1 /* 2 * generic functions used by VFIO devices 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 #ifdef CONFIG_KVM 24 #include <linux/kvm.h> 25 #endif 26 #include <linux/vfio.h> 27 28 #include "hw/vfio/vfio-common.h" 29 #include "hw/vfio/vfio.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "exec/ram_addr.h" 33 #include "hw/hw.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/range.h" 37 #include "sysemu/kvm.h" 38 #include "sysemu/reset.h" 39 #include "sysemu/runstate.h" 40 #include "trace.h" 41 #include "qapi/error.h" 42 #include "migration/migration.h" 43 #include "sysemu/tpm.h" 44 45 VFIOGroupList vfio_group_list = 46 QLIST_HEAD_INITIALIZER(vfio_group_list); 47 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = 48 QLIST_HEAD_INITIALIZER(vfio_address_spaces); 49 50 #ifdef CONFIG_KVM 51 /* 52 * We have a single VFIO pseudo device per KVM VM. Once created it lives 53 * for the life of the VM. Closing the file descriptor only drops our 54 * reference to it and the device's reference to kvm. Therefore once 55 * initialized, this file descriptor is only released on QEMU exit and 56 * we'll re-use it should another vfio device be attached before then. 57 */ 58 static int vfio_kvm_device_fd = -1; 59 #endif 60 61 /* 62 * Common VFIO interrupt disable 63 */ 64 void vfio_disable_irqindex(VFIODevice *vbasedev, int index) 65 { 66 struct vfio_irq_set irq_set = { 67 .argsz = sizeof(irq_set), 68 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER, 69 .index = index, 70 .start = 0, 71 .count = 0, 72 }; 73 74 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 75 } 76 77 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index) 78 { 79 struct vfio_irq_set irq_set = { 80 .argsz = sizeof(irq_set), 81 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK, 82 .index = index, 83 .start = 0, 84 .count = 1, 85 }; 86 87 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 88 } 89 90 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index) 91 { 92 struct vfio_irq_set irq_set = { 93 .argsz = sizeof(irq_set), 94 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK, 95 .index = index, 96 .start = 0, 97 .count = 1, 98 }; 99 100 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 101 } 102 103 static inline const char *action_to_str(int action) 104 { 105 switch (action) { 106 case VFIO_IRQ_SET_ACTION_MASK: 107 return "MASK"; 108 case VFIO_IRQ_SET_ACTION_UNMASK: 109 return "UNMASK"; 110 case VFIO_IRQ_SET_ACTION_TRIGGER: 111 return "TRIGGER"; 112 default: 113 return "UNKNOWN ACTION"; 114 } 115 } 116 117 static const char *index_to_str(VFIODevice *vbasedev, int index) 118 { 119 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { 120 return NULL; 121 } 122 123 switch (index) { 124 case VFIO_PCI_INTX_IRQ_INDEX: 125 return "INTX"; 126 case VFIO_PCI_MSI_IRQ_INDEX: 127 return "MSI"; 128 case VFIO_PCI_MSIX_IRQ_INDEX: 129 return "MSIX"; 130 case VFIO_PCI_ERR_IRQ_INDEX: 131 return "ERR"; 132 case VFIO_PCI_REQ_IRQ_INDEX: 133 return "REQ"; 134 default: 135 return NULL; 136 } 137 } 138 139 static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state) 140 { 141 switch (container->iommu_type) { 142 case VFIO_TYPE1v2_IOMMU: 143 case VFIO_TYPE1_IOMMU: 144 /* 145 * We support coordinated discarding of RAM via the RamDiscardManager. 146 */ 147 return ram_block_uncoordinated_discard_disable(state); 148 default: 149 /* 150 * VFIO_SPAPR_TCE_IOMMU most probably works just fine with 151 * RamDiscardManager, however, it is completely untested. 152 * 153 * VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does 154 * completely the opposite of managing mapping/pinning dynamically as 155 * required by RamDiscardManager. We would have to special-case sections 156 * with a RamDiscardManager. 157 */ 158 return ram_block_discard_disable(state); 159 } 160 } 161 162 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex, 163 int action, int fd, Error **errp) 164 { 165 struct vfio_irq_set *irq_set; 166 int argsz, ret = 0; 167 const char *name; 168 int32_t *pfd; 169 170 argsz = sizeof(*irq_set) + sizeof(*pfd); 171 172 irq_set = g_malloc0(argsz); 173 irq_set->argsz = argsz; 174 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action; 175 irq_set->index = index; 176 irq_set->start = subindex; 177 irq_set->count = 1; 178 pfd = (int32_t *)&irq_set->data; 179 *pfd = fd; 180 181 if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 182 ret = -errno; 183 } 184 g_free(irq_set); 185 186 if (!ret) { 187 return 0; 188 } 189 190 error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure"); 191 192 name = index_to_str(vbasedev, index); 193 if (name) { 194 error_prepend(errp, "%s-%d: ", name, subindex); 195 } else { 196 error_prepend(errp, "index %d-%d: ", index, subindex); 197 } 198 error_prepend(errp, 199 "Failed to %s %s eventfd signaling for interrupt ", 200 fd < 0 ? "tear down" : "set up", action_to_str(action)); 201 return ret; 202 } 203 204 /* 205 * IO Port/MMIO - Beware of the endians, VFIO is always little endian 206 */ 207 void vfio_region_write(void *opaque, hwaddr addr, 208 uint64_t data, unsigned size) 209 { 210 VFIORegion *region = opaque; 211 VFIODevice *vbasedev = region->vbasedev; 212 union { 213 uint8_t byte; 214 uint16_t word; 215 uint32_t dword; 216 uint64_t qword; 217 } buf; 218 219 switch (size) { 220 case 1: 221 buf.byte = data; 222 break; 223 case 2: 224 buf.word = cpu_to_le16(data); 225 break; 226 case 4: 227 buf.dword = cpu_to_le32(data); 228 break; 229 case 8: 230 buf.qword = cpu_to_le64(data); 231 break; 232 default: 233 hw_error("vfio: unsupported write size, %u bytes", size); 234 break; 235 } 236 237 if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { 238 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64 239 ",%d) failed: %m", 240 __func__, vbasedev->name, region->nr, 241 addr, data, size); 242 } 243 244 trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size); 245 246 /* 247 * A read or write to a BAR always signals an INTx EOI. This will 248 * do nothing if not pending (including not in INTx mode). We assume 249 * that a BAR access is in response to an interrupt and that BAR 250 * accesses will service the interrupt. Unfortunately, we don't know 251 * which access will service the interrupt, so we're potentially 252 * getting quite a few host interrupts per guest interrupt. 253 */ 254 vbasedev->ops->vfio_eoi(vbasedev); 255 } 256 257 uint64_t vfio_region_read(void *opaque, 258 hwaddr addr, unsigned size) 259 { 260 VFIORegion *region = opaque; 261 VFIODevice *vbasedev = region->vbasedev; 262 union { 263 uint8_t byte; 264 uint16_t word; 265 uint32_t dword; 266 uint64_t qword; 267 } buf; 268 uint64_t data = 0; 269 270 if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { 271 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m", 272 __func__, vbasedev->name, region->nr, 273 addr, size); 274 return (uint64_t)-1; 275 } 276 switch (size) { 277 case 1: 278 data = buf.byte; 279 break; 280 case 2: 281 data = le16_to_cpu(buf.word); 282 break; 283 case 4: 284 data = le32_to_cpu(buf.dword); 285 break; 286 case 8: 287 data = le64_to_cpu(buf.qword); 288 break; 289 default: 290 hw_error("vfio: unsupported read size, %u bytes", size); 291 break; 292 } 293 294 trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data); 295 296 /* Same as write above */ 297 vbasedev->ops->vfio_eoi(vbasedev); 298 299 return data; 300 } 301 302 const MemoryRegionOps vfio_region_ops = { 303 .read = vfio_region_read, 304 .write = vfio_region_write, 305 .endianness = DEVICE_LITTLE_ENDIAN, 306 .valid = { 307 .min_access_size = 1, 308 .max_access_size = 8, 309 }, 310 .impl = { 311 .min_access_size = 1, 312 .max_access_size = 8, 313 }, 314 }; 315 316 /* 317 * Device state interfaces 318 */ 319 320 bool vfio_mig_active(void) 321 { 322 VFIOGroup *group; 323 VFIODevice *vbasedev; 324 325 if (QLIST_EMPTY(&vfio_group_list)) { 326 return false; 327 } 328 329 QLIST_FOREACH(group, &vfio_group_list, next) { 330 QLIST_FOREACH(vbasedev, &group->device_list, next) { 331 if (vbasedev->migration_blocker) { 332 return false; 333 } 334 } 335 } 336 return true; 337 } 338 339 static bool vfio_devices_all_dirty_tracking(VFIOContainer *container) 340 { 341 VFIOGroup *group; 342 VFIODevice *vbasedev; 343 MigrationState *ms = migrate_get_current(); 344 345 if (!migration_is_setup_or_active(ms->state)) { 346 return false; 347 } 348 349 QLIST_FOREACH(group, &container->group_list, container_next) { 350 QLIST_FOREACH(vbasedev, &group->device_list, next) { 351 VFIOMigration *migration = vbasedev->migration; 352 353 if (!migration) { 354 return false; 355 } 356 357 if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF) 358 && (migration->device_state & VFIO_DEVICE_STATE_V1_RUNNING)) { 359 return false; 360 } 361 } 362 } 363 return true; 364 } 365 366 static bool vfio_devices_all_running_and_saving(VFIOContainer *container) 367 { 368 VFIOGroup *group; 369 VFIODevice *vbasedev; 370 MigrationState *ms = migrate_get_current(); 371 372 if (!migration_is_setup_or_active(ms->state)) { 373 return false; 374 } 375 376 QLIST_FOREACH(group, &container->group_list, container_next) { 377 QLIST_FOREACH(vbasedev, &group->device_list, next) { 378 VFIOMigration *migration = vbasedev->migration; 379 380 if (!migration) { 381 return false; 382 } 383 384 if ((migration->device_state & VFIO_DEVICE_STATE_V1_SAVING) && 385 (migration->device_state & VFIO_DEVICE_STATE_V1_RUNNING)) { 