1 /* 2 * generic functions used by VFIO devices 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 #ifdef CONFIG_KVM 24 #include <linux/kvm.h> 25 #endif 26 #include <linux/vfio.h> 27 28 #include "hw/vfio/vfio-common.h" 29 #include "hw/vfio/vfio.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "exec/ram_addr.h" 33 #include "hw/hw.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/range.h" 37 #include "sysemu/kvm.h" 38 #include "sysemu/reset.h" 39 #include "sysemu/runstate.h" 40 #include "trace.h" 41 #include "qapi/error.h" 42 #include "migration/migration.h" 43 #include "migration/misc.h" 44 #include "migration/blocker.h" 45 #include "migration/qemu-file.h" 46 #include "sysemu/tpm.h" 47 48 VFIOGroupList vfio_group_list = 49 QLIST_HEAD_INITIALIZER(vfio_group_list); 50 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = 51 QLIST_HEAD_INITIALIZER(vfio_address_spaces); 52 53 #ifdef CONFIG_KVM 54 /* 55 * We have a single VFIO pseudo device per KVM VM. Once created it lives 56 * for the life of the VM. Closing the file descriptor only drops our 57 * reference to it and the device's reference to kvm. Therefore once 58 * initialized, this file descriptor is only released on QEMU exit and 59 * we'll re-use it should another vfio device be attached before then. 60 */ 61 static int vfio_kvm_device_fd = -1; 62 #endif 63 64 /* 65 * Common VFIO interrupt disable 66 */ 67 void vfio_disable_irqindex(VFIODevice *vbasedev, int index) 68 { 69 struct vfio_irq_set irq_set = { 70 .argsz = sizeof(irq_set), 71 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER, 72 .index = index, 73 .start = 0, 74 .count = 0, 75 }; 76 77 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 78 } 79 80 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index) 81 { 82 struct vfio_irq_set irq_set = { 83 .argsz = sizeof(irq_set), 84 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK, 85 .index = index, 86 .start = 0, 87 .count = 1, 88 }; 89 90 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 91 } 92 93 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index) 94 { 95 struct vfio_irq_set irq_set = { 96 .argsz = sizeof(irq_set), 97 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK, 98 .index = index, 99 .start = 0, 100 .count = 1, 101 }; 102 103 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 104 } 105 106 static inline const char *action_to_str(int action) 107 { 108 switch (action) { 109 case VFIO_IRQ_SET_ACTION_MASK: 110 return "MASK"; 111 case VFIO_IRQ_SET_ACTION_UNMASK: 112 return "UNMASK"; 113 case VFIO_IRQ_SET_ACTION_TRIGGER: 114 return "TRIGGER"; 115 default: 116 return "UNKNOWN ACTION"; 117 } 118 } 119 120 static const char *index_to_str(VFIODevice *vbasedev, int index) 121 { 122 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { 123 return NULL; 124 } 125 126 switch (index) { 127 case VFIO_PCI_INTX_IRQ_INDEX: 128 return "INTX"; 129 case VFIO_PCI_MSI_IRQ_INDEX: 130 return "MSI"; 131 case VFIO_PCI_MSIX_IRQ_INDEX: 132 return "MSIX"; 133 case VFIO_PCI_ERR_IRQ_INDEX: 134 return "ERR"; 135 case VFIO_PCI_REQ_IRQ_INDEX: 136 return "REQ"; 137 default: 138 return NULL; 139 } 140 } 141 142 static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state) 143 { 144 switch (container->iommu_type) { 145 case VFIO_TYPE1v2_IOMMU: 146 case VFIO_TYPE1_IOMMU: 147 /* 148 * We support coordinated discarding of RAM via the RamDiscardManager. 149 */ 150 return ram_block_uncoordinated_discard_disable(state); 151 default: 152 /* 153 * VFIO_SPAPR_TCE_IOMMU most probably works just fine with 154 * RamDiscardManager, however, it is completely untested. 155 * 156 * VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does 157 * completely the opposite of managing mapping/pinning dynamically as 158 * required by RamDiscardManager. We would have to special-case sections 159 * with a RamDiscardManager. 160 */ 161 return ram_block_discard_disable(state); 162 } 163 } 164 165 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex, 166 int action, int fd, Error **errp) 167 { 168 struct vfio_irq_set *irq_set; 169 int argsz, ret = 0; 170 const char *name; 171 int32_t *pfd; 172 173 argsz = sizeof(*irq_set) + sizeof(*pfd); 174 175 irq_set = g_malloc0(argsz); 176 irq_set->argsz = argsz; 177 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action; 178 irq_set->index = index; 179 irq_set->start = subindex; 180 irq_set->count = 1; 181 pfd = (int32_t *)&irq_set->data; 182 *pfd = fd; 183 184 if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 185 ret = -errno; 186 } 187 g_free(irq_set); 188 189 if (!ret) { 190 return 0; 191 } 192 193 error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure"); 194 195 name = index_to_str(vbasedev, index); 196 if (name) { 197 error_prepend(errp, "%s-%d: ", name, subindex); 198 } else { 199 error_prepend(errp, "index %d-%d: ", index, subindex); 200 } 201 error_prepend(errp, 202 "Failed to %s %s eventfd signaling for interrupt ", 203 fd < 0 ? "tear down" : "set up", action_to_str(action)); 204 return ret; 205 } 206 207 /* 208 * IO Port/MMIO - Beware of the endians, VFIO is always little endian 209 */ 210 void vfio_region_write(void *opaque, hwaddr addr, 211 uint64_t data, unsigned size) 212 { 213 VFIORegion *region = opaque; 214 VFIODevice *vbasedev = region->vbasedev; 215 union { 216 uint8_t byte; 217 uint16_t word; 218 uint32_t dword; 219 uint64_t qword; 220 } buf; 221 222 switch (size) { 223 case 1: 224 buf.byte = data; 225 break; 226 case 2: 227 buf.word = cpu_to_le16(data); 228 break; 229 case 4: 230 buf.dword = cpu_to_le32(data); 231 break; 232 case 8: 233 buf.qword = cpu_to_le64(data); 234 break; 235 default: 236 hw_error("vfio: unsupported write size, %u bytes", size); 237 break; 238 } 239 240 if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { 241 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64 242 ",%d) failed: %m", 243 __func__, vbasedev->name, region->nr, 244 addr, data, size); 245 } 246 247 trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size); 248 249 /* 250 * A read or write to a BAR always signals an INTx EOI. This will 251 * do nothing if not pending (including not in INTx mode). We assume 252 * that a BAR access is in response to an interrupt and that BAR 253 * accesses will service the interrupt. Unfortunately, we don't know 254 * which access will service the interrupt, so we're potentially 255 * getting quite a few host interrupts per guest interrupt. 256 */ 257 vbasedev->ops->vfio_eoi(vbasedev); 258 } 259 260 uint64_t vfio_region_read(void *opaque, 261 hwaddr addr, unsigned size) 262 { 263 VFIORegion *region = opaque; 264 VFIODevice *vbasedev = region->vbasedev; 265 union { 266 uint8_t byte; 267 uint16_t word; 268 uint32_t dword; 269 uint64_t qword; 270 } buf; 271 uint64_t data = 0; 272 273 if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { 274 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m", 275 __func__, vbasedev->name, region->nr, 276 addr, size); 277 return (uint64_t)-1; 278 } 279 switch (size) { 280 case 1: 281 data = buf.byte; 282 break; 283 case 2: 284 data = le16_to_cpu(buf.word); 285 break; 286 case 4: 287 data = le32_to_cpu(buf.dword); 288 break; 289 case 8: 290 data = le64_to_cpu(buf.qword); 291 break; 292 default: 293 hw_error("vfio: unsupported read size, %u bytes", size); 294 break; 295 } 296 297 trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data); 298 299 /* Same as write above */ 300 vbasedev->ops->vfio_eoi(vbasedev); 301 302 return data; 303 } 304 305 const MemoryRegionOps vfio_region_ops = { 306 .read = vfio_region_read, 307 .write = vfio_region_write, 308 .endianness = DEVICE_LITTLE_ENDIAN, 309 .valid = { 310 .min_access_size = 1, 311 .max_access_size = 8, 312 }, 313 .impl = { 314 .min_access_size = 1, 315 .max_access_size = 8, 316 }, 317 }; 318 319 /* 320 * Device state interfaces 321 */ 322 323 typedef struct { 324 unsigned long *bitmap; 325 hwaddr size; 326 hwaddr pages; 327 } VFIOBitmap; 328 329 static int vfio_bitmap_alloc(VFIOBitmap *vbmap, hwaddr size) 330 { 331 vbmap->pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size(); 332 vbmap->size = ROUND_UP(vbmap->pages, sizeof(__u64) * BITS_PER_BYTE) / 333 BITS_PER_BYTE; 334 vbmap->bitmap = g_try_malloc0(vbmap->size); 335 if (!vbmap->bitmap) { 336 return -ENOMEM; 337 } 338 339 return 0; 340 } 341 342 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova, 343 uint64_t size, ram_addr_t ram_addr); 344 345 bool vfio_mig_active(void) 346 { 347 VFIOGroup *group; 348 VFIODevice *vbasedev; 349 350 if (QLIST_EMPTY(&vfio_group_list)) { 351 return false; 352 } 353 354 QLIST_FOREACH(group, &vfio_group_list, next) { 