfio_disconnect_container(container->fd);
2293         close(container->fd);
2294         g_free(container);
2295 
2296         vfio_put_address_space(space);
2297     }
2298 }
2299 
2300 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp)
2301 {
2302     VFIOGroup *group;
2303     char path[32];
2304     struct vfio_group_status status = { .argsz = sizeof(status) };
2305 
2306     QLIST_FOREACH(group, &vfio_group_list, next) {
2307         if (group->groupid == groupid) {
2308             /* Found it.  Now is it already in the right context? */
2309             if (group->container->space->as == as) {
2310                 return group;
2311             } else {
2312                 error_setg(errp, "group %d used in multiple address spaces",
2313                            group->groupid);
2314                 return NULL;
2315             }
2316         }
2317     }
2318 
2319     group = g_malloc0(sizeof(*group));
2320 
2321     snprintf(path, sizeof(path), "/dev/vfio/%d", groupid);
2322     group->fd = qemu_open_old(path, O_RDWR);
2323     if (group->fd < 0) {
2324         error_setg_errno(errp, errno, "failed to open %s", path);
2325         goto free_group_exit;
2326     }
2327 
2328     if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) {
2329         error_setg_errno(errp, errno, "failed to get group %d status", groupid);
2330         goto close_fd_exit;
2331     }
2332 
2333     if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
2334         error_setg(errp, "group %d is not viable", groupid);
2335         error_append_hint(errp,
2336                           "Please ensure all devices within the iommu_group "
2337                           "are bound to their vfio bus driver.\n");
2338         goto close_fd_exit;
2339     }
2340 
2341     group->groupid = groupid;
2342     QLIST_INIT(&group->device_list);
2343 
2344     if (vfio_connect_container(group, as, errp)) {
2345         error_prepend(errp, "failed to setup container for group %d: ",
2346                       groupid);
2347         goto close_fd_exit;
2348     }
2349 
2350     if (QLIST_EMPTY(&vfio_group_list)) {
2351         qemu_register_reset(vfio_reset_handler, NULL);
2352     }
2353 
2354     QLIST_INSERT_HEAD(&vfio_group_list, group, next);
2355 
2356     return group;
2357 
2358 close_fd_exit:
2359     close(group->fd);
2360 
2361 free_group_exit:
2362     g_free(group);
2363 
2364     return NULL;
2365 }
2366 
2367 void vfio_put_group(VFIOGroup *group)
2368 {
2369     if (!group || !QLIST_EMPTY(&group->device_list)) {
2370         return;
2371     }
2372 
2373     if (!group->ram_block_discard_allowed) {
2374         vfio_ram_block_discard_disable(group->container, false);
2375     }
2376     vfio_kvm_device_del_group(group);
2377     vfio_disconnect_container(group);
2378     QLIST_REMOVE(group, next);
2379     trace_vfio_put_group(group->fd);
2380     close(group->fd);
2381     g_free(group);
2382 
2383     if (QLIST_EMPTY(&vfio_group_list)) {
2384         qemu_unregister_reset(vfio_reset_handler, NULL);
2385     }
2386 }
2387 
2388 int vfio_get_device(VFIOGroup *group, const char *name,
2389                     VFIODevice *vbasedev, Error **errp)
2390 {
2391     struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) };
2392     int ret, fd;
2393 
2394     fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name);
2395     if (fd < 0) {
2396         error_setg_errno(errp, errno, "error getting device from group %d",
2397                          group->groupid);
2398         error_append_hint(errp,
2399                       "Verify all devices in group %d are bound to vfio-<bus> "
2400                       "or pci-stub and not already in use\n", group->groupid);
2401         return fd;
2402     }
2403 
2404     ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info);
2405     if (ret) {
2406         error_setg_errno(errp, errno, "error getting device info");
2407         close(fd);
2408         return ret;
2409     }
2410 
2411     /*
2412      * Set discarding of RAM as not broken for this group if the driver knows
2413      * the device operates compatibly with discarding.  Setting must be
2414      * consistent per group, but since compatibility is really only possible
2415      * with mdev currently, we expect singleton groups.