386 continue; 387 } else { 388 return false; 389 } 390 } 391 } 392 return true; 393 } 394 395 static int vfio_dma_unmap_bitmap(VFIOContainer *container, 396 hwaddr iova, ram_addr_t size, 397 IOMMUTLBEntry *iotlb) 398 { 399 struct vfio_iommu_type1_dma_unmap *unmap; 400 struct vfio_bitmap *bitmap; 401 uint64_t pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size(); 402 int ret; 403 404 unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap)); 405 406 unmap->argsz = sizeof(*unmap) + sizeof(*bitmap); 407 unmap->iova = iova; 408 unmap->size = size; 409 unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP; 410 bitmap = (struct vfio_bitmap *)&unmap->data; 411 412 /* 413 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of 414 * qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize 415 * to qemu_real_host_page_size. 416 */ 417 418 bitmap->pgsize = qemu_real_host_page_size(); 419 bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) / 420 BITS_PER_BYTE; 421 422 if (bitmap->size > container->max_dirty_bitmap_size) { 423 error_report("UNMAP: Size of bitmap too big 0x%"PRIx64, 424 (uint64_t)bitmap->size); 425 ret = -E2BIG; 426 goto unmap_exit; 427 } 428 429 bitmap->data = g_try_malloc0(bitmap->size); 430 if (!bitmap->data) { 431 ret = -ENOMEM; 432 goto unmap_exit; 433 } 434 435 ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap); 436 if (!ret) { 437 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data, 438 iotlb->translated_addr, pages); 439 } else { 440 error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m"); 441 } 442 443 g_free(bitmap->data); 444 unmap_exit: 445 g_free(unmap); 446 return ret; 447 } 448 449 /* 450 * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86 451 */ 452 static int vfio_dma_unmap(VFIOContainer *container, 453 hwaddr iova, ram_addr_t size, 454 IOMMUTLBEntry *iotlb) 455 { 456 struct vfio_iommu_type1_dma_unmap unmap = { 457 .argsz = sizeof(unmap), 458 .flags = 0, 459 .iova = iova, 460 .size = size, 461 }; 462 463 if (iotlb && container->dirty_pages_supported && 464 vfio_devices_all_running_and_saving(container)) { 465 return vfio_dma_unmap_bitmap(container, iova, size, iotlb); 466 } 467 468 while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) { 469 /* 470 * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c 471 * v4.15) where an overflow in its wrap-around check prevents us from 472 * unmapping the last page of the address space. Test for the error 473 * condition and re-try the unmap excluding the last page. The 474 * expectation is that we've never mapped the last page anyway and this 475 * unmap request comes via vIOMMU support which also makes it unlikely 476 * that this page is used. This bug was introduced well after type1 v2 477 * support was introduced, so we shouldn't need to test for v1. A fix 478 * is queued for kernel v5.0 so this workaround can be removed once 479 * affected kernels are sufficiently deprecated. 480 */ 481 if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) && 482 container->iommu_type == VFIO_TYPE1v2_IOMMU) { 483 trace_vfio_dma_unmap_overflow_workaround(); 484 unmap.size -= 1ULL << ctz64(container->pgsizes); 485 continue; 486 } 487 error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno)); 488 return -errno; 489 } 490 491 return 0; 492 } 493 494 static int vfio_dma_map(VFIOContainer *container, hwaddr iova, 495 ram_addr_t size, void *vaddr, bool readonly) 496 { 497 struct vfio_iommu_type1_dma_map map = { 498 .argsz = sizeof(map), 499 .flags = VFIO_DMA_MAP_FLAG_READ, 500 .vaddr = (__u64)(uintptr_t)vaddr, 501 .iova = iova, 502 .size = size, 503 }; 504 505 if (!readonly) { 506 map.flags |= VFIO_DMA_MAP_FLAG_WRITE; 507 } 508 509 /* 510 * Try the mapping, if it fails with EBUSY, unmap the region and try 511 * again. This shouldn't be necessary, but we sometimes see it in 512 * the VGA ROM space. 513 */ 514 if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 || 515 (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 && 516 ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) { 517 return 0; 518 } 519 520 error_report("VFIO_MAP_DMA failed: %s", strerror(errno)); 521 return -errno; 522 } 523 524 static void vfio_host_win_add(VFIOContainer *container, 525 hwaddr min_iova, hwaddr max_iova, 526 uint64_t iova_pgsizes) 527 { 528 VFIOHostDMAWindow *hostwin; 529 530 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 531 if (ranges_overlap(hostwin->min_iova, 532 hostwin->max_iova - hostwin->min_iova + 1, 533 min_iova, 534 max_iova - min_iova + 1)) { 535 hw_error("%s: Overlapped IOMMU are not enabled", __func__); 536 } 537 } 538 539 hostwin = g_malloc0(sizeof(*hostwin)); 540 541 hostwin->min_iova = min_iova; 542 hostwin->max_iova = max_iova; 543 hostwin->iova_pgsizes = iova_pgsizes; 544 QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next); 545 } 546 547 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova, 548 hwaddr max_iova) 549 { 550 VFIOHostDMAWindow *hostwin; 551 552 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 553 if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) { 554 QLIST_REMOVE(hostwin, hostwin_next); 555 g_free(hostwin); 556 return 0; 557 } 558 } 559 560 return -1; 561 } 562 563 static bool vfio_listener_skipped_section(MemoryRegionSection *section) 564 { 565 return (!memory_region_is_ram(section->mr) && 566 !memory_region_is_iommu(section->mr)) || 567 memory_region_is_protected(section->mr) || 568 /* 569 * Sizing an enabled 64-bit BAR can cause spurious mappings to 570 * addresses in the upper part of the 64-bit address space. These 571 * are never accessed by the CPU and beyond the address width of 572 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. 573 */ 574 section->offset_within_address_space & (1ULL << 63); 575 } 576 577 /* Called with rcu_read_lock held. */ 578 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 579 ram_addr_t *ram_addr, bool *read_only) 580 { 581 bool ret, mr_has_discard_manager; 582 583 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only, 584 &mr_has_discard_manager); 585 if (ret && mr_has_discard_manager) { 586 /* 587 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The 588 * pages will remain pinned inside vfio until unmapped, resulting in a 589 * higher memory consumption than expected. If memory would get 590 * populated again later, there would be an inconsistency between pages 591 * pinned by vfio and pages seen by QEMU. This is the case until 592 * unmapped from the IOMMU (e.g., during device reset). 593 * 594 * With malicious guests, we really only care about pinning more memory 595 * than expected. RLIMIT_MEMLOCK set for the user/process can never be 596 * exceeded and can be used to mitigate this problem. 597 */ 598 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" 599 " RAM (e.g., virtio-mem) works, however, malicious" 600 " guests can trigger pinning of more memory than" 601 " intended via an IOMMU. It's possible to mitigate " 602 " by setting/adjusting RLIMIT_MEMLOCK."); 603 } 604 return ret; 605 } 606 607 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 608 { 609 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); 610 VFIOContainer *container = giommu->container; 611 hwaddr iova = iotlb->iova + giommu->iommu_offset; 612 void *vaddr; 613 int ret; 614 615 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", 616 iova, iova + iotlb->addr_mask); 617 618 if (iotlb->target_as != &address_space_memory) { 619 error_report("Wrong target AS \"%s\", only system memory is allowed", 620 iotlb->target_as->name ? iotlb->target_as->name : "none"); 621 return; 622 } 623 624 rcu_read_lock(); 625 626 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 627 bool read_only; 628 629 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) { 630 goto out; 631 } 632 /* 633 * vaddr is only valid until rcu_read_unlock(). But after 634 * vfio_dma_map has set up the mapping the pages will be 635 * pinned by the kernel. This makes sure that the RAM backend 636 * of vaddr will always be there, even if the memory object is 637 * destroyed and its backing memory munmap-ed. 638 */ 639 ret = vfio_dma_map(container, iova, 640 iotlb->addr_mask + 1, vaddr, 641 read_only); 642 if (ret) { 643 error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 644 "0x%"HWADDR_PRIx", %p) = %d (%m)", 645 container, iova, 646 iotlb->addr_mask + 1, vaddr, ret); 647 } 648 } else { 649 ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb); 650 if (ret) { 651 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 652 "0x%"HWADDR_PRIx") = %d (%m)", 653 container, iova, 654 iotlb->addr_mask + 1, ret); 655 } 656 } 657 out: 658 rcu_read_unlock(); 659 } 660 661 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, 662 MemoryRegionSection *section) 663 { 664 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 665 listener); 666 const hwaddr size = int128_get64(section->size); 667 const hwaddr iova = section->offset_within_address_space; 668 int ret; 669 670 /* Unmap with a single call. */ 671 ret = vfio_dma_unmap(vrdl->container, iova, size , NULL); 672 if (ret) { 673 error_report("%s: vfio_dma_unmap() failed: %s", __func__, 674 strerror(-ret)); 675 } 676 } 677 678 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, 679 MemoryRegionSection *section) 680 { 681 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 682 listener); 683 const hwaddr end = section->offset_within_region + 684 int128_get64(section->size); 685 hwaddr start, next, iova; 686 void *vaddr; 687 int ret; 688 689 /* 690 * Map in (aligned within memory region) minimum granularity, so we can 691 * unmap in minimum granularity later. 