355 QLIST_FOREACH(vbasedev, &group->device_list, next) { 356 if (vbasedev->migration_blocker) { 357 return false; 358 } 359 } 360 } 361 return true; 362 } 363 364 static Error *multiple_devices_migration_blocker; 365 static Error *giommu_migration_blocker; 366 367 static unsigned int vfio_migratable_device_num(void) 368 { 369 VFIOGroup *group; 370 VFIODevice *vbasedev; 371 unsigned int device_num = 0; 372 373 QLIST_FOREACH(group, &vfio_group_list, next) { 374 QLIST_FOREACH(vbasedev, &group->device_list, next) { 375 if (vbasedev->migration) { 376 device_num++; 377 } 378 } 379 } 380 381 return device_num; 382 } 383 384 int vfio_block_multiple_devices_migration(Error **errp) 385 { 386 int ret; 387 388 if (multiple_devices_migration_blocker || 389 vfio_migratable_device_num() <= 1) { 390 return 0; 391 } 392 393 error_setg(&multiple_devices_migration_blocker, 394 "Migration is currently not supported with multiple " 395 "VFIO devices"); 396 ret = migrate_add_blocker(multiple_devices_migration_blocker, errp); 397 if (ret < 0) { 398 error_free(multiple_devices_migration_blocker); 399 multiple_devices_migration_blocker = NULL; 400 } 401 402 return ret; 403 } 404 405 void vfio_unblock_multiple_devices_migration(void) 406 { 407 if (!multiple_devices_migration_blocker || 408 vfio_migratable_device_num() > 1) { 409 return; 410 } 411 412 migrate_del_blocker(multiple_devices_migration_blocker); 413 error_free(multiple_devices_migration_blocker); 414 multiple_devices_migration_blocker = NULL; 415 } 416 417 static bool vfio_viommu_preset(void) 418 { 419 VFIOAddressSpace *space; 420 421 QLIST_FOREACH(space, &vfio_address_spaces, list) { 422 if (space->as != &address_space_memory) { 423 return true; 424 } 425 } 426 427 return false; 428 } 429 430 int vfio_block_giommu_migration(Error **errp) 431 { 432 int ret; 433 434 if (giommu_migration_blocker || 435 !vfio_viommu_preset()) { 436 return 0; 437 } 438 439 error_setg(&giommu_migration_blocker, 440 "Migration is currently not supported with vIOMMU enabled"); 441 ret = migrate_add_blocker(giommu_migration_blocker, errp); 442 if (ret < 0) { 443 error_free(giommu_migration_blocker); 444 giommu_migration_blocker = NULL; 445 } 446 447 return ret; 448 } 449 450 void vfio_migration_finalize(void) 451 { 452 if (!giommu_migration_blocker || 453 vfio_viommu_preset()) { 454 return; 455 } 456 457 migrate_del_blocker(giommu_migration_blocker); 458 error_free(giommu_migration_blocker); 459 giommu_migration_blocker = NULL; 460 } 461 462 static void vfio_set_migration_error(int err) 463 { 464 MigrationState *ms = migrate_get_current(); 465 466 if (migration_is_setup_or_active(ms->state)) { 467 WITH_QEMU_LOCK_GUARD(&ms->qemu_file_lock) { 468 if (ms->to_dst_file) { 469 qemu_file_set_error(ms->to_dst_file, err); 470 } 471 } 472 } 473 } 474 475 static bool vfio_devices_all_dirty_tracking(VFIOContainer *container) 476 { 477 VFIOGroup *group; 478 VFIODevice *vbasedev; 479 MigrationState *ms = migrate_get_current(); 480 481 if (ms->state != MIGRATION_STATUS_ACTIVE && 482 ms->state != MIGRATION_STATUS_DEVICE) { 483 return false; 484 } 485 486 QLIST_FOREACH(group, &container->group_list, container_next) { 487 QLIST_FOREACH(vbasedev, &group->device_list, next) { 488 VFIOMigration *migration = vbasedev->migration; 489 490 if (!migration) { 491 return false; 492 } 493 494 if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF && 495 migration->device_state == VFIO_DEVICE_STATE_RUNNING) { 496 return false; 497 } 498 } 499 } 500 return true; 501 } 502 503 static bool vfio_devices_all_device_dirty_tracking(VFIOContainer *container) 504 { 505 VFIOGroup *group; 506 VFIODevice *vbasedev; 507 508 QLIST_FOREACH(group, &container->group_list, container_next) { 509 QLIST_FOREACH(vbasedev, &group->device_list, next) { 510 if (!vbasedev->dirty_pages_supported) { 511 return false; 512 } 513 } 514 } 515 516 return true; 517 } 518 519 /* 520 * Check if all VFIO devices are running and migration is active, which is 521 * essentially equivalent to the migration being in pre-copy phase. 522 */ 523 static bool vfio_devices_all_running_and_mig_active(VFIOContainer *container) 524 { 525 VFIOGroup *group; 526 VFIODevice *vbasedev; 527 528 if (!migration_is_active(migrate_get_current())) { 529 return false; 530 } 531 532 QLIST_FOREACH(group, &container->group_list, container_next) { 533 QLIST_FOREACH(vbasedev, &group->device_list, next) { 534 VFIOMigration *migration = vbasedev->migration; 535 536 if (!migration) { 537 return false; 538 } 539 540 if (migration->device_state == VFIO_DEVICE_STATE_RUNNING) { 541 continue; 542 } else { 543 return false; 544 } 545 } 546 } 547 return true; 548 } 549 550 static int vfio_dma_unmap_bitmap(VFIOContainer *container, 551 hwaddr iova, ram_addr_t size, 552 IOMMUTLBEntry *iotlb) 553 { 554 struct vfio_iommu_type1_dma_unmap *unmap; 555 struct vfio_bitmap *bitmap; 556 VFIOBitmap vbmap; 557 int ret; 558 559 ret = vfio_bitmap_alloc(&vbmap, size); 560 if (ret) { 561 return ret; 562 } 563 564 unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap)); 565 566 unmap->argsz = sizeof(*unmap) + sizeof(*bitmap); 567 unmap->iova = iova; 568 unmap->size = size; 569 unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP; 570 bitmap = (struct vfio_bitmap *)&unmap->data; 571 572 /* 573 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of 574 * qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize 575 * to qemu_real_host_page_size. 576 */ 577 bitmap->pgsize = qemu_real_host_page_size(); 578 bitmap->size = vbmap.size; 579 bitmap->data = (__u64 *)vbmap.bitmap; 580 581 if (vbmap.size > container->max_dirty_bitmap_size) { 582 error_report("UNMAP: Size of bitmap too big 0x%"PRIx64, vbmap.size); 583 ret = -E2BIG; 584 goto unmap_exit; 585 } 586 587 ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap); 588 if (!ret) { 589 cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, 590 iotlb->translated_addr, vbmap.pages); 591 } else { 592 error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m"); 593 } 594 595 unmap_exit: 596 g_free(unmap); 597 g_free(vbmap.bitmap); 598 599 return ret; 600 } 601 602 /* 603 * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86 604 */ 605 static int vfio_dma_unmap(VFIOContainer *container, 606 hwaddr iova, ram_addr_t size, 607 IOMMUTLBEntry *iotlb) 608 { 609 struct vfio_iommu_type1_dma_unmap unmap = { 610 .argsz = sizeof(unmap), 611 .flags = 0, 612 .iova = iova, 613 .size = size, 614 }; 615 bool need_dirty_sync = false; 616 int ret; 617 618 if (iotlb && vfio_devices_all_running_and_mig_active(container)) { 619 if (!vfio_devices_all_device_dirty_tracking(container) && 620 container->dirty_pages_supported) { 621 return vfio_dma_unmap_bitmap(container, iova, size, iotlb); 622 } 623 624 need_dirty_sync = true; 625 } 626 627 while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) { 628 /* 629 * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c 630 * v4.15) where an overflow in its wrap-around check prevents us from 631 * unmapping the last page of the address space. Test for the error 632 * condition and re-try the unmap excluding the last page. The 633 * expectation is that we've never mapped the last page anyway and this 634 * unmap request comes via vIOMMU support which also makes it unlikely 635 * that this page is used. This bug was introduced well after type1 v2 636 * support was introduced, so we shouldn't need to test for v1. A fix 637 * is queued for kernel v5.0 so this workaround can be removed once 638 * affected kernels are sufficiently deprecated. 639 */ 640 if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) && 641 container->iommu_type == VFIO_TYPE1v2_IOMMU) { 642 trace_vfio_dma_unmap_overflow_workaround(); 643 unmap.size -= 1ULL << ctz64(container->pgsizes); 644 continue; 645 } 646 error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno)); 647 return -errno; 648 } 649 650 if (need_dirty_sync) { 651 ret = vfio_get_dirty_bitmap(container, iova, size, 652 iotlb->translated_addr); 653 if (ret) { 654 return ret; 655 } 656 } 657 658 return 0; 659 } 660 661 static int vfio_dma_map(VFIOContainer *container, hwaddr iova, 662 ram_addr_t size, void *vaddr, bool readonly) 663 { 664 struct vfio_iommu_type1_dma_map map = { 665 .argsz = sizeof(map), 666 .flags = VFIO_DMA_MAP_FLAG_READ, 667 .vaddr = (__u64)(uintptr_t)vaddr, 668 .iova = iova, 669 .size = size, 670 }; 671 672 if (!readonly) { 673 map.flags |= VFIO_DMA_MAP_FLAG_WRITE; 674 } 675 676 /* 677 * Try the mapping, if it fails with EBUSY, unmap the region and try 678 * again. This shouldn't be necessary, but we sometimes see it in 679 * the VGA ROM space. 