2416      */
2417     if (vbasedev->ram_block_discard_allowed !=
2418         group->ram_block_discard_allowed) {
2419         if (!QLIST_EMPTY(&group->device_list)) {
2420             error_setg(errp, "Inconsistent setting of support for discarding "
2421                        "RAM (e.g., balloon) within group");
2422             close(fd);
2423             return -1;
2424         }
2425 
2426         if (!group->ram_block_discard_allowed) {
2427             group->ram_block_discard_allowed = true;
2428             vfio_ram_block_discard_disable(group->container, false);
2429         }
2430     }
2431 
2432     vbasedev->fd = fd;
2433     vbasedev->group = group;
2434     QLIST_INSERT_HEAD(&group->device_list, vbasedev, next);
2435 
2436     vbasedev->num_irqs = dev_info.num_irqs;
2437     vbasedev->num_regions = dev_info.num_regions;
2438     vbasedev->flags = dev_info.flags;
2439 
2440     trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions,
2441                           dev_info.num_irqs);
2442 
2443     vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET);
2444     return 0;
2445 }
2446 
2447 void vfio_put_base_device(VFIODevice *vbasedev)
2448 {
2449     if (!vbasedev->group) {
2450         return;
2451     }
2452     QLIST_REMOVE(vbasedev, next);
2453     vbasedev->group = NULL;
2454     trace_vfio_put_base_device(vbasedev->fd);
2455     close(vbasedev->fd);
2456 }
2457 
2458 int vfio_get_region_info(VFIODevice *vbasedev, int index,
2459                          struct vfio_region_info **info)
2460 {
2461     size_t argsz = sizeof(struct vfio_region_info);
2462 
2463     *info = g_malloc0(argsz);
2464 
2465     (*info)->index = index;
2466 retry:
2467     (*info)->argsz = argsz;
2468 
2469     if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) {
2470         g_free(*info);
2471         *info = NULL;
2472         return -errno;
2473     }
2474 
2475     if ((*info)->argsz > argsz) {
2476         argsz = (*info)->argsz;
2477         *info = g_realloc(*info, argsz);
2478 
2479         goto retry;
2480     }
2481 
2482     return 0;
2483 }
2484 
2485 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type,
2486                              uint32_t subtype, struct vfio_region_info **info)
2487 {
2488     int i;
2489 
2490     for (i = 0; i < vbasedev->num_regions; i++) {
2491         struct vfio_info_cap_header *hdr;
2492         struct vfio_region_info_cap_type *cap_type;
2493 
2494         if (vfio_get_region_info(vbasedev, i, info)) {
2495             continue;
2496         }
2497 
2498         hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE);
2499         if (!hdr) {
2500             g_free(*info);
2501             continue;
2502         }
2503 
2504         cap_type = container_of(hdr, struct vfio_region_info_cap_type, header);
2505 
2506         trace_vfio_get_dev_region(vbasedev->name, i,
2507                                   cap_type->type, cap_type->subtype);
2508 
2509         if (cap_type->type == type && cap_type->subtype == subtype) {
2510             return 0;
2511         }
2512 
2513         g_free(*info);
2514     }
2515 
2516     *info = NULL;
2517     return -ENODEV;
2518 }
2519 
2520 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type)
2521 {
2522     struct vfio_region_info *info = NULL;
2523     bool ret = false;
2524 
2525     if (!vfio_get_region_info(vbasedev, region, &info)) {
2526         if (vfio_get_region_info_cap(info, cap_type)) {
2527             ret = true;
2528         }
2529         g_free(info);
2530     }
2531 
2532     return ret;
2533 }
2534 
2535 /*
2536  * Interfaces for IBM EEH (Enhanced Error Handling)
2537  */
2538 static bool vfio_eeh_container_ok(VFIOContainer *container)
2539 {
2540     /*
2541      * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO
2542      * implementation is broken if there are multiple groups in a
2543      * container.  The hardware works in units of Partitionable
2544      * Endpoints (== IOMMU groups) and the EEH operations naively
2545      * iterate across all groups in the container, without any logic
2546      * to make sure the groups have their state synchronized.  For
2547      * certain operations (ENABLE) that might be ok, until an error
2548      * occurs, but for others (GET_STATE) it's clearly broken.
2549      */
2550 
2551     /*
2552      * XXX Once fixed kernels exist, test for them here
2553      */
2554 
2555     if (QLIST_EMPTY(&container->group_list)) {
2556         return false;
2557     }
2558 
2559     if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) {
2560         return false;
2561     }
2562 
2563     return true;
2564 }
2565 
2566 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op)
2567 {
2568     struct vfio_eeh_pe_op pe_op = {
2569         .argsz = sizeof(pe_op),
2570         .op = op,
2571     };
2572     int ret;
2573 
2574     if (!vfio_eeh_container_ok(container)) {
2575         error_report("vfio/eeh: EEH_PE_OP 0x%x: "
2576                      "kernel requires a container with exactly one group", op);
2577         return -EPERM;
2578     }
2579 
2580     ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op);
2581     if (ret < 0) {
2582         error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op);
2583         return -errno;
2584     }
2585 
2586     return ret;
2587 }
2588 
2589 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as)
2590 {
2591     VFIOAddressSpace *space = vfio_get_address_space(as);
2592     VFIOContainer *container = NULL;
2593 
2594     if (QLIST_EMPTY(&space->containers)) {
2595         /* No containers to act on */
2596         goto out;
2597     }
2598 
2599     container = QLIST_FIRST(&space->containers);
2600 
2601     if (QLIST_NEXT(container, next)) {
2602         /* We don't yet have logic to synchronize EEH state across
2603          * multiple containers */
2604         container = NULL;
2605         goto out;
2606     }
2607 
2608 out:
2609     vfio_put_address_space(space);
2610     return container;
2611 }
2612 
2613 bool vfio_eeh_as_ok(AddressSpace *as)
2614 {
2615     VFIOContainer *container = vfio_eeh_as_container(as);
2616 
2617     return (container != NULL) && vfio_eeh_container_ok(container);
2618 }
2619 
2620 int vfio_eeh_as_op(AddressSpace *as, uint32_t op)
2621 {
2622     VFIOContainer *container = vfio_eeh_as_container(as);
2623 
2624     if (!container) {
2625         return -ENODEV;
2626     }
2627     return vfio_eeh_container_op(container, op);
2628 }
2629