692 */ 693 for (start = section->offset_within_region; start < end; start = next) { 694 next = ROUND_UP(start + 1, vrdl->granularity); 695 next = MIN(next, end); 696 697 iova = start - section->offset_within_region + 698 section->offset_within_address_space; 699 vaddr = memory_region_get_ram_ptr(section->mr) + start; 700 701 ret = vfio_dma_map(vrdl->container, iova, next - start, 702 vaddr, section->readonly); 703 if (ret) { 704 /* Rollback */ 705 vfio_ram_discard_notify_discard(rdl, section); 706 return ret; 707 } 708 } 709 return 0; 710 } 711 712 static void vfio_register_ram_discard_listener(VFIOContainer *container, 713 MemoryRegionSection *section) 714 { 715 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 716 VFIORamDiscardListener *vrdl; 717 718 /* Ignore some corner cases not relevant in practice. */ 719 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); 720 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, 721 TARGET_PAGE_SIZE)); 722 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); 723 724 vrdl = g_new0(VFIORamDiscardListener, 1); 725 vrdl->container = container; 726 vrdl->mr = section->mr; 727 vrdl->offset_within_address_space = section->offset_within_address_space; 728 vrdl->size = int128_get64(section->size); 729 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, 730 section->mr); 731 732 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); 733 g_assert(container->pgsizes && 734 vrdl->granularity >= 1ULL << ctz64(container->pgsizes)); 735 736 ram_discard_listener_init(&vrdl->listener, 737 vfio_ram_discard_notify_populate, 738 vfio_ram_discard_notify_discard, true); 739 ram_discard_manager_register_listener(rdm, &vrdl->listener, section); 740 QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next); 741 742 /* 743 * Sanity-check if we have a theoretically problematic setup where we could 744 * exceed the maximum number of possible DMA mappings over time. We assume 745 * that each mapped section in the same address space as a RamDiscardManager 746 * section consumes exactly one DMA mapping, with the exception of 747 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections 748 * in the same address space as RamDiscardManager sections. 749 * 750 * We assume that each section in the address space consumes one memslot. 751 * We take the number of KVM memory slots as a best guess for the maximum 752 * number of sections in the address space we could have over time, 753 * also consuming DMA mappings. 754 */ 755 if (container->dma_max_mappings) { 756 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; 757 758 #ifdef CONFIG_KVM 759 if (kvm_enabled()) { 760 max_memslots = kvm_get_max_memslots(); 761 } 762 #endif 763 764 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 765 hwaddr start, end; 766 767 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, 768 vrdl->granularity); 769 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, 770 vrdl->granularity); 771 vrdl_mappings += (end - start) / vrdl->granularity; 772 vrdl_count++; 773 } 774 775 if (vrdl_mappings + max_memslots - vrdl_count > 776 container->dma_max_mappings) { 777 warn_report("%s: possibly running out of DMA mappings. E.g., try" 778 " increasing the 'block-size' of virtio-mem devies." 779 " Maximum possible DMA mappings: %d, Maximum possible" 780 " memslots: %d", __func__, container->dma_max_mappings, 781 max_memslots); 782 } 783 } 784 } 785 786 static void vfio_unregister_ram_discard_listener(VFIOContainer *container, 787 MemoryRegionSection *section) 788 { 789 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 790 VFIORamDiscardListener *vrdl = NULL; 791 792 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 793 if (vrdl->mr == section->mr && 794 vrdl->offset_within_address_space == 795 section->offset_within_address_space) { 796 break; 797 } 798 } 799 800 if (!vrdl) { 801 hw_error("vfio: Trying to unregister missing RAM discard listener"); 802 } 803 804 ram_discard_manager_unregister_listener(rdm, &vrdl->listener); 805 QLIST_REMOVE(vrdl, next); 806 g_free(vrdl); 807 } 808 809 static bool vfio_known_safe_misalignment(MemoryRegionSection *section) 810 { 811 MemoryRegion *mr = section->mr; 812 813 if (!TPM_IS_CRB(mr->owner)) { 814 return false; 815 } 816 817 /* this is a known safe misaligned region, just trace for debug purpose */ 818 trace_vfio_known_safe_misalignment(memory_region_name(mr), 819 section->offset_within_address_space, 820 section->offset_within_region, 821 qemu_real_host_page_size()); 822 return true; 823 } 824 825 static void vfio_listener_region_add(MemoryListener *listener, 826 MemoryRegionSection *section) 827 { 828 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 829 hwaddr iova, end; 830 Int128 llend, llsize; 831 void *vaddr; 832 int ret; 833 VFIOHostDMAWindow *hostwin; 834 bool hostwin_found; 835 Error *err = NULL; 836 837 if (vfio_listener_skipped_section(section)) { 838 trace_vfio_listener_region_add_skip( 839 section->offset_within_address_space, 840 section->offset_within_address_space + 841 int128_get64(int128_sub(section->size, int128_one()))); 842 return; 843 } 844 845 if (unlikely((section->offset_within_address_space & 846 ~qemu_real_host_page_mask()) != 847 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 848 if (!vfio_known_safe_misalignment(section)) { 849 error_report("%s received unaligned region %s iova=0x%"PRIx64 850 " offset_within_region=0x%"PRIx64 851 " qemu_real_host_page_size=0x%"PRIxPTR, 852 __func__, memory_region_name(section->mr), 853 section->offset_within_address_space, 854 section->offset_within_region, 855 qemu_real_host_page_size()); 856 } 857 return; 858 } 859 860 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 861 llend = int128_make64(section->offset_within_address_space); 862 llend = int128_add(llend, section->size); 863 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 864 865 if (int128_ge(int128_make64(iova), llend)) { 866 if (memory_region_is_ram_device(section->mr)) { 867 trace_vfio_listener_region_add_no_dma_map( 868 memory_region_name(section->mr), 869 section->offset_within_address_space, 870 int128_getlo(section->size), 871 qemu_real_host_page_size()); 872 } 873 return; 874 } 875 end = int128_get64(int128_sub(llend, int128_one())); 876 877 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 878 hwaddr pgsize = 0; 879 880 /* For now intersections are not allowed, we may relax this later */ 881 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 882 if (ranges_overlap(hostwin->min_iova, 883 hostwin->max_iova - hostwin->min_iova + 1, 884 section->offset_within_address_space, 885 int128_get64(section->size))) { 886 error_setg(&err, 887 "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing" 888 "host DMA window [0x%"PRIx64",0x%"PRIx64"]", 889 section->offset_within_address_space, 890 section->offset_within_address_space + 891 int128_get64(section->size) - 1, 892 hostwin->min_iova, hostwin->max_iova); 893 goto fail; 894 } 895 } 896 897 ret = vfio_spapr_create_window(container, section, &pgsize); 898 if (ret) { 899 error_setg_errno(&err, -ret, "Failed to create SPAPR window"); 900 goto fail; 901 } 902 903 vfio_host_win_add(container, section->offset_within_address_space, 904 section->offset_within_address_space + 905 int128_get64(section->size) - 1, pgsize); 906 #ifdef CONFIG_KVM 907 if (kvm_enabled()) { 908 VFIOGroup *group; 909 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 910 struct kvm_vfio_spapr_tce param; 911 struct kvm_device_attr attr = { 912 .group = KVM_DEV_VFIO_GROUP, 913 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE, 914 .addr = (uint64_t)(unsigned long)¶m, 915 }; 916 917 if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD, 918 ¶m.tablefd)) { 919 QLIST_FOREACH(group, &container->group_list, container_next) { 920 param.groupfd = group->fd; 921 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 922 error_report("vfio: failed to setup fd %d " 923 "for a group with fd %d: %s", 924 param.tablefd, param.groupfd, 925 strerror(errno)); 926 return; 927 } 928 trace_vfio_spapr_group_attach(param.groupfd, param.tablefd); 929 } 930 } 931 } 932 #endif 933 } 934 935 hostwin_found = false; 936 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 937 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { 938 hostwin_found = true; 939 break; 940 } 941 } 942 943 if (!hostwin_found) { 944 error_setg(&err, "Container %p can't map guest IOVA region" 945 " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end); 946 goto fail; 947 } 948 949 memory_region_ref(section->mr); 950 951 if (memory_region_is_iommu(section->mr)) { 952 VFIOGuestIOMMU *giommu; 953 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 954 int iommu_idx; 955 956 trace_vfio_listener_region_add_iommu(iova, end); 957 /* 958 * FIXME: For VFIO iommu types which have KVM acceleration to 959 * avoid bouncing all map/unmaps through qemu this way, this 960 * would be the right place to wire that up (tell the KVM 961 * device emulation the VFIO iommu handles to use). 