680 */ 681 if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 || 682 (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 && 683 ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) { 684 return 0; 685 } 686 687 error_report("VFIO_MAP_DMA failed: %s", strerror(errno)); 688 return -errno; 689 } 690 691 static void vfio_host_win_add(VFIOContainer *container, 692 hwaddr min_iova, hwaddr max_iova, 693 uint64_t iova_pgsizes) 694 { 695 VFIOHostDMAWindow *hostwin; 696 697 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 698 if (ranges_overlap(hostwin->min_iova, 699 hostwin->max_iova - hostwin->min_iova + 1, 700 min_iova, 701 max_iova - min_iova + 1)) { 702 hw_error("%s: Overlapped IOMMU are not enabled", __func__); 703 } 704 } 705 706 hostwin = g_malloc0(sizeof(*hostwin)); 707 708 hostwin->min_iova = min_iova; 709 hostwin->max_iova = max_iova; 710 hostwin->iova_pgsizes = iova_pgsizes; 711 QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next); 712 } 713 714 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova, 715 hwaddr max_iova) 716 { 717 VFIOHostDMAWindow *hostwin; 718 719 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 720 if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) { 721 QLIST_REMOVE(hostwin, hostwin_next); 722 g_free(hostwin); 723 return 0; 724 } 725 } 726 727 return -1; 728 } 729 730 static bool vfio_listener_skipped_section(MemoryRegionSection *section) 731 { 732 return (!memory_region_is_ram(section->mr) && 733 !memory_region_is_iommu(section->mr)) || 734 memory_region_is_protected(section->mr) || 735 /* 736 * Sizing an enabled 64-bit BAR can cause spurious mappings to 737 * addresses in the upper part of the 64-bit address space. These 738 * are never accessed by the CPU and beyond the address width of 739 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. 740 */ 741 section->offset_within_address_space & (1ULL << 63); 742 } 743 744 /* Called with rcu_read_lock held. */ 745 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 746 ram_addr_t *ram_addr, bool *read_only) 747 { 748 bool ret, mr_has_discard_manager; 749 750 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only, 751 &mr_has_discard_manager); 752 if (ret && mr_has_discard_manager) { 753 /* 754 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The 755 * pages will remain pinned inside vfio until unmapped, resulting in a 756 * higher memory consumption than expected. If memory would get 757 * populated again later, there would be an inconsistency between pages 758 * pinned by vfio and pages seen by QEMU. This is the case until 759 * unmapped from the IOMMU (e.g., during device reset). 760 * 761 * With malicious guests, we really only care about pinning more memory 762 * than expected. RLIMIT_MEMLOCK set for the user/process can never be 763 * exceeded and can be used to mitigate this problem. 764 */ 765 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" 766 " RAM (e.g., virtio-mem) works, however, malicious" 767 " guests can trigger pinning of more memory than" 768 " intended via an IOMMU. It's possible to mitigate " 769 " by setting/adjusting RLIMIT_MEMLOCK."); 770 } 771 return ret; 772 } 773 774 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 775 { 776 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); 777 VFIOContainer *container = giommu->container; 778 hwaddr iova = iotlb->iova + giommu->iommu_offset; 779 void *vaddr; 780 int ret; 781 782 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", 783 iova, iova + iotlb->addr_mask); 784 785 if (iotlb->target_as != &address_space_memory) { 786 error_report("Wrong target AS \"%s\", only system memory is allowed", 787 iotlb->target_as->name ? iotlb->target_as->name : "none"); 788 vfio_set_migration_error(-EINVAL); 789 return; 790 } 791 792 rcu_read_lock(); 793 794 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 795 bool read_only; 796 797 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) { 798 goto out; 799 } 800 /* 801 * vaddr is only valid until rcu_read_unlock(). But after 802 * vfio_dma_map has set up the mapping the pages will be 803 * pinned by the kernel. This makes sure that the RAM backend 804 * of vaddr will always be there, even if the memory object is 805 * destroyed and its backing memory munmap-ed. 806 */ 807 ret = vfio_dma_map(container, iova, 808 iotlb->addr_mask + 1, vaddr, 809 read_only); 810 if (ret) { 811 error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 812 "0x%"HWADDR_PRIx", %p) = %d (%s)", 813 container, iova, 814 iotlb->addr_mask + 1, vaddr, ret, strerror(-ret)); 815 } 816 } else { 817 ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb); 818 if (ret) { 819 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 820 "0x%"HWADDR_PRIx") = %d (%s)", 821 container, iova, 822 iotlb->addr_mask + 1, ret, strerror(-ret)); 823 vfio_set_migration_error(ret); 824 } 825 } 826 out: 827 rcu_read_unlock(); 828 } 829 830 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, 831 MemoryRegionSection *section) 832 { 833 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 834 listener); 835 const hwaddr size = int128_get64(section->size); 836 const hwaddr iova = section->offset_within_address_space; 837 int ret; 838 839 /* Unmap with a single call. */ 840 ret = vfio_dma_unmap(vrdl->container, iova, size , NULL); 841 if (ret) { 842 error_report("%s: vfio_dma_unmap() failed: %s", __func__, 843 strerror(-ret)); 844 } 845 } 846 847 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, 848 MemoryRegionSection *section) 849 { 850 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 851 listener); 852 const hwaddr end = section->offset_within_region + 853 int128_get64(section->size); 854 hwaddr start, next, iova; 855 void *vaddr; 856 int ret; 857 858 /* 859 * Map in (aligned within memory region) minimum granularity, so we can 860 * unmap in minimum granularity later. 861 */ 862 for (start = section->offset_within_region; start < end; start = next) { 863 next = ROUND_UP(start + 1, vrdl->granularity); 864 next = MIN(next, end); 865 866 iova = start - section->offset_within_region + 867 section->offset_within_address_space; 868 vaddr = memory_region_get_ram_ptr(section->mr) + start; 869 870 ret = vfio_dma_map(vrdl->container, iova, next - start, 871 vaddr, section->readonly); 872 if (ret) { 873 /* Rollback */ 874 vfio_ram_discard_notify_discard(rdl, section); 875 return ret; 876 } 877 } 878 return 0; 879 } 880 881 static void vfio_register_ram_discard_listener(VFIOContainer *container, 882 MemoryRegionSection *section) 883 { 884 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 885 VFIORamDiscardListener *vrdl; 886 887 /* Ignore some corner cases not relevant in practice. */ 888 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); 889 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, 890 TARGET_PAGE_SIZE)); 891 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); 892 893 vrdl = g_new0(VFIORamDiscardListener, 1); 894 vrdl->container = container; 895 vrdl->mr = section->mr; 896 vrdl->offset_within_address_space = section->offset_within_address_space; 897 vrdl->size = int128_get64(section->size); 898 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, 899 section->mr); 900 901 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); 902 g_assert(container->pgsizes && 903 vrdl->granularity >= 1ULL << ctz64(container->pgsizes)); 904 905 ram_discard_listener_init(&vrdl->listener, 906 vfio_ram_discard_notify_populate, 907 vfio_ram_discard_notify_discard, true); 908 ram_discard_manager_register_listener(rdm, &vrdl->listener, section); 909 QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next); 910 911 /* 912 * Sanity-check if we have a theoretically problematic setup where we could 913 * exceed the maximum number of possible DMA mappings over time. We assume 914 * that each mapped section in the same address space as a RamDiscardManager 915 * section consumes exactly one DMA mapping, with the exception of 916 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections 917 * in the same address space as RamDiscardManager sections. 918 * 919 * We assume that each section in the address space consumes one memslot. 920 * We take the number of KVM memory slots as a best guess for the maximum 921 * number of sections in the address space we could have over time, 922 * also consuming DMA mappings. 