962 */ 963 giommu = g_malloc0(sizeof(*giommu)); 964 giommu->iommu_mr = iommu_mr; 965 giommu->iommu_offset = section->offset_within_address_space - 966 section->offset_within_region; 967 giommu->container = container; 968 llend = int128_add(int128_make64(section->offset_within_region), 969 section->size); 970 llend = int128_sub(llend, int128_one()); 971 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 972 MEMTXATTRS_UNSPECIFIED); 973 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, 974 IOMMU_NOTIFIER_IOTLB_EVENTS, 975 section->offset_within_region, 976 int128_get64(llend), 977 iommu_idx); 978 979 ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr, 980 container->pgsizes, 981 &err); 982 if (ret) { 983 g_free(giommu); 984 goto fail; 985 } 986 987 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, 988 &err); 989 if (ret) { 990 g_free(giommu); 991 goto fail; 992 } 993 QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next); 994 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n); 995 996 return; 997 } 998 999 /* Here we assume that memory_region_is_ram(section->mr)==true */ 1000 1001 /* 1002 * For RAM memory regions with a RamDiscardManager, we only want to map the 1003 * actually populated parts - and update the mapping whenever we're notified 1004 * about changes. 1005 */ 1006 if (memory_region_has_ram_discard_manager(section->mr)) { 1007 vfio_register_ram_discard_listener(container, section); 1008 return; 1009 } 1010 1011 vaddr = memory_region_get_ram_ptr(section->mr) + 1012 section->offset_within_region + 1013 (iova - section->offset_within_address_space); 1014 1015 trace_vfio_listener_region_add_ram(iova, end, vaddr); 1016 1017 llsize = int128_sub(llend, int128_make64(iova)); 1018 1019 if (memory_region_is_ram_device(section->mr)) { 1020 hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 1021 1022 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { 1023 trace_vfio_listener_region_add_no_dma_map( 1024 memory_region_name(section->mr), 1025 section->offset_within_address_space, 1026 int128_getlo(section->size), 1027 pgmask + 1); 1028 return; 1029 } 1030 } 1031 1032 ret = vfio_dma_map(container, iova, int128_get64(llsize), 1033 vaddr, section->readonly); 1034 if (ret) { 1035 error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 1036 "0x%"HWADDR_PRIx", %p) = %d (%m)", 1037 container, iova, int128_get64(llsize), vaddr, ret); 1038 if (memory_region_is_ram_device(section->mr)) { 1039 /* Allow unexpected mappings not to be fatal for RAM devices */ 1040 error_report_err(err); 1041 return; 1042 } 1043 goto fail; 1044 } 1045 1046 return; 1047 1048 fail: 1049 if (memory_region_is_ram_device(section->mr)) { 1050 error_report("failed to vfio_dma_map. pci p2p may not work"); 1051 return; 1052 } 1053 /* 1054 * On the initfn path, store the first error in the container so we 1055 * can gracefully fail. Runtime, there's not much we can do other 1056 * than throw a hardware error. 1057 */ 1058 if (!container->initialized) { 1059 if (!container->error) { 1060 error_propagate_prepend(&container->error, err, 1061 "Region %s: ", 1062 memory_region_name(section->mr)); 1063 } else { 1064 error_free(err); 1065 } 1066 } else { 1067 error_report_err(err); 1068 hw_error("vfio: DMA mapping failed, unable to continue"); 1069 } 1070 } 1071 1072 static void vfio_listener_region_del(MemoryListener *listener, 1073 MemoryRegionSection *section) 1074 { 1075 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1076 hwaddr iova, end; 1077 Int128 llend, llsize; 1078 int ret; 1079 bool try_unmap = true; 1080 1081 if (vfio_listener_skipped_section(section)) { 1082 trace_vfio_listener_region_del_skip( 1083 section->offset_within_address_space, 1084 section->offset_within_address_space + 1085 int128_get64(int128_sub(section->size, int128_one()))); 1086 return; 1087 } 1088 1089 if (unlikely((section->offset_within_address_space & 1090 ~qemu_real_host_page_mask()) != 1091 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 1092 if (!vfio_known_safe_misalignment(section)) { 1093 error_report("%s received unaligned region %s iova=0x%"PRIx64 1094 " offset_within_region=0x%"PRIx64 1095 " qemu_real_host_page_size=0x%"PRIxPTR, 1096 __func__, memory_region_name(section->mr), 1097 section->offset_within_address_space, 1098 section->offset_within_region, 1099 qemu_real_host_page_size()); 1100 } 1101 return; 1102 } 1103 1104 if (memory_region_is_iommu(section->mr)) { 1105 VFIOGuestIOMMU *giommu; 1106 1107 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 1108 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1109 giommu->n.start == section->offset_within_region) { 1110 memory_region_unregister_iommu_notifier(section->mr, 1111 &giommu->n); 1112 QLIST_REMOVE(giommu, giommu_next); 1113 g_free(giommu); 1114 break; 1115 } 1116 } 1117 1118 /* 1119 * FIXME: We assume the one big unmap below is adequate to 1120 * remove any individual page mappings in the IOMMU which 1121 * might have been copied into VFIO. This works for a page table 1122 * based IOMMU where a big unmap flattens a large range of IO-PTEs. 1123 * That may not be true for all IOMMU types. 1124 */ 1125 } 1126 1127 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 1128 llend = int128_make64(section->offset_within_address_space); 1129 llend = int128_add(llend, section->size); 1130 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 1131 1132 if (int128_ge(int128_make64(iova), llend)) { 1133 return; 1134 } 1135 end = int128_get64(int128_sub(llend, int128_one())); 1136 1137 llsize = int128_sub(llend, int128_make64(iova)); 1138 1139 trace_vfio_listener_region_del(iova, end); 1140 1141 if (memory_region_is_ram_device(section->mr)) { 1142 hwaddr pgmask; 1143 VFIOHostDMAWindow *hostwin; 1144 bool hostwin_found = false; 1145 1146 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 1147 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { 1148 hostwin_found = true; 1149 break; 1150 } 1151 } 1152 assert(hostwin_found); /* or region_add() would have failed */ 1153 1154 pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 1155 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); 1156 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1157 vfio_unregister_ram_discard_listener(container, section); 1158 /* Unregistering will trigger an unmap. */ 1159 try_unmap = false; 1160 } 1161 1162 if (try_unmap) { 1163 if (int128_eq(llsize, int128_2_64())) { 1164 /* The unmap ioctl doesn't accept a full 64-bit span. */ 1165 llsize = int128_rshift(llsize, 1); 1166 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); 1167 if (ret) { 1168 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 1169 "0x%"HWADDR_PRIx") = %d (%m)", 1170 container, iova, int128_get64(llsize), ret); 1171 } 1172 iova += int128_get64(llsize); 1173 } 1174 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); 1175 if (ret) { 1176 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 1177 "0x%"HWADDR_PRIx") = %d (%m)", 1178 container, iova, int128_get64(llsize), ret); 1179 } 1180 } 1181 1182 memory_region_unref(section->mr); 1183 1184 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1185 vfio_spapr_remove_window(container, 1186 section->offset_within_address_space); 1187 if (vfio_host_win_del(container, 1188 section->offset_within_address_space, 1189 section->offset_within_address_space + 1190 int128_get64(section->size) - 1) < 0) { 1191 hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx, 1192 __func__, section->offset_within_address_space); 1193 } 1194 } 1195 } 1196 1197 static void vfio_set_dirty_page_tracking(VFIOContainer *container, bool start) 1198 { 1199 int ret; 1200 struct vfio_iommu_type1_dirty_bitmap dirty = { 1201 .argsz = sizeof(dirty), 1202 }; 1203 1204 if (start) { 1205 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START; 1206 } else { 1207 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP; 1208 } 1209 1210 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty); 1211 if (ret) { 1212 error_report("Failed to set dirty tracking flag 0x%x errno: %d", 1213 dirty.flags, errno); 1214 } 1215 } 1216 1217 static void vfio_listener_log_global_start(MemoryListener *listener) 1218 { 1219 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1220 1221 vfio_set_dirty_page_tracking(container, true); 1222 } 1223 1224 static void vfio_listener_log_global_stop(MemoryListener *listener) 1225 { 1226 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1227 1228 vfio_set_dirty_page_tracking(container, false); 1229 } 1230 1231 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova, 1232 uint64_t size, ram_addr_t ram_addr) 1233 { 1234 struct vfio_iommu_type1_dirty_bitmap *dbitmap; 1235 struct vfio_iommu_type1_dirty_bitmap_get *range; 1236 uint64_t pages; 1237 int ret; 1238 1239 dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range)); 1240 1241 dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range); 1242 dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP; 1243 range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data; 1244 range->iova = iova; 1245 range->size = size; 1246 1247 /* 1248 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of 1249 * qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize 1250 * to qemu_real_host_page_size. 1251 */ 1252 range->bitmap.pgsize = qemu_real_host_page_size(); 1253 1254 pages = REAL_HOST_PAGE_ALIGN(range->size) / qemu_real_host_page_size(); 1255 range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) / 1256 BITS_PER_BYTE; 1257 range->bitmap.data = g_try_malloc0(range->bitmap.size); 1258 if (!range->bitmap.data) { 1259 ret = -ENOMEM; 1260 goto err_out; 1261 } 1262 1263 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap); 1264 if (ret) { 1265 error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64 1266 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova, 1267 (uint64_t)range->size, errno); 1268 goto err_out; 1269 } 1270 1271 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data, 1272 ram_addr, pages); 1273 1274 trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size, 1275 range->bitmap.size, ram_addr); 1276 err_out: 1277 g_free(range->bitmap.data); 1278 g_free(dbitmap); 1279 1280 return ret; 1281 } 1282 1283 typedef struct { 1284 IOMMUNotifier n; 1285 VFIOGuestIOMMU *giommu; 1286 } vfio_giommu_dirty_notifier; 1287 1288 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 1289 { 1290 vfio_giommu_dirty_notifier *gdn = container_of(n, 1291 vfio_giommu_dirty_notifier, n); 1292 VFIOGuestIOMMU *giommu = gdn->giommu; 1293 VFIOContainer *container = giommu->container; 1294 hwaddr iova = iotlb->iova + giommu->iommu_offset; 1295 ram_addr_t translated_addr; 1296 1297 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); 1298 1299 if (iotlb->target_as != &address_space_memory) { 1300 error_report("Wrong target AS \"%s\", only system memory is allowed", 1301 iotlb->target_as->name ? iotlb->target_as->name : "none"); 1302 return; 1303 } 1304 1305 rcu_read_lock(); 1306 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) { 1307 int ret; 1308 1309 ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1, 1310 translated_addr); 1311 if (ret) { 1312 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " 1313 "0x%"HWADDR_PRIx") = %d (%m)", 1314 container, iova, 1315 iotlb->addr_mask + 1, ret); 1316 } 1317 } 1318 rcu_read_unlock(); 1319 } 1320 1321 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, 1322 void *opaque) 1323 { 1324 const hwaddr size = int128_get64(section->size); 1325 const hwaddr iova = section->offset_within_address_space; 1326 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + 1327 section->offset_within_region; 1328 VFIORamDiscardListener *vrdl = opaque; 1329 1330 /* 1331 * Sync the whole mapped region (spanning multiple individual mappings) 1332 * in one go. 1333 */ 1334 return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr); 1335 } 1336 1337 static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container, 1338 MemoryRegionSection *section) 1339 { 1340 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 1341 VFIORamDiscardListener *vrdl = NULL; 1342 1343 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 1344 if (vrdl->mr == section->mr && 1345 vrdl->offset_within_address_space == 1346 section->offset_within_address_space) { 1347 break; 1348 } 1349 } 1350 1351 if (!vrdl) { 1352 hw_error("vfio: Trying to sync missing RAM discard listener"); 1353 } 1354 1355 /* 1356 * We only want/can synchronize the bitmap for actually mapped parts - 1357 * which correspond to populated parts. Replay all populated parts. 1358 */ 1359 return ram_discard_manager_replay_populated(rdm, section, 1360 vfio_ram_discard_get_dirty_bitmap, 1361 &vrdl); 1362 } 1363 1364 static int vfio_sync_dirty_bitmap(VFIOContainer *container, 1365 MemoryRegionSection *section) 1366 { 1367 ram_addr_t ram_addr; 1368 1369 if (memory_region_is_iommu(section->mr)) { 1370 VFIOGuestIOMMU *giommu; 1371 1372 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 1373 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1374 giommu->n.start == section->offset_within_region) { 1375 Int128 llend; 1376 vfio_giommu_dirty_notifier gdn = { .giommu = giommu }; 1377 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr, 1378 MEMTXATTRS_UNSPECIFIED); 1379 1380 llend = int128_add(int128_make64(section->offset_within_region), 1381 section->size); 1382 llend = int128_sub(llend, int128_one()); 1383 1384 iommu_notifier_init(&gdn.n, 1385 vfio_iommu_map_dirty_notify, 1386 IOMMU_NOTIFIER_MAP, 1387 section->offset_within_region, 1388 int128_get64(llend), 1389 idx); 1390 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n); 1391 break; 1392 } 1393 } 1394 return 0; 1395 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1396 return vfio_sync_ram_discard_listener_dirty_bitmap(container, section); 1397 } 1398 1399 ram_addr = memory_region_get_ram_addr(section->mr) + 1400 section->offset_within_region; 1401 1402 return vfio_get_dirty_bitmap(container, 1403 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), 1404 int128_get64(section->size), ram_addr); 1405 } 1406 1407 static void vfio_listener_log_sync(MemoryListener *listener, 1408 MemoryRegionSection *section) 1409 { 1410 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1411 1412 if (vfio_listener_skipped_section(section) || 1413 !container->dirty_pages_supported) { 1414 return; 1415 } 1416 1417 if (vfio_devices_all_dirty_tracking(container)) { 1418 vfio_sync_dirty_bitmap(container, section); 1419 } 1420 } 1421 1422 static const MemoryListener vfio_memory_listener = { 1423 .name = "vfio", 1424 .region_add = vfio_listener_region_add, 1425 .region_del = vfio_listener_region_del, 1426 .log_global_start = vfio_listener_log_global_start, 1427 .log_global_stop = vfio_listener_log_global_stop, 1428 .log_sync = vfio_listener_log_sync, 1429 }; 1430 1431 static void vfio_listener_release(VFIOContainer *container) 1432 { 1433 memory_listener_unregister(&container->listener); 1434 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1435 memory_listener_unregister(&container->prereg_listener); 1436 } 1437 } 1438 1439 static struct vfio_info_cap_header * 1440 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id) 1441 { 1442 struct vfio_info_cap_header *hdr; 1443 1444 for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) { 1445 if (hdr->id == id) { 1446 return hdr; 1447 } 1448 } 1449 1450 return NULL; 1451 } 1452 1453 struct vfio_info_cap_header * 1454 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id) 1455 { 1456 if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) { 1457 return NULL; 1458 } 1459 1460 return vfio_get_cap((void *)info, info->cap_offset, id); 1461 } 1462 1463 static struct vfio_info_cap_header * 1464 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) 1465 { 1466 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { 1467 return NULL; 1468 } 1469 1470 return vfio_get_cap((void *)info, info->cap_offset, id); 1471 } 1472 1473 struct vfio_info_cap_header * 1474 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id) 1475 { 1476 if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) { 1477 return NULL; 1478 } 1479 1480 return vfio_get_cap((void *)info, info->cap_offset, id); 1481 } 1482 1483 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info, 1484 unsigned int *avail) 1485 { 1486 struct vfio_info_cap_header *hdr; 1487 struct vfio_iommu_type1_info_dma_avail *cap; 1488 1489 /* If the capability cannot be found, assume no DMA limiting */ 1490 hdr = vfio_get_iommu_type1_info_cap(info, 1491 VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL); 1492 if (hdr == NULL) { 1493 return false; 1494 } 1495 1496 if (avail != NULL) { 1497 cap = (void *) hdr; 1498 *avail = cap->avail; 1499 } 1500 1501 return true; 1502 } 1503 1504 static int vfio_setup_region_sparse_mmaps(VFIORegion *region, 1505 struct vfio_region_info *info) 1506 { 1507 struct vfio_info_cap_header *hdr; 1508 struct vfio_region_info_cap_sparse_mmap *sparse; 1509 int i, j; 1510 1511 hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP); 1512 if (!hdr) { 1513 return -ENODEV; 1514 } 1515 1516 sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header); 1517 1518 trace_vfio_region_sparse_mmap_header(region->vbasedev->name, 1519 region->nr, sparse->nr_areas); 1520 1521 region->mmaps = g_new0(VFIOMmap, sparse->nr_areas); 1522 1523 for (i = 0, j = 0; i < sparse->nr_areas; i++) { 1524 if (sparse->areas[i].size) { 1525 trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset, 1526 sparse->areas[i].offset + 1527 sparse->areas[i].size - 1); 1528 region->mmaps[j].offset = sparse->areas[i].offset; 1529 region->mmaps[j].size = sparse->areas[i].size; 1530 j++; 1531 } 1532 } 1533 1534 region->nr_mmaps = j; 1535 region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap)); 1536 1537 return 0; 1538 } 1539 1540 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region, 1541 int index, const char *name) 1542 { 1543 struct vfio_region_info *info; 1544 int ret; 1545 1546 ret = vfio_get_region_info(vbasedev, index, &info); 1547 if (ret) { 1548 return ret; 1549 } 1550 1551 region->vbasedev = vbasedev; 1552 region->flags = info->flags; 1553 region->size = info->size; 1554 region->fd_offset = info->offset; 1555 region->nr = index; 1556 1557 if (region->size) { 1558 region->mem = g_new0(MemoryRegion, 1); 1559 memory_region_init_io(region->mem, obj, &vfio_region_ops, 1560 region, name, region->size); 1561 1562 if (!vbasedev->no_mmap && 1563 region->flags & VFIO_REGION_INFO_FLAG_MMAP) { 1564 1565 ret = vfio_setup_region_sparse_mmaps(region, info); 1566 1567 if (ret) { 1568 region->nr_mmaps = 1; 1569 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps); 1570 region->mmaps[0].offset = 0; 1571 region->mmaps[0].size = region->size; 1572 } 1573 } 1574 } 1575 1576 g_free(info); 1577 1578 trace_vfio_region_setup(vbasedev->name, index, name, 1579 region->flags, region->fd_offset, region->size); 1580 return 0; 1581 } 1582 1583 static void vfio_subregion_unmap(VFIORegion *region, int index) 1584 { 1585 trace_vfio_region_unmap(memory_region_name(®ion->mmaps[index].mem), 1586 region->mmaps[index].offset, 1587 region->mmaps[index].offset + 1588 region->mmaps[index].size - 1); 1589 memory_region_del_subregion(region->mem, ®ion->mmaps[index].mem); 1590 munmap(region->mmaps[index].mmap, region->mmaps[index].size); 1591 object_unparent(OBJECT(®ion->mmaps[index].mem)); 1592 region->mmaps[index].mmap = NULL; 1593 } 1594 1595 int vfio_region_mmap(VFIORegion *region) 1596 { 1597 int i, prot = 0; 1598 char *name; 1599 1600 if (!region->mem) { 1601 return 0; 1602 } 1603 1604 prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0; 1605 prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0; 1606 1607 for (i = 0; i < region->nr_mmaps; i++) { 1608 region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot, 1609 MAP_SHARED, region->vbasedev->fd, 1610 region->fd_offset + 1611 region->mmaps[i].offset); 1612 if (region->mmaps[i].mmap == MAP_FAILED) { 1613 int ret = -errno; 1614 1615 trace_vfio_region_mmap_fault(memory_region_name(region->mem), i, 1616 region->fd_offset + 1617 region->mmaps[i].offset, 1618 region->fd_offset + 1619 region->mmaps[i].offset + 1620 region->mmaps[i].size - 1, ret); 1621 1622 region->mmaps[i].mmap = NULL; 1623 1624 for (i--; i >= 0; i--) { 1625 vfio_subregion_unmap(region, i); 1626 } 1627 1628 return ret; 1629 } 1630 1631 name = g_strdup_printf("%s mmaps[%d]", 1632 memory_region_name(region->mem), i); 1633 memory_region_init_ram_device_ptr(®ion->mmaps[i].mem, 1634 memory_region_owner(region->mem), 1635 name, region->mmaps[i].size, 1636 region->mmaps[i].mmap); 1637 g_free(name); 1638 memory_region_add_subregion(region->mem, region->mmaps[i].offset, 1639 ®ion->mmaps[i].mem); 1640 1641 trace_vfio_region_mmap(memory_region_name(®ion->mmaps[i].mem), 1642 region->mmaps[i].offset, 1643 region->mmaps[i].offset + 1644 region->mmaps[i].size - 1); 1645 } 1646 1647 return 0; 1648 } 1649 1650 void vfio_region_unmap(VFIORegion *region) 1651 { 1652 int i; 1653 1654 if (!region->mem) { 1655 return; 1656 } 1657 1658 for (i = 0; i < region->nr_mmaps; i++) { 1659 if (region->mmaps[i].mmap) { 1660 vfio_subregion_unmap(region, i); 1661 } 1662 } 1663 } 1664 1665 void vfio_region_exit(VFIORegion *region) 1666 { 1667 int i; 1668 1669 if (!region->mem) { 1670 return; 1671 } 1672 1673 for (i = 0; i < region->nr_mmaps; i++) { 1674 if (region->mmaps[i].mmap) { 1675 memory_region_del_subregion(region->mem, ®ion->mmaps[i].mem); 1676 } 1677 } 1678 1679 trace_vfio_region_exit(region->vbasedev->name, region->nr); 1680 } 1681 1682 void vfio_region_finalize(VFIORegion *region) 1683 { 1684 int i; 1685 1686 if (!region->mem) { 1687 return; 1688 } 1689 1690 for (i = 0; i < region->nr_mmaps; i++) { 1691 if (region->mmaps[i].mmap) { 1692 munmap(region->mmaps[i].mmap, region->mmaps[i].size); 1693 object_unparent(OBJECT(®ion->mmaps[i].mem)); 1694 } 1695 } 1696 1697 object_unparent(OBJECT(region->mem)); 1698 1699 g_free(region->mem); 1700 g_free(region->mmaps); 1701 1702 trace_vfio_region_finalize(region->vbasedev->name, region->nr); 1703 1704 region->mem = NULL; 1705 region->mmaps = NULL; 1706 region->nr_mmaps = 0; 1707 region->size = 0; 1708 region->flags = 0; 1709 region->nr = 0; 1710 } 1711 1712 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled) 1713 { 1714 int i; 1715 1716 if (!region->mem) { 1717 return; 1718 } 1719 1720 for (i = 0; i < region->nr_mmaps; i++) { 1721 if (region->mmaps[i].mmap) { 1722 memory_region_set_enabled(®ion->mmaps[i].mem, enabled); 1723 } 1724 } 1725 1726 trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem), 1727 enabled); 1728 } 1729 1730 void vfio_reset_handler(void *opaque) 1731 { 1732 VFIOGroup *group; 1733 VFIODevice *vbasedev; 1734 1735 QLIST_FOREACH(group, &vfio_group_list, next) { 1736 QLIST_FOREACH(vbasedev, &group->device_list, next) { 1737 if (vbasedev->dev->realized) { 1738 vbasedev->ops->vfio_compute_needs_reset(vbasedev); 1739 } 1740 } 1741 } 1742 1743 QLIST_FOREACH(group, &vfio_group_list, next) { 1744 QLIST_FOREACH(vbasedev, &group->device_list, next) { 1745 if (vbasedev->dev->realized && vbasedev->needs_reset) { 1746 vbasedev->ops->vfio_hot_reset_multi(vbasedev); 1747 } 1748 } 1749 } 1750 } 1751 1752 static void vfio_kvm_device_add_group(VFIOGroup *group) 1753 { 1754 #ifdef CONFIG_KVM 1755 struct kvm_device_attr attr = { 1756 .group = KVM_DEV_VFIO_GROUP, 1757 .attr = KVM_DEV_VFIO_GROUP_ADD, 1758 .addr = (uint64_t)(unsigned long)&group->fd, 1759 }; 1760 1761 if (!kvm_enabled()) { 1762 return; 1763 } 1764 1765 if (vfio_kvm_device_fd < 0) { 1766 struct kvm_create_device cd = { 1767 .type = KVM_DEV_TYPE_VFIO, 1768 }; 1769 1770 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { 1771 error_report("Failed to create KVM VFIO device: %m"); 1772 return; 1773 } 1774 1775 vfio_kvm_device_fd = cd.fd; 1776 } 1777 1778 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1779 error_report("Failed to add group %d to KVM VFIO device: %m", 1780 group->groupid); 1781 } 1782 #endif 1783 } 1784 1785 static void vfio_kvm_device_del_group(VFIOGroup *group) 1786 { 1787 #ifdef CONFIG_KVM 1788 struct kvm_device_attr attr = { 1789 .group = KVM_DEV_VFIO_GROUP, 1790 .attr = KVM_DEV_VFIO_GROUP_DEL, 1791 .addr = (uint64_t)(unsigned long)&group->fd, 1792 }; 1793 1794 if (vfio_kvm_device_fd < 0) { 1795 return; 1796 } 1797 1798 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1799 error_report("Failed to remove group %d from KVM VFIO device: %m", 1800 group->groupid); 1801 } 1802 #endif 1803 } 1804 1805 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) 1806 { 1807 VFIOAddressSpace *space; 1808 1809 QLIST_FOREACH(space, &vfio_address_spaces, list) { 1810 if (space->as == as) { 1811 return space; 1812 } 1813 } 1814 1815 /* No suitable VFIOAddressSpace, create a new one */ 1816 space = g_malloc0(sizeof(*space)); 1817 space->as = as; 1818 QLIST_INIT(&space->containers); 1819 1820 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); 1821 1822 return space; 1823 } 1824 1825 static void vfio_put_address_space(VFIOAddressSpace *space) 1826 { 1827 if (QLIST_EMPTY(&space->containers)) { 1828 QLIST_REMOVE(space, list); 1829 g_free(space); 1830 } 1831 } 1832 1833 /* 1834 * vfio_get_iommu_type - selects the richest iommu_type (v2 first) 1835 */ 1836 static int vfio_get_iommu_type(VFIOContainer *container, 1837 Error **errp) 1838 { 1839 int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU, 1840 VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU }; 1841 int i; 1842 1843 for (i = 0; i < ARRAY_SIZE(iommu_types); i++) { 1844 if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) { 1845 return iommu_types[i]; 1846 } 1847 } 1848 error_setg(errp, "No available IOMMU models"); 1849 return -EINVAL; 1850 } 1851 1852 static int vfio_init_container(VFIOContainer *container, int group_fd, 1853 Error **errp) 1854 { 1855 int iommu_type, ret; 1856 1857 iommu_type = vfio_get_iommu_type(container, errp); 1858 if (iommu_type < 0) { 1859 return iommu_type; 1860 } 1861 1862 ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd); 1863 if (ret) { 1864 error_setg_errno(errp, errno, "Failed to set group container"); 1865 return -errno; 1866 } 1867 1868 while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) { 1869 if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1870 /* 1871 * On sPAPR, despite the IOMMU subdriver always advertises v1 and 1872 * v2, the running platform may not support v2 and there is no 1873 * way to guess it until an IOMMU group gets added to the container. 1874 * So in case it fails with v2, try v1 as a fallback. 1875 */ 1876 iommu_type = VFIO_SPAPR_TCE_IOMMU; 1877 continue; 1878 } 1879 error_setg_errno(errp, errno, "Failed to set iommu for container"); 1880 return -errno; 1881 } 1882 1883 container->iommu_type = iommu_type; 1884 return 0; 1885 } 1886 1887 static int vfio_get_iommu_info(VFIOContainer *container, 1888 struct vfio_iommu_type1_info **info) 1889 { 1890 1891 size_t argsz = sizeof(struct vfio_iommu_type1_info); 1892 1893 *info = g_new0(struct vfio_iommu_type1_info, 1); 1894 again: 1895 (*info)->argsz = argsz; 1896 1897 if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) { 1898 g_free(*info); 1899 *info = NULL; 1900 return -errno; 1901 } 1902 1903 if (((*info)->argsz > argsz)) { 1904 argsz = (*info)->argsz; 1905 *info = g_realloc(*info, argsz); 1906 goto again; 1907 } 1908 1909 return 0; 1910 } 1911 1912 static struct vfio_info_cap_header * 1913 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) 1914 { 1915 struct vfio_info_cap_header *hdr; 1916 void *ptr = info; 1917 1918 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { 1919 return NULL; 1920 } 1921 1922 for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) { 1923 if (hdr->id == id) { 1924 return hdr; 1925 } 1926 } 1927 1928 return NULL; 1929 } 1930 1931 static void vfio_get_iommu_info_migration(VFIOContainer *container, 1932 struct vfio_iommu_type1_info *info) 1933 { 1934 struct vfio_info_cap_header *hdr; 1935 struct vfio_iommu_type1_info_cap_migration *cap_mig; 1936 1937 hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION); 1938 if (!hdr) { 1939 return; 1940 } 1941 1942 cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration, 1943 header); 1944 1945 /* 1946 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of 1947 * qemu_real_host_page_size to mark those dirty. 