923 */ 924 if (container->dma_max_mappings) { 925 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; 926 927 #ifdef CONFIG_KVM 928 if (kvm_enabled()) { 929 max_memslots = kvm_get_max_memslots(); 930 } 931 #endif 932 933 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 934 hwaddr start, end; 935 936 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, 937 vrdl->granularity); 938 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, 939 vrdl->granularity); 940 vrdl_mappings += (end - start) / vrdl->granularity; 941 vrdl_count++; 942 } 943 944 if (vrdl_mappings + max_memslots - vrdl_count > 945 container->dma_max_mappings) { 946 warn_report("%s: possibly running out of DMA mappings. E.g., try" 947 " increasing the 'block-size' of virtio-mem devies." 948 " Maximum possible DMA mappings: %d, Maximum possible" 949 " memslots: %d", __func__, container->dma_max_mappings, 950 max_memslots); 951 } 952 } 953 } 954 955 static void vfio_unregister_ram_discard_listener(VFIOContainer *container, 956 MemoryRegionSection *section) 957 { 958 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 959 VFIORamDiscardListener *vrdl = NULL; 960 961 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 962 if (vrdl->mr == section->mr && 963 vrdl->offset_within_address_space == 964 section->offset_within_address_space) { 965 break; 966 } 967 } 968 969 if (!vrdl) { 970 hw_error("vfio: Trying to unregister missing RAM discard listener"); 971 } 972 973 ram_discard_manager_unregister_listener(rdm, &vrdl->listener); 974 QLIST_REMOVE(vrdl, next); 975 g_free(vrdl); 976 } 977 978 static VFIOHostDMAWindow *vfio_find_hostwin(VFIOContainer *container, 979 hwaddr iova, hwaddr end) 980 { 981 VFIOHostDMAWindow *hostwin; 982 bool hostwin_found = false; 983 984 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 985 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { 986 hostwin_found = true; 987 break; 988 } 989 } 990 991 return hostwin_found ? hostwin : NULL; 992 } 993 994 static bool vfio_known_safe_misalignment(MemoryRegionSection *section) 995 { 996 MemoryRegion *mr = section->mr; 997 998 if (!TPM_IS_CRB(mr->owner)) { 999 return false; 1000 } 1001 1002 /* this is a known safe misaligned region, just trace for debug purpose */ 1003 trace_vfio_known_safe_misalignment(memory_region_name(mr), 1004 section->offset_within_address_space, 1005 section->offset_within_region, 1006 qemu_real_host_page_size()); 1007 return true; 1008 } 1009 1010 static bool vfio_listener_valid_section(MemoryRegionSection *section, 1011 const char *name) 1012 { 1013 if (vfio_listener_skipped_section(section)) { 1014 trace_vfio_listener_region_skip(name, 1015 section->offset_within_address_space, 1016 section->offset_within_address_space + 1017 int128_get64(int128_sub(section->size, int128_one()))); 1018 return false; 1019 } 1020 1021 if (unlikely((section->offset_within_address_space & 1022 ~qemu_real_host_page_mask()) != 1023 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 1024 if (!vfio_known_safe_misalignment(section)) { 1025 error_report("%s received unaligned region %s iova=0x%"PRIx64 1026 " offset_within_region=0x%"PRIx64 1027 " qemu_real_host_page_size=0x%"PRIxPTR, 1028 __func__, memory_region_name(section->mr), 1029 section->offset_within_address_space, 1030 section->offset_within_region, 1031 qemu_real_host_page_size()); 1032 } 1033 return false; 1034 } 1035 1036 return true; 1037 } 1038 1039 static bool vfio_get_section_iova_range(VFIOContainer *container, 1040 MemoryRegionSection *section, 1041 hwaddr *out_iova, hwaddr *out_end, 1042 Int128 *out_llend) 1043 { 1044 Int128 llend; 1045 hwaddr iova; 1046 1047 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 1048 llend = int128_make64(section->offset_within_address_space); 1049 llend = int128_add(llend, section->size); 1050 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 1051 1052 if (int128_ge(int128_make64(iova), llend)) { 1053 return false; 1054 } 1055 1056 *out_iova = iova; 1057 *out_end = int128_get64(int128_sub(llend, int128_one())); 1058 if (out_llend) { 1059 *out_llend = llend; 1060 } 1061 return true; 1062 } 1063 1064 static void vfio_listener_region_add(MemoryListener *listener, 1065 MemoryRegionSection *section) 1066 { 1067 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1068 hwaddr iova, end; 1069 Int128 llend, llsize; 1070 void *vaddr; 1071 int ret; 1072 VFIOHostDMAWindow *hostwin; 1073 Error *err = NULL; 1074 1075 if (!vfio_listener_valid_section(section, "region_add")) { 1076 return; 1077 } 1078 1079 if (!vfio_get_section_iova_range(container, section, &iova, &end, &llend)) { 1080 if (memory_region_is_ram_device(section->mr)) { 1081 trace_vfio_listener_region_add_no_dma_map( 1082 memory_region_name(section->mr), 1083 section->offset_within_address_space, 1084 int128_getlo(section->size), 1085 qemu_real_host_page_size()); 1086 } 1087 return; 1088 } 1089 1090 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1091 hwaddr pgsize = 0; 1092 1093 /* For now intersections are not allowed, we may relax this later */ 1094 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 1095 if (ranges_overlap(hostwin->min_iova, 1096 hostwin->max_iova - hostwin->min_iova + 1, 1097 section->offset_within_address_space, 1098 int128_get64(section->size))) { 1099 error_setg(&err, 1100 "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing" 1101 "host DMA window [0x%"PRIx64",0x%"PRIx64"]", 1102 section->offset_within_address_space, 1103 section->offset_within_address_space + 1104 int128_get64(section->size) - 1, 1105 hostwin->min_iova, hostwin->max_iova); 1106 goto fail; 1107 } 1108 } 1109 1110 ret = vfio_spapr_create_window(container, section, &pgsize); 1111 if (ret) { 1112 error_setg_errno(&err, -ret, "Failed to create SPAPR window"); 1113 goto fail; 1114 } 1115 1116 vfio_host_win_add(container, section->offset_within_address_space, 1117 section->offset_within_address_space + 1118 int128_get64(section->size) - 1, pgsize); 1119 #ifdef CONFIG_KVM 1120 if (kvm_enabled()) { 1121 VFIOGroup *group; 1122 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 1123 struct kvm_vfio_spapr_tce param; 1124 struct kvm_device_attr attr = { 1125 .group = KVM_DEV_VFIO_GROUP, 1126 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE, 1127 .addr = (uint64_t)(unsigned long)¶m, 1128 }; 1129 1130 if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD, 1131 ¶m.tablefd)) { 1132 QLIST_FOREACH(group, &container->group_list, container_next) { 1133 param.groupfd = group->fd; 1134 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1135 error_report("vfio: failed to setup fd %d " 1136 "for a group with fd %d: %s", 1137 param.tablefd, param.groupfd, 1138 strerror(errno)); 1139 return; 1140 } 1141 trace_vfio_spapr_group_attach(param.groupfd, param.tablefd); 1142 } 1143 } 1144 } 1145 #endif 1146 } 1147 1148 hostwin = vfio_find_hostwin(container, iova, end); 1149 if (!hostwin) { 1150 error_setg(&err, "Container %p can't map guest IOVA region" 1151 " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end); 1152 goto fail; 1153 } 1154 1155 memory_region_ref(section->mr); 1156 1157 if (memory_region_is_iommu(section->mr)) { 1158 VFIOGuestIOMMU *giommu; 1159 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 1160 int iommu_idx; 1161 1162 trace_vfio_listener_region_add_iommu(iova, end); 1163 /* 1164 * FIXME: For VFIO iommu types which have KVM acceleration to 1165 * avoid bouncing all map/unmaps through qemu this way, this 1166 * would be the right place to wire that up (tell the KVM 1167 * device emulation the VFIO iommu handles to use). 1168 */ 1169 giommu = g_malloc0(sizeof(*giommu)); 1170 giommu->iommu_mr = iommu_mr; 1171 giommu->iommu_offset = section->offset_within_address_space - 1172 section->offset_within_region; 1173 giommu->container = container; 1174 llend = int128_add(int128_make64(section->offset_within_region), 1175 section->size); 1176 llend = int128_sub(llend, int128_one()); 1177 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 1178 MEMTXATTRS_UNSPECIFIED); 1179 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, 1180 IOMMU_NOTIFIER_IOTLB_EVENTS, 1181 section->offset_within_region, 1182 int128_get64(llend), 1183 iommu_idx); 1184 1185 ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr, 1186 container->pgsizes, 1187 &err); 1188 if (ret) { 1189 g_free(giommu); 1190 goto fail; 1191 } 1192 1193 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, 1194 &err); 1195 if (ret) { 1196 g_free(giommu); 1197 goto fail; 1198 } 1199 QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next); 1200 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n); 1201 1202 return; 1203 } 1204 1205 /* Here we assume that memory_region_is_ram(section->mr)==true */ 1206 1207 /* 1208 * For RAM memory regions with a RamDiscardManager, we only want to map the 1209 * actually populated parts - and update the mapping whenever we're notified 1210 * about changes. 