1948 */ 1949 if (cap_mig->pgsize_bitmap & qemu_real_host_page_size()) { 1950 container->dirty_pages_supported = true; 1951 container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size; 1952 container->dirty_pgsizes = cap_mig->pgsize_bitmap; 1953 } 1954 } 1955 1956 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as, 1957 Error **errp) 1958 { 1959 VFIOContainer *container; 1960 int ret, fd; 1961 VFIOAddressSpace *space; 1962 1963 space = vfio_get_address_space(as); 1964 1965 /* 1966 * VFIO is currently incompatible with discarding of RAM insofar as the 1967 * madvise to purge (zap) the page from QEMU's address space does not 1968 * interact with the memory API and therefore leaves stale virtual to 1969 * physical mappings in the IOMMU if the page was previously pinned. We 1970 * therefore set discarding broken for each group added to a container, 1971 * whether the container is used individually or shared. This provides 1972 * us with options to allow devices within a group to opt-in and allow 1973 * discarding, so long as it is done consistently for a group (for instance 1974 * if the device is an mdev device where it is known that the host vendor 1975 * driver will never pin pages outside of the working set of the guest 1976 * driver, which would thus not be discarding candidates). 1977 * 1978 * The first opportunity to induce pinning occurs here where we attempt to 1979 * attach the group to existing containers within the AddressSpace. If any 1980 * pages are already zapped from the virtual address space, such as from 1981 * previous discards, new pinning will cause valid mappings to be 1982 * re-established. Likewise, when the overall MemoryListener for a new 1983 * container is registered, a replay of mappings within the AddressSpace 1984 * will occur, re-establishing any previously zapped pages as well. 1985 * 1986 * Especially virtio-balloon is currently only prevented from discarding 1987 * new memory, it will not yet set ram_block_discard_set_required() and 1988 * therefore, neither stops us here or deals with the sudden memory 1989 * consumption of inflated memory. 1990 * 1991 * We do support discarding of memory coordinated via the RamDiscardManager 1992 * with some IOMMU types. vfio_ram_block_discard_disable() handles the 1993 * details once we know which type of IOMMU we are using. 1994 */ 1995 1996 QLIST_FOREACH(container, &space->containers, next) { 1997 if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) { 1998 ret = vfio_ram_block_discard_disable(container, true); 1999 if (ret) { 2000 error_setg_errno(errp, -ret, 2001 "Cannot set discarding of RAM broken"); 2002 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, 2003 &container->fd)) { 2004 error_report("vfio: error disconnecting group %d from" 2005 " container", group->groupid); 2006 } 2007 return ret; 2008 } 2009 group->container = container; 2010 QLIST_INSERT_HEAD(&container->group_list, group, container_next); 2011 vfio_kvm_device_add_group(group); 2012 return 0; 2013 } 2014 } 2015 2016 fd = qemu_open_old("/dev/vfio/vfio", O_RDWR); 2017 if (fd < 0) { 2018 error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio"); 2019 ret = -errno; 2020 goto put_space_exit; 2021 } 2022 2023 ret = ioctl(fd, VFIO_GET_API_VERSION); 2024 if (ret != VFIO_API_VERSION) { 2025 error_setg(errp, "supported vfio version: %d, " 2026 "reported version: %d", VFIO_API_VERSION, ret); 2027 ret = -EINVAL; 2028 goto close_fd_exit; 2029 } 2030 2031 container = g_malloc0(sizeof(*container)); 2032 container->space = space; 2033 container->fd = fd; 2034 container->error = NULL; 2035 container->dirty_pages_supported = false; 2036 container->dma_max_mappings = 0; 2037 QLIST_INIT(&container->giommu_list); 2038 QLIST_INIT(&container->hostwin_list); 2039 QLIST_INIT(&container->vrdl_list); 2040 2041 ret = vfio_init_container(container, group->fd, errp); 2042 if (ret) { 2043 goto free_container_exit; 2044 } 2045 2046 ret = vfio_ram_block_discard_disable(container, true); 2047 if (ret) { 2048 error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken"); 2049 goto free_container_exit; 2050 } 2051 2052 switch (container->iommu_type) { 2053 case VFIO_TYPE1v2_IOMMU: 2054 case VFIO_TYPE1_IOMMU: 2055 { 2056 struct vfio_iommu_type1_info *info; 2057 2058 ret = vfio_get_iommu_info(container, &info); 2059 if (ret) { 2060 error_setg_errno(errp, -ret, "Failed to get VFIO IOMMU info"); 2061 goto enable_discards_exit; 2062 } 2063 2064 if (info->flags & VFIO_IOMMU_INFO_PGSIZES) { 2065 container->pgsizes = info->iova_pgsizes; 2066 } else { 2067 container->pgsizes = qemu_real_host_page_size(); 2068 } 2069 2070 if (!vfio_get_info_dma_avail(info, &container->dma_max_mappings)) { 2071 container->dma_max_mappings = 65535; 2072 } 2073 vfio_get_iommu_info_migration(container, info); 2074 g_free(info); 2075 2076 /* 2077 * FIXME: We should parse VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 2078 * information to get the actual window extent rather than assume 2079 * a 64-bit IOVA address space. 2080 */ 2081 vfio_host_win_add(container, 0, (hwaddr)-1, container->pgsizes); 2082 2083 break; 2084 } 2085 case VFIO_SPAPR_TCE_v2_IOMMU: 2086 case VFIO_SPAPR_TCE_IOMMU: 2087 { 2088 struct vfio_iommu_spapr_tce_info info; 2089 bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU; 2090 2091 /* 2092 * The host kernel code implementing VFIO_IOMMU_DISABLE is called 2093 * when container fd is closed so we do not call it explicitly 2094 * in this file. 2095 */ 2096 if (!v2) { 2097 ret = ioctl(fd, VFIO_IOMMU_ENABLE); 2098 if (ret) { 2099 error_setg_errno(errp, errno, "failed to enable container"); 2100 ret = -errno; 2101 goto enable_discards_exit; 2102 } 2103 } else { 2104 container->prereg_listener = vfio_prereg_listener; 2105 2106 memory_listener_register(&container->prereg_listener, 2107 &address_space_memory); 2108 if (container->error) { 2109 memory_listener_unregister(&container->prereg_listener); 2110 ret = -1; 2111 error_propagate_prepend(errp, container->error, 2112 "RAM memory listener initialization failed: "); 2113 goto enable_discards_exit; 2114 } 2115 } 2116 2117 info.argsz = sizeof(info); 2118 ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info); 2119 if (ret) { 2120 error_setg_errno(errp, errno, 2121 "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed"); 2122 ret = -errno; 2123 if (v2) { 2124 memory_listener_unregister(&container->prereg_listener); 2125 } 2126 goto enable_discards_exit; 2127 } 2128 2129 if (v2) { 2130 container->pgsizes = info.ddw.pgsizes; 2131 /* 2132 * There is a default window in just created container. 2133 * To make region_add/del simpler, we better remove this 2134 * window now and let those iommu_listener callbacks 2135 * create/remove them when needed. 2136 */ 2137 ret = vfio_spapr_remove_window(container, info.dma32_window_start); 2138 if (ret) { 2139 error_setg_errno(errp, -ret, 2140 "failed to remove existing window"); 2141 goto enable_discards_exit; 2142 } 2143 } else { 2144 /* The default table uses 4K pages */ 2145 container->pgsizes = 0x1000; 2146 vfio_host_win_add(container, info.dma32_window_start, 2147 info.dma32_window_start + 2148 info.dma32_window_size - 1, 2149 0x1000); 2150 } 2151 } 2152 } 2153 2154 vfio_kvm_device_add_group(group); 2155 2156 QLIST_INIT(&container->group_list); 2157 QLIST_INSERT_HEAD(&space->containers, container, next); 2158 2159 group->container = container; 2160 QLIST_INSERT_HEAD(&container->group_list, group, container_next); 2161 2162 container->listener = vfio_memory_listener; 2163 2164 memory_listener_register(&container->listener, container->space->as); 2165 2166 if (container->error) { 2167 ret = -1; 2168 error_propagate_prepend(errp, container->error, 2169 "memory listener initialization failed: "); 2170 goto listener_release_exit; 2171 } 2172 2173 container->initialized = true; 2174 2175 return 0; 2176 listener_release_exit: 2177 QLIST_REMOVE(group, container_next); 2178 QLIST_REMOVE(container, next); 2179 vfio_kvm_device_del_group(group); 2180 vfio_listener_release(container); 2181 2182 enable_discards_exit: 2183 vfio_ram_block_discard_disable(container, false); 2184 2185 free_container_exit: 2186 g_free(container); 2187 2188 close_fd_exit: 2189 close(fd); 2190 2191 put_space_exit: 2192 vfio_put_address_space(space); 2193 2194 return ret; 2195 } 2196 2197 static void vfio_disconnect_container(VFIOGroup *group) 2198 { 2199 VFIOContainer *container = group->container; 2200 2201 QLIST_REMOVE(group, container_next); 2202 group->container = NULL; 2203 2204 /* 2205 * Explicitly release the listener first before unset container, 2206 * since unset may destroy the backend container if it's the last 2207 * group. 