1211 */ 1212 if (memory_region_has_ram_discard_manager(section->mr)) { 1213 vfio_register_ram_discard_listener(container, section); 1214 return; 1215 } 1216 1217 vaddr = memory_region_get_ram_ptr(section->mr) + 1218 section->offset_within_region + 1219 (iova - section->offset_within_address_space); 1220 1221 trace_vfio_listener_region_add_ram(iova, end, vaddr); 1222 1223 llsize = int128_sub(llend, int128_make64(iova)); 1224 1225 if (memory_region_is_ram_device(section->mr)) { 1226 hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 1227 1228 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { 1229 trace_vfio_listener_region_add_no_dma_map( 1230 memory_region_name(section->mr), 1231 section->offset_within_address_space, 1232 int128_getlo(section->size), 1233 pgmask + 1); 1234 return; 1235 } 1236 } 1237 1238 ret = vfio_dma_map(container, iova, int128_get64(llsize), 1239 vaddr, section->readonly); 1240 if (ret) { 1241 error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 1242 "0x%"HWADDR_PRIx", %p) = %d (%s)", 1243 container, iova, int128_get64(llsize), vaddr, ret, 1244 strerror(-ret)); 1245 if (memory_region_is_ram_device(section->mr)) { 1246 /* Allow unexpected mappings not to be fatal for RAM devices */ 1247 error_report_err(err); 1248 return; 1249 } 1250 goto fail; 1251 } 1252 1253 return; 1254 1255 fail: 1256 if (memory_region_is_ram_device(section->mr)) { 1257 error_report("failed to vfio_dma_map. pci p2p may not work"); 1258 return; 1259 } 1260 /* 1261 * On the initfn path, store the first error in the container so we 1262 * can gracefully fail. Runtime, there's not much we can do other 1263 * than throw a hardware error. 1264 */ 1265 if (!container->initialized) { 1266 if (!container->error) { 1267 error_propagate_prepend(&container->error, err, 1268 "Region %s: ", 1269 memory_region_name(section->mr)); 1270 } else { 1271 error_free(err); 1272 } 1273 } else { 1274 error_report_err(err); 1275 hw_error("vfio: DMA mapping failed, unable to continue"); 1276 } 1277 } 1278 1279 static void vfio_listener_region_del(MemoryListener *listener, 1280 MemoryRegionSection *section) 1281 { 1282 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1283 hwaddr iova, end; 1284 Int128 llend, llsize; 1285 int ret; 1286 bool try_unmap = true; 1287 1288 if (!vfio_listener_valid_section(section, "region_del")) { 1289 return; 1290 } 1291 1292 if (memory_region_is_iommu(section->mr)) { 1293 VFIOGuestIOMMU *giommu; 1294 1295 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 1296 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1297 giommu->n.start == section->offset_within_region) { 1298 memory_region_unregister_iommu_notifier(section->mr, 1299 &giommu->n); 1300 QLIST_REMOVE(giommu, giommu_next); 1301 g_free(giommu); 1302 break; 1303 } 1304 } 1305 1306 /* 1307 * FIXME: We assume the one big unmap below is adequate to 1308 * remove any individual page mappings in the IOMMU which 1309 * might have been copied into VFIO. This works for a page table 1310 * based IOMMU where a big unmap flattens a large range of IO-PTEs. 1311 * That may not be true for all IOMMU types. 1312 */ 1313 } 1314 1315 if (!vfio_get_section_iova_range(container, section, &iova, &end, &llend)) { 1316 return; 1317 } 1318 1319 llsize = int128_sub(llend, int128_make64(iova)); 1320 1321 trace_vfio_listener_region_del(iova, end); 1322 1323 if (memory_region_is_ram_device(section->mr)) { 1324 hwaddr pgmask; 1325 VFIOHostDMAWindow *hostwin; 1326 1327 hostwin = vfio_find_hostwin(container, iova, end); 1328 assert(hostwin); /* or region_add() would have failed */ 1329 1330 pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 1331 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); 1332 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1333 vfio_unregister_ram_discard_listener(container, section); 1334 /* Unregistering will trigger an unmap. */ 1335 try_unmap = false; 1336 } 1337 1338 if (try_unmap) { 1339 if (int128_eq(llsize, int128_2_64())) { 1340 /* The unmap ioctl doesn't accept a full 64-bit span. */ 1341 llsize = int128_rshift(llsize, 1); 1342 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); 1343 if (ret) { 1344 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 1345 "0x%"HWADDR_PRIx") = %d (%s)", 1346 container, iova, int128_get64(llsize), ret, 1347 strerror(-ret)); 1348 } 1349 iova += int128_get64(llsize); 1350 } 1351 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); 1352 if (ret) { 1353 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 1354 "0x%"HWADDR_PRIx") = %d (%s)", 1355 container, iova, int128_get64(llsize), ret, 1356 strerror(-ret)); 1357 } 1358 } 1359 1360 memory_region_unref(section->mr); 1361 1362 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1363 vfio_spapr_remove_window(container, 1364 section->offset_within_address_space); 1365 if (vfio_host_win_del(container, 1366 section->offset_within_address_space, 1367 section->offset_within_address_space + 1368 int128_get64(section->size) - 1) < 0) { 1369 hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx, 1370 __func__, section->offset_within_address_space); 1371 } 1372 } 1373 } 1374 1375 static int vfio_set_dirty_page_tracking(VFIOContainer *container, bool start) 1376 { 1377 int ret; 1378 struct vfio_iommu_type1_dirty_bitmap dirty = { 1379 .argsz = sizeof(dirty), 1380 }; 1381 1382 if (!container->dirty_pages_supported) { 1383 return 0; 1384 } 1385 1386 if (start) { 1387 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START; 1388 } else { 1389 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP; 1390 } 1391 1392 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty); 1393 if (ret) { 1394 ret = -errno; 1395 error_report("Failed to set dirty tracking flag 0x%x errno: %d", 1396 dirty.flags, errno); 1397 } 1398 1399 return ret; 1400 } 1401 1402 typedef struct VFIODirtyRanges { 1403 hwaddr min32; 1404 hwaddr max32; 1405 hwaddr min64; 1406 hwaddr max64; 1407 } VFIODirtyRanges; 1408 1409 typedef struct VFIODirtyRangesListener { 1410 VFIOContainer *container; 1411 VFIODirtyRanges ranges; 1412 MemoryListener listener; 1413 } VFIODirtyRangesListener; 1414 1415 static void vfio_dirty_tracking_update(MemoryListener *listener, 1416 MemoryRegionSection *section) 1417 { 1418 VFIODirtyRangesListener *dirty = container_of(listener, 1419 VFIODirtyRangesListener, 1420 listener); 1421 VFIODirtyRanges *range = &dirty->ranges; 1422 hwaddr iova, end, *min, *max; 1423 1424 if (!vfio_listener_valid_section(section, "tracking_update") || 1425 !vfio_get_section_iova_range(dirty->container, section, 1426 &iova, &end, NULL)) { 1427 return; 1428 } 1429 1430 /* 1431 * The address space passed to the dirty tracker is reduced to two ranges: 1432 * one for 32-bit DMA ranges, and another one for 64-bit DMA ranges. 1433 * The underlying reports of dirty will query a sub-interval of each of 1434 * these ranges. 1435 * 1436 * The purpose of the dual range handling is to handle known cases of big 1437 * holes in the address space, like the x86 AMD 1T hole. The alternative 1438 * would be an IOVATree but that has a much bigger runtime overhead and 1439 * unnecessary complexity. 1440 */ 1441 min = (end <= UINT32_MAX) ? &range->min32 : &range->min64; 1442 max = (end <= UINT32_MAX) ? &range->max32 : &range->max64; 1443 1444 if (*min > iova) { 1445 *min = iova; 1446 } 1447 if (*max < end) { 1448 *max = end; 1449 } 1450 1451 trace_vfio_device_dirty_tracking_update(iova, end, *min, *max); 1452 return; 1453 } 1454 1455 static const MemoryListener vfio_dirty_tracking_listener = { 1456 .name = "vfio-tracking", 1457 .region_add = vfio_dirty_tracking_update, 1458 }; 1459 1460 static void vfio_dirty_tracking_init(VFIOContainer *container, 1461 VFIODirtyRanges *ranges) 1462 { 1463 VFIODirtyRangesListener dirty; 1464 1465 memset(&dirty, 0, sizeof(dirty)); 1466 dirty.ranges.min32 = UINT32_MAX; 1467 dirty.ranges.min64 = UINT64_MAX; 1468 dirty.listener = vfio_dirty_tracking_listener; 1469 dirty.container = container; 1470 1471 memory_listener_register(&dirty.listener, 1472 container->space->as); 1473 1474 *ranges = dirty.ranges; 1475 1476 /* 1477 * The memory listener is synchronous, and used to calculate the range 1478 * to dirty tracking. Unregister it after we are done as we are not 1479 * interested in any follow-up updates. 1480 */ 1481 memory_listener_unregister(&dirty.listener); 1482 } 1483 1484 static void vfio_devices_dma_logging_stop(VFIOContainer *container) 1485 { 1486 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature), 1487 sizeof(uint64_t))] = {}; 1488 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 1489 VFIODevice *vbasedev; 1490 VFIOGroup *group; 1491 1492 feature->argsz = sizeof(buf); 1493 feature->flags = VFIO_DEVICE_FEATURE_SET | 1494 VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP; 1495 1496 QLIST_FOREACH(group, &container->group_list, container_next) { 1497 QLIST_FOREACH(vbasedev, &group->device_list, next) { 1498 if (!vbasedev->dirty_tracking) { 1499 continue; 1500 } 1501 1502 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 1503 warn_report("%s: Failed to stop DMA logging, err %d (%s)", 1504 vbasedev->name, -errno, strerror(errno)); 1505 } 1506 vbasedev->dirty_tracking = false; 1507 } 1508 } 1509 } 1510 1511 static struct vfio_device_feature * 1512 vfio_device_feature_dma_logging_start_create(VFIOContainer *container, 1513 VFIODirtyRanges *tracking) 1514 { 1515 struct vfio_device_feature *feature; 1516 size_t feature_size; 1517 struct vfio_device_feature_dma_logging_control *control; 1518 struct vfio_device_feature_dma_logging_range *ranges; 1519 1520 feature_size = sizeof(struct vfio_device_feature) + 1521 sizeof(struct vfio_device_feature_dma_logging_control); 1522 feature = g_try_malloc0(feature_size); 1523 if (!feature) { 1524 errno = ENOMEM; 1525 return NULL; 1526 } 1527 feature->argsz = feature_size; 1528 feature->flags = VFIO_DEVICE_FEATURE_SET | 1529 VFIO_DEVICE_FEATURE_DMA_LOGGING_START; 1530 1531 control = (struct vfio_device_feature_dma_logging_control *)feature->data; 1532 control->page_size = qemu_real_host_page_size(); 1533 1534 /* 1535 * DMA logging uAPI guarantees to support at least a number of ranges that 1536 * fits into a single host kernel base page. 1537 */ 1538 control->num_ranges = !!tracking->max32 + !!tracking->max64; 1539 ranges = g_try_new0(struct vfio_device_feature_dma_logging_range, 1540 control->num_ranges); 1541 if (!ranges) { 1542 g_free(feature); 1543 errno = ENOMEM; 1544 1545 return NULL; 1546 } 1547 1548 control->ranges = (__u64)(uintptr_t)ranges; 1549 if (tracking->max32) { 1550 ranges->iova = tracking->min32; 1551 ranges->length = (tracking->max32 - tracking->min32) + 1; 1552 ranges++; 1553 } 1554 if (tracking->max64) { 1555 ranges->iova = tracking->min64; 1556 ranges->length = (tracking->max64 - tracking->min64) + 1; 1557 } 1558 1559 trace_vfio_device_dirty_tracking_start(control->num_ranges, 1560 tracking->min32, tracking->max32, 1561 tracking->min64, tracking->max64); 1562 1563 return feature; 1564 } 1565 1566 static void vfio_device_feature_dma_logging_start_destroy( 1567 struct vfio_device_feature *feature) 1568 { 1569 struct vfio_device_feature_dma_logging_control *control = 1570 (struct vfio_device_feature_dma_logging_control *)feature->data; 1571 struct vfio_device_feature_dma_logging_range *ranges = 1572 (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges; 1573 1574 g_free(ranges); 1575 g_free(feature); 1576 } 1577 1578 static int vfio_devices_dma_logging_start(VFIOContainer *container) 1579 { 1580 struct vfio_device_feature *feature; 1581 VFIODirtyRanges ranges; 1582 VFIODevice *vbasedev; 1583 VFIOGroup *group; 1584 int ret = 0; 1585 1586 vfio_dirty_tracking_init(container, &ranges); 1587 feature = vfio_device_feature_dma_logging_start_create(container, 1588 &ranges); 1589 if (!feature) { 1590 return -errno; 1591 } 1592 1593 QLIST_FOREACH(group, &container->group_list, container_next) { 1594 QLIST_FOREACH(vbasedev, &group->device_list, next) { 1595 if (vbasedev->dirty_tracking) { 1596 continue; 1597 } 1598 1599 ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature); 1600 if (ret) { 1601 ret = -errno; 1602 error_report("%s: Failed to start DMA logging, err %d (%s)", 1603 vbasedev->name, ret, strerror(errno)); 1604 goto out; 1605 } 1606 vbasedev->dirty_tracking = true; 1607 } 1608 } 1609 1610 out: 1611 if (ret) { 1612 vfio_devices_dma_logging_stop(container); 1613 } 1614 1615 vfio_device_feature_dma_logging_start_destroy(feature); 1616 1617 return ret; 1618 } 1619 1620 static void vfio_listener_log_global_start(MemoryListener *listener) 1621 { 1622 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1623 int ret; 1624 1625 if (vfio_devices_all_device_dirty_tracking(container)) { 1626 ret = vfio_devices_dma_logging_start(container); 1627 } else { 1628 ret = vfio_set_dirty_page_tracking(container, true); 1629 } 1630 1631 if (ret) { 1632 error_report("vfio: Could not start dirty page tracking, err: %d (%s)", 1633 ret, strerror(-ret)); 1634 vfio_set_migration_error(ret); 1635 } 1636 } 1637 1638 static void vfio_listener_log_global_stop(MemoryListener *listener) 1639 { 1640 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1641 int ret = 0; 1642 1643 if (vfio_devices_all_device_dirty_tracking(container)) { 1644 vfio_devices_dma_logging_stop(container); 1645 } else { 1646 ret = vfio_set_dirty_page_tracking(container, false); 1647 } 1648 1649 if (ret) { 1650 error_report("vfio: Could not stop dirty page tracking, err: %d (%s)", 1651 ret, strerror(-ret)); 1652 vfio_set_migration_error(ret); 1653 } 1654 } 1655 1656 static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova, 1657 hwaddr size, void *bitmap) 1658 { 1659 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) + 1660 sizeof(struct vfio_device_feature_dma_logging_report), 1661 sizeof(__u64))] = {}; 1662 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 1663 struct vfio_device_feature_dma_logging_report *report = 1664 (struct vfio_device_feature_dma_logging_report *)feature->data; 1665 1666 report->iova = iova; 1667 report->length = size; 1668 report->page_size = qemu_real_host_page_size(); 1669 report->bitmap = (__u64)(uintptr_t)bitmap; 1670 1671 feature->argsz = sizeof(buf); 1672 feature->flags = VFIO_DEVICE_FEATURE_GET | 1673 VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT; 1674 1675 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 1676 return -errno; 1677 } 1678 1679 return 0; 1680 } 1681 1682 static int vfio_devices_query_dirty_bitmap(VFIOContainer *container, 1683 VFIOBitmap *vbmap, hwaddr iova, 1684 hwaddr size) 1685 { 1686 VFIODevice *vbasedev; 1687 VFIOGroup *group; 1688 int ret; 1689 1690 QLIST_FOREACH(group, &container->group_list, container_next) { 1691 QLIST_FOREACH(vbasedev, &group->device_list, next) { 1692 ret = vfio_device_dma_logging_report(vbasedev, iova, size, 1693 vbmap->bitmap); 1694 if (ret) { 1695 error_report("%s: Failed to get DMA logging report, iova: " 1696 "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx 1697 ", err: %d (%s)", 1698 vbasedev->name, iova, size, ret, strerror(-ret)); 1699 1700 return ret; 1701 } 1702 } 1703 } 1704 1705 return 0; 1706 } 1707 1708 static int vfio_query_dirty_bitmap(VFIOContainer *container, VFIOBitmap *vbmap, 1709 hwaddr iova, hwaddr size) 1710 { 1711 struct vfio_iommu_type1_dirty_bitmap *dbitmap; 1712 struct vfio_iommu_type1_dirty_bitmap_get *range; 1713 int ret; 1714 1715 dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range)); 1716 1717 dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range); 1718 dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP; 1719 range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data; 1720 range->iova = iova; 1721 range->size = size; 1722 1723 /* 1724 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of 1725 * qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize 1726 * to qemu_real_host_page_size. 1727 */ 1728 range->bitmap.pgsize = qemu_real_host_page_size(); 1729 range->bitmap.size = vbmap->size; 1730 range->bitmap.data = (__u64 *)vbmap->bitmap; 1731 1732 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap); 1733 if (ret) { 1734 ret = -errno; 1735 error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64 1736 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova, 1737 (uint64_t)range->size, errno); 1738 } 1739 1740 g_free(dbitmap); 1741 1742 return ret; 1743 } 1744 1745 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova, 1746 uint64_t size, ram_addr_t ram_addr) 1747 { 1748 bool all_device_dirty_tracking = 1749 vfio_devices_all_device_dirty_tracking(container); 1750 VFIOBitmap vbmap; 1751 int ret; 1752 1753 if (!container->dirty_pages_supported && !all_device_dirty_tracking) { 1754 cpu_physical_memory_set_dirty_range(ram_addr, size, 1755 tcg_enabled() ? DIRTY_CLIENTS_ALL : 1756 DIRTY_CLIENTS_NOCODE); 1757 return 0; 1758 } 1759 1760 ret = vfio_bitmap_alloc(&vbmap, size); 1761 if (ret) { 1762 return ret; 1763 } 1764 1765 if (all_device_dirty_tracking) { 1766 ret = vfio_devices_query_dirty_bitmap(container, &vbmap, iova, size); 1767 } else { 1768 ret = vfio_query_dirty_bitmap(container, &vbmap, iova, size); 1769 } 1770 1771 if (ret) { 1772 goto out; 1773 } 1774 1775 cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr, 1776 vbmap.pages); 1777 1778 trace_vfio_get_dirty_bitmap(container->fd, iova, size, vbmap.size, 1779 ram_addr); 1780 out: 1781 g_free(vbmap.bitmap); 1782 1783 return ret; 1784 } 1785 1786 typedef struct { 1787 IOMMUNotifier n; 1788 VFIOGuestIOMMU *giommu; 1789 } vfio_giommu_dirty_notifier; 1790 1791 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 1792 { 1793 vfio_giommu_dirty_notifier *gdn = container_of(n, 1794 vfio_giommu_dirty_notifier, n); 1795 VFIOGuestIOMMU *giommu = gdn->giommu; 1796 VFIOContainer *container = giommu->container; 1797 hwaddr iova = iotlb->iova + giommu->iommu_offset; 1798 ram_addr_t translated_addr; 1799 int ret = -EINVAL; 1800 1801 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); 1802 1803 if (iotlb->target_as != &address_space_memory) { 1804 error_report("Wrong target AS \"%s\", only system memory is allowed", 1805 iotlb->target_as->name ? iotlb->target_as->name : "none"); 1806 goto out; 1807 } 1808 1809 rcu_read_lock(); 1810 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) { 1811 ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1, 1812 translated_addr); 1813 if (ret) { 1814 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " 1815 "0x%"HWADDR_PRIx") = %d (%s)", 1816 container, iova, iotlb->addr_mask + 1, ret, 1817 strerror(-ret)); 1818 } 1819 } 1820 rcu_read_unlock(); 1821 1822 out: 1823 if (ret) { 1824 vfio_set_migration_error(ret); 1825 } 1826 } 1827 1828 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, 1829 void *opaque) 1830 { 1831 const hwaddr size = int128_get64(section->size); 1832 const hwaddr iova = section->offset_within_address_space; 1833 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + 1834 section->offset_within_region; 1835 VFIORamDiscardListener *vrdl = opaque; 1836 1837 /* 1838 * Sync the whole mapped region (spanning multiple individual mappings) 1839 * in one go. 1840 */ 1841 return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr); 1842 } 1843 1844 static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container, 1845 MemoryRegionSection *section) 1846 { 1847 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 1848 VFIORamDiscardListener *vrdl = NULL; 1849 1850 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 1851 if (vrdl->mr == section->mr && 1852 vrdl->offset_within_address_space == 1853 section->offset_within_address_space) { 1854 break; 1855 } 1856 } 1857 1858 if (!vrdl) { 1859 hw_error("vfio: Trying to sync missing RAM discard listener"); 1860 } 1861 1862 /* 1863 * We only want/can synchronize the bitmap for actually mapped parts - 1864 * which correspond to populated parts. Replay all populated parts. 1865 */ 1866 return ram_discard_manager_replay_populated(rdm, section, 1867 vfio_ram_discard_get_dirty_bitmap, 1868 &vrdl); 1869 } 1870 1871 static int vfio_sync_dirty_bitmap(VFIOContainer *container, 1872 MemoryRegionSection *section) 1873 { 1874 ram_addr_t ram_addr; 1875 1876 if (memory_region_is_iommu(section->mr)) { 1877 VFIOGuestIOMMU *giommu; 1878 1879 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 1880 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1881 giommu->n.start == section->offset_within_region) { 1882 Int128 llend; 1883 vfio_giommu_dirty_notifier gdn = { .giommu = giommu }; 1884 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr, 1885 MEMTXATTRS_UNSPECIFIED); 1886 1887 llend = int128_add(int128_make64(section->offset_within_region), 1888 section->size); 1889 llend = int128_sub(llend, int128_one()); 1890 1891 iommu_notifier_init(&gdn.n, 1892 vfio_iommu_map_dirty_notify, 1893 IOMMU_NOTIFIER_MAP, 1894 section->offset_within_region, 1895 int128_get64(llend), 1896 idx); 1897 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n); 1898 break; 1899 } 1900 } 1901 return 0; 1902 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1903 return vfio_sync_ram_discard_listener_dirty_bitmap(container, section); 1904 } 1905 1906 ram_addr = memory_region_get_ram_addr(section->mr) + 1907 section->offset_within_region; 1908 1909 return vfio_get_dirty_bitmap(container, 1910 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), 1911 int128_get64(section->size), ram_addr); 1912 } 1913 1914 static void vfio_listener_log_sync(MemoryListener *listener, 1915 MemoryRegionSection *section) 1916 { 1917 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1918 int ret; 1919 1920 if (vfio_listener_skipped_section(section)) { 1921 return; 1922 } 1923 1924 if (vfio_devices_all_dirty_tracking(container)) { 1925 ret = vfio_sync_dirty_bitmap(container, section); 1926 if (ret) { 1927 error_report("vfio: Failed to sync dirty bitmap, err: %d (%s)", ret, 1928 strerror(-ret)); 1929 vfio_set_migration_error(ret); 1930 } 1931 } 1932 } 1933 1934 static const MemoryListener vfio_memory_listener = { 1935 .name = "vfio", 1936 .region_add = vfio_listener_region_add, 1937 .region_del = vfio_listener_region_del, 1938 .log_global_start = vfio_listener_log_global_start, 1939 .log_global_stop = vfio_listener_log_global_stop, 1940 .log_sync = vfio_listener_log_sync, 1941 }; 1942 1943 static void vfio_listener_release(VFIOContainer *container) 1944 { 1945 memory_listener_unregister(&container->listener); 1946 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1947 memory_listener_unregister(&container->prereg_listener); 1948 } 1949 } 1950 1951 static struct vfio_info_cap_header * 1952 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id) 1953 { 1954 struct vfio_info_cap_header *hdr; 1955 1956 for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) { 1957 if (hdr->id == id) { 1958 return hdr; 1959 } 1960 } 1961 1962 return NULL; 1963 } 1964 1965 struct vfio_info_cap_header * 1966 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id) 1967 { 1968 if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) { 1969 return NULL; 1970 } 1971 1972 return vfio_get_cap((void *)info, info->cap_offset, id); 1973 } 1974 1975 static struct vfio_info_cap_header * 1976 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) 1977 { 1978 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { 1979 return NULL; 1980 } 1981 1982 return vfio_get_cap((void *)info, info->cap_offset, id); 1983 } 1984 1985 struct vfio_info_cap_header * 1986 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id) 1987 { 1988 if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) { 1989 return NULL; 1990 } 1991 1992 return vfio_get_cap((void *)info, info->cap_offset, id); 1993 } 1994 1995 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info, 1996 unsigned int *avail) 1997 { 1998 struct vfio_info_cap_header *hdr; 1999 struct vfio_iommu_type1_info_dma_avail *cap; 2000 2001 /* If the capability cannot be found, assume no DMA limiting */ 2002 hdr = vfio_get_iommu_type1_info_cap(info, 2003 VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL); 2004 if (hdr == NULL) { 2005 return false; 2006 } 2007 2008 if (avail != NULL) { 2009 cap = (void *) hdr; 2010 *avail = cap->avail; 2011 } 2012 2013 return true; 2014 } 2015 2016 static int vfio_setup_region_sparse_mmaps(VFIORegion *region, 2017 struct vfio_region_info *info) 2018 { 2019 struct vfio_info_cap_header *hdr; 2020 struct vfio_region_info_cap_sparse_mmap *sparse; 2021 int i, j; 2022 2023 hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP); 2024 if (!hdr) { 2025 return -ENODEV; 2026 } 2027 2028 sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header); 2029 2030 trace_vfio_region_sparse_mmap_header(region->vbasedev->name, 2031 region->nr, sparse->nr_areas); 2032 2033 region->mmaps = g_new0(VFIOMmap, sparse->nr_areas); 2034 2035 for (i = 0, j = 0; i < sparse->nr_areas; i++) { 2036 if (sparse->areas[i].size) { 2037 trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset, 2038 sparse->areas[i].offset + 2039 sparse->areas[i].size - 1); 2040 region->mmaps[j].offset = sparse->areas[i].offset; 2041 region->mmaps[j].size = sparse->areas[i].size; 2042 j++; 2043 } 2044 } 2045 2046 region->nr_mmaps = j; 2047 region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap)); 2048 2049 return 0; 2050 } 2051 2052 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region, 2053 int index, const char *name) 2054 { 2055 struct vfio_region_info *info; 2056 int ret; 2057 2058 ret = vfio_get_region_info(vbasedev, index, &info); 2059 if (ret) { 2060 return ret; 2061 } 2062 2063 region->vbasedev = vbasedev; 2064 region->flags = info->flags; 2065 region->size = info->size; 2066 region->fd_offset = info->offset; 