2208 */ 2209 if (QLIST_EMPTY(&container->group_list)) { 2210 vfio_listener_release(container); 2211 } 2212 2213 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) { 2214 error_report("vfio: error disconnecting group %d from container", 2215 group->groupid); 2216 } 2217 2218 if (QLIST_EMPTY(&container->group_list)) { 2219 VFIOAddressSpace *space = container->space; 2220 VFIOGuestIOMMU *giommu, *tmp; 2221 VFIOHostDMAWindow *hostwin, *next; 2222 2223 QLIST_REMOVE(container, next); 2224 2225 QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) { 2226 memory_region_unregister_iommu_notifier( 2227 MEMORY_REGION(giommu->iommu_mr), &giommu->n); 2228 QLIST_REMOVE(giommu, giommu_next); 2229 g_free(giommu); 2230 } 2231 2232 QLIST_FOREACH_SAFE(hostwin, &container->hostwin_list, hostwin_next, 2233 next) { 2234 QLIST_REMOVE(hostwin, hostwin_next); 2235 g_free(hostwin); 2236 } 2237 2238 trace_vfio_disconnect_container(container->fd); 2239 close(container->fd); 2240 g_free(container); 2241 2242 vfio_put_address_space(space); 2243 } 2244 } 2245 2246 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp) 2247 { 2248 VFIOGroup *group; 2249 char path[32]; 2250 struct vfio_group_status status = { .argsz = sizeof(status) }; 2251 2252 QLIST_FOREACH(group, &vfio_group_list, next) { 2253 if (group->groupid == groupid) { 2254 /* Found it. Now is it already in the right context? */ 2255 if (group->container->space->as == as) { 2256 return group; 2257 } else { 2258 error_setg(errp, "group %d used in multiple address spaces", 2259 group->groupid); 2260 return NULL; 2261 } 2262 } 2263 } 2264 2265 group = g_malloc0(sizeof(*group)); 2266 2267 snprintf(path, sizeof(path), "/dev/vfio/%d", groupid); 2268 group->fd = qemu_open_old(path, O_RDWR); 2269 if (group->fd < 0) { 2270 error_setg_errno(errp, errno, "failed to open %s", path); 2271 goto free_group_exit; 2272 } 2273 2274 if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) { 2275 error_setg_errno(errp, errno, "failed to get group %d status", groupid); 2276 goto close_fd_exit; 2277 } 2278 2279 if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) { 2280 error_setg(errp, "group %d is not viable", groupid); 2281 error_append_hint(errp, 2282 "Please ensure all devices within the iommu_group " 2283 "are bound to their vfio bus driver.\n"); 2284 goto close_fd_exit; 2285 } 2286 2287 group->groupid = groupid; 2288 QLIST_INIT(&group->device_list); 2289 2290 if (vfio_connect_container(group, as, errp)) { 2291 error_prepend(errp, "failed to setup container for group %d: ", 2292 groupid); 2293 goto close_fd_exit; 2294 } 2295 2296 if (QLIST_EMPTY(&vfio_group_list)) { 2297 qemu_register_reset(vfio_reset_handler, NULL); 2298 } 2299 2300 QLIST_INSERT_HEAD(&vfio_group_list, group, next); 2301 2302 return group; 2303 2304 close_fd_exit: 2305 close(group->fd); 2306 2307 free_group_exit: 2308 g_free(group); 2309 2310 return NULL; 2311 } 2312 2313 void vfio_put_group(VFIOGroup *group) 2314 { 2315 if (!group || !QLIST_EMPTY(&group->device_list)) { 2316 return; 2317 } 2318 2319 if (!group->ram_block_discard_allowed) { 2320 vfio_ram_block_discard_disable(group->container, false); 2321 } 2322 vfio_kvm_device_del_group(group); 2323 vfio_disconnect_container(group); 2324 QLIST_REMOVE(group, next); 2325 trace_vfio_put_group(group->fd); 2326 close(group->fd); 2327 g_free(group); 2328 2329 if (QLIST_EMPTY(&vfio_group_list)) { 2330 qemu_unregister_reset(vfio_reset_handler, NULL); 2331 } 2332 } 2333 2334 int vfio_get_device(VFIOGroup *group, const char *name, 2335 VFIODevice *vbasedev, Error **errp) 2336 { 2337 struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) }; 2338 int ret, fd; 2339 2340 fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name); 2341 if (fd < 0) { 2342 error_setg_errno(errp, errno, "error getting device from group %d", 2343 group->groupid); 2344 error_append_hint(errp, 2345 "Verify all devices in group %d are bound to vfio-<bus> " 2346 "or pci-stub and not already in use\n", group->groupid); 2347 return fd; 2348 } 2349 2350 ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info); 2351 if (ret) { 2352 error_setg_errno(errp, errno, "error getting device info"); 2353 close(fd); 2354 return ret; 2355 } 2356 2357 /* 2358 * Set discarding of RAM as not broken for this group if the driver knows 2359 * the device operates compatibly with discarding. Setting must be 2360 * consistent per group, but since compatibility is really only possible 2361 * with mdev currently, we expect singleton groups. 2362 */ 2363 if (vbasedev->ram_block_discard_allowed != 2364 group->ram_block_discard_allowed) { 2365 if (!QLIST_EMPTY(&group->device_list)) { 2366 error_setg(errp, "Inconsistent setting of support for discarding " 2367 "RAM (e.g., balloon) within group"); 2368 close(fd); 2369 return -1; 2370 } 2371 2372 if (!group->ram_block_discard_allowed) { 2373 group->ram_block_discard_allowed = true; 2374 vfio_ram_block_discard_disable(group->container, false); 2375 } 2376 } 2377 2378 vbasedev->fd = fd; 2379 vbasedev->group = group; 2380 QLIST_INSERT_HEAD(&group->device_list, vbasedev, next); 2381 2382 vbasedev->num_irqs = dev_info.num_irqs; 2383 vbasedev->num_regions = dev_info.num_regions; 2384 vbasedev->flags = dev_info.flags; 2385 2386 trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions, 2387 dev_info.num_irqs); 2388 2389 vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET); 2390 return 0; 2391 } 2392 2393 void vfio_put_base_device(VFIODevice *vbasedev) 2394 { 2395 if (!vbasedev->group) { 2396 return; 2397 } 2398 QLIST_REMOVE(vbasedev, next); 2399 vbasedev->group = NULL; 2400 trace_vfio_put_base_device(vbasedev->fd); 2401 close(vbasedev->fd); 2402 } 2403 2404 int vfio_get_region_info(VFIODevice *vbasedev, int index, 2405 struct vfio_region_info **info) 2406 { 2407 size_t argsz = sizeof(struct vfio_region_info); 2408 2409 *info = g_malloc0(argsz); 2410 2411 (*info)->index = index; 2412 retry: 2413 (*info)->argsz = argsz; 2414 2415 if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) { 2416 g_free(*info); 2417 *info = NULL; 2418 return -errno; 2419 } 2420 2421 if ((*info)->argsz > argsz) { 2422 argsz = (*info)->argsz; 2423 *info = g_realloc(*info, argsz); 2424 2425 goto retry; 2426 } 2427 2428 return 0; 2429 } 2430 2431 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type, 2432 uint32_t subtype, struct vfio_region_info **info) 2433 { 2434 int i; 2435 2436 for (i = 0; i < vbasedev->num_regions; i++) { 2437 struct vfio_info_cap_header *hdr; 2438 struct vfio_region_info_cap_type *cap_type; 2439 2440 if (vfio_get_region_info(vbasedev, i, info)) { 2441 continue; 2442 } 2443 2444 hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE); 2445 if (!hdr) { 2446 g_free(*info); 2447 continue; 2448 } 2449 2450 cap_type = container_of(hdr, struct vfio_region_info_cap_type, header); 2451 2452 trace_vfio_get_dev_region(vbasedev->name, i, 2453 cap_type->type, cap_type->subtype); 2454 2455 if (cap_type->type == type && cap_type->subtype == subtype) { 2456 return 0; 2457 } 2458 2459 g_free(*info); 2460 } 2461 2462 *info = NULL; 2463 return -ENODEV; 2464 } 2465 2466 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type) 2467 { 2468 struct vfio_region_info *info = NULL; 2469 bool ret = false; 2470 2471 if (!vfio_get_region_info(vbasedev, region, &info)) { 2472 if (vfio_get_region_info_cap(info, cap_type)) { 2473 ret = true; 2474 } 2475 g_free(info); 2476 } 2477 2478 return ret; 2479 } 2480 2481 /* 2482 * Interfaces for IBM EEH (Enhanced Error Handling) 2483 */ 2484 static bool vfio_eeh_container_ok(VFIOContainer *container) 2485 { 2486 /* 2487 * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO 2488 * implementation is broken if there are multiple groups in a 2489 * container. The hardware works in units of Partitionable 2490 * Endpoints (== IOMMU groups) and the EEH operations naively 2491 * iterate across all groups in the container, without any logic 2492 * to make sure the groups have their state synchronized. For 2493 * certain operations (ENABLE) that might be ok, until an error 2494 * occurs, but for others (GET_STATE) it's clearly broken. 2495 */ 2496 2497 /* 2498 * XXX Once fixed kernels exist, test for them here 2499 */ 2500 2501 if (QLIST_EMPTY(&container->group_list)) { 2502 return false; 2503 } 2504 2505 if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) { 2506 return false; 2507 } 2508 2509 return true; 2510 } 2511 2512 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op) 2513 { 2514 struct vfio_eeh_pe_op pe_op = { 2515 .argsz = sizeof(pe_op), 2516 .op = op, 2517 }; 2518 int ret; 2519 2520 if (!vfio_eeh_container_ok(container)) { 2521 error_report("vfio/eeh: EEH_PE_OP 0x%x: " 2522 "kernel requires a container with exactly one group", op); 2523 return -EPERM; 2524 } 2525 2526 ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op); 2527 if (ret < 0) { 2528 error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op); 2529 return -errno; 2530 } 2531 2532 return ret; 2533 } 2534 2535 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as) 2536 { 2537 VFIOAddressSpace *space = vfio_get_address_space(as); 2538 VFIOContainer *container = NULL; 2539 2540 if (QLIST_EMPTY(&space->containers)) { 2541 /* No containers to act on */ 2542 goto out; 2543 } 2544 2545 container = QLIST_FIRST(&space->containers); 2546 2547 if (QLIST_NEXT(container, next)) { 2548 /* We don't yet have logic to synchronize EEH state across 2549 * multiple containers */ 2550 container = NULL; 2551 goto out; 2552 } 2553 2554 out: 2555 vfio_put_address_space(space); 2556 return container; 2557 } 2558 2559 bool vfio_eeh_as_ok(AddressSpace *as) 2560 { 2561 VFIOContainer *container = vfio_eeh_as_container(as); 2562 2563 return (container != NULL) && vfio_eeh_container_ok(container); 2564 } 2565 2566 int vfio_eeh_as_op(AddressSpace *as, uint32_t op) 2567 { 2568 VFIOContainer *container = vfio_eeh_as_container(as); 2569 2570 if (!container) { 2571 return -ENODEV; 2572 } 2573 return vfio_eeh_container_op(container, op); 2574 } 2575