2067 region->nr = index; 2068 2069 if (region->size) { 2070 region->mem = g_new0(MemoryRegion, 1); 2071 memory_region_init_io(region->mem, obj, &vfio_region_ops, 2072 region, name, region->size); 2073 2074 if (!vbasedev->no_mmap && 2075 region->flags & VFIO_REGION_INFO_FLAG_MMAP) { 2076 2077 ret = vfio_setup_region_sparse_mmaps(region, info); 2078 2079 if (ret) { 2080 region->nr_mmaps = 1; 2081 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps); 2082 region->mmaps[0].offset = 0; 2083 region->mmaps[0].size = region->size; 2084 } 2085 } 2086 } 2087 2088 g_free(info); 2089 2090 trace_vfio_region_setup(vbasedev->name, index, name, 2091 region->flags, region->fd_offset, region->size); 2092 return 0; 2093 } 2094 2095 static void vfio_subregion_unmap(VFIORegion *region, int index) 2096 { 2097 trace_vfio_region_unmap(memory_region_name(®ion->mmaps[index].mem), 2098 region->mmaps[index].offset, 2099 region->mmaps[index].offset + 2100 region->mmaps[index].size - 1); 2101 memory_region_del_subregion(region->mem, ®ion->mmaps[index].mem); 2102 munmap(region->mmaps[index].mmap, region->mmaps[index].size); 2103 object_unparent(OBJECT(®ion->mmaps[index].mem)); 2104 region->mmaps[index].mmap = NULL; 2105 } 2106 2107 int vfio_region_mmap(VFIORegion *region) 2108 { 2109 int i, prot = 0; 2110 char *name; 2111 2112 if (!region->mem) { 2113 return 0; 2114 } 2115 2116 prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0; 2117 prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0; 2118 2119 for (i = 0; i < region->nr_mmaps; i++) { 2120 region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot, 2121 MAP_SHARED, region->vbasedev->fd, 2122 region->fd_offset + 2123 region->mmaps[i].offset); 2124 if (region->mmaps[i].mmap == MAP_FAILED) { 2125 int ret = -errno; 2126 2127 trace_vfio_region_mmap_fault(memory_region_name(region->mem), i, 2128 region->fd_offset + 2129 region->mmaps[i].offset, 2130 region->fd_offset + 2131 region->mmaps[i].offset + 2132 region->mmaps[i].size - 1, ret); 2133 2134 region->mmaps[i].mmap = NULL; 2135 2136 for (i--; i >= 0; i--) { 2137 vfio_subregion_unmap(region, i); 2138 } 2139 2140 return ret; 2141 } 2142 2143 name = g_strdup_printf("%s mmaps[%d]", 2144 memory_region_name(region->mem), i); 2145 memory_region_init_ram_device_ptr(®ion->mmaps[i].mem, 2146 memory_region_owner(region->mem), 2147 name, region->mmaps[i].size, 2148 region->mmaps[i].mmap); 2149 g_free(name); 2150 memory_region_add_subregion(region->mem, region->mmaps[i].offset, 2151 ®ion->mmaps[i].mem); 2152 2153 trace_vfio_region_mmap(memory_region_name(®ion->mmaps[i].mem), 2154 region->mmaps[i].offset, 2155 region->mmaps[i].offset + 2156 region->mmaps[i].size - 1); 2157 } 2158 2159 return 0; 2160 } 2161 2162 void vfio_region_unmap(VFIORegion *region) 2163 { 2164 int i; 2165 2166 if (!region->mem) { 2167 return; 2168 } 2169 2170 for (i = 0; i < region->nr_mmaps; i++) { 2171 if (region->mmaps[i].mmap) { 2172 vfio_subregion_unmap(region, i); 2173 } 2174 } 2175 } 2176 2177 void vfio_region_exit(VFIORegion *region) 2178 { 2179 int i; 2180 2181 if (!region->mem) { 2182 return; 2183 } 2184 2185 for (i = 0; i < region->nr_mmaps; i++) { 2186 if (region->mmaps[i].mmap) { 2187 memory_region_del_subregion(region->mem, ®ion->mmaps[i].mem); 2188 } 2189 } 2190 2191 trace_vfio_region_exit(region->vbasedev->name, region->nr); 2192 } 2193 2194 void vfio_region_finalize(VFIORegion *region) 2195 { 2196 int i; 2197 2198 if (!region->mem) { 2199 return; 2200 } 2201 2202 for (i = 0; i < region->nr_mmaps; i++) { 2203 if (region->mmaps[i].mmap) { 2204 munmap(region->mmaps[i].mmap, region->mmaps[i].size); 2205 object_unparent(OBJECT(®ion->mmaps[i].mem)); 2206 } 2207 } 2208 2209 object_unparent(OBJECT(region->mem)); 2210 2211 g_free(region->mem); 2212 g_free(region->mmaps); 2213 2214 trace_vfio_region_finalize(region->vbasedev->name, region->nr); 2215 2216 region->mem = NULL; 2217 region->mmaps = NULL; 2218 region->nr_mmaps = 0; 2219 region->size = 0; 2220 region->flags = 0; 2221 region->nr = 0; 2222 } 2223 2224 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled) 2225 { 2226 int i; 2227 2228 if (!region->mem) { 2229 return; 2230 } 2231 2232 for (i = 0; i < region->nr_mmaps; i++) { 2233 if (region->mmaps[i].mmap) { 2234 memory_region_set_enabled(®ion->mmaps[i].mem, enabled); 2235 } 2236 } 2237 2238 trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem), 2239 enabled); 2240 } 2241 2242 void vfio_reset_handler(void *opaque) 2243 { 2244 VFIOGroup *group; 2245 VFIODevice *vbasedev; 2246 2247 QLIST_FOREACH(group, &vfio_group_list, next) { 2248 QLIST_FOREACH(vbasedev, &group->device_list, next) { 2249 if (vbasedev->dev->realized) { 2250 vbasedev->ops->vfio_compute_needs_reset(vbasedev); 2251 } 2252 } 2253 } 2254 2255 QLIST_FOREACH(group, &vfio_group_list, next) { 2256 QLIST_FOREACH(vbasedev, &group->device_list, next) { 2257 if (vbasedev->dev->realized && vbasedev->needs_reset) { 2258 vbasedev->ops->vfio_hot_reset_multi(vbasedev); 2259 } 2260 } 2261 } 2262 } 2263 2264 static void vfio_kvm_device_add_group(VFIOGroup *group) 2265 { 2266 #ifdef CONFIG_KVM 2267 struct kvm_device_attr attr = { 2268 .group = KVM_DEV_VFIO_GROUP, 2269 .attr = KVM_DEV_VFIO_GROUP_ADD, 2270 .addr = (uint64_t)(unsigned long)&group->fd, 2271 }; 2272 2273 if (!kvm_enabled()) { 2274 return; 2275 } 2276 2277 if (vfio_kvm_device_fd < 0) { 2278 struct kvm_create_device cd = { 2279 .type = KVM_DEV_TYPE_VFIO, 2280 }; 2281 2282 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { 2283 error_report("Failed to create KVM VFIO device: %m"); 2284 return; 2285 } 2286 2287 vfio_kvm_device_fd = cd.fd; 2288 } 2289 2290 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 2291 error_report("Failed to add group %d to KVM VFIO device: %m", 2292 group->groupid); 2293 } 2294 #endif 2295 } 2296 2297 static void vfio_kvm_device_del_group(VFIOGroup *group) 2298 { 2299 #ifdef CONFIG_KVM 2300 struct kvm_device_attr attr = { 2301 .group = KVM_DEV_VFIO_GROUP, 2302 .attr = KVM_DEV_VFIO_GROUP_DEL, 2303 .addr = (uint64_t)(unsigned long)&group->fd, 2304 }; 2305 2306 if (vfio_kvm_device_fd < 0) { 2307 return; 2308 } 2309 2310 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 2311 error_report("Failed to remove group %d from KVM VFIO device: %m", 2312 group->groupid); 2313 } 2314 #endif 2315 } 2316 2317 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) 2318 { 2319 VFIOAddressSpace *space; 2320 2321 QLIST_FOREACH(space, &vfio_address_spaces, list) { 2322 if (space->as == as) { 2323 return space; 2324 } 2325 } 2326 2327 /* No suitable VFIOAddressSpace, create a new one */ 2328 space = g_malloc0(sizeof(*space)); 2329 space->as = as; 2330 QLIST_INIT(&space->containers); 2331 2332 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); 2333 2334 return space; 2335 } 2336 2337 static void vfio_put_address_space(VFIOAddressSpace *space) 2338 { 2339 if (QLIST_EMPTY(&space->containers)) { 2340 QLIST_REMOVE(space, list); 2341 g_free(space); 2342 } 2343 } 2344 2345 /* 2346 * vfio_get_iommu_type - selects the richest iommu_type (v2 first) 2347 */ 2348 static int vfio_get_iommu_type(VFIOContainer *container, 2349 Error **errp) 2350 { 2351 int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU, 2352 VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU }; 2353 int i; 2354 2355 for (i = 0; i < ARRAY_SIZE(iommu_types); i++) { 2356 if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) { 2357 return iommu_types[i]; 2358 } 2359 } 2360 error_setg(errp, "No available IOMMU models"); 2361 return -EINVAL; 2362 } 2363 2364 static int vfio_init_container(VFIOContainer *container, int group_fd, 2365 Error **errp) 2366 { 2367 int iommu_type, ret; 2368 2369 iommu_type = vfio_get_iommu_type(container, errp); 2370 if (iommu_type < 0) { 2371 return iommu_type; 2372 } 2373 2374 ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd); 2375 if (ret) { 2376 error_setg_errno(errp, errno, "Failed to set group container"); 2377 return -errno; 2378 } 2379 2380 while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) { 2381 if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 2382 /* 2383 * On sPAPR, despite the IOMMU subdriver always advertises v1 and 2384 * v2, the running platform may not support v2 and there is no 2385 * way to guess it until an IOMMU group gets added to the container. 2386 * So in case it fails with v2, try v1 as a fallback. 2387 */ 2388 iommu_type = VFIO_SPAPR_TCE_IOMMU; 2389 continue; 2390 } 2391 error_setg_errno(errp, errno, "Failed to set iommu for container"); 2392 return -errno; 2393 } 2394 2395 container->iommu_type = iommu_type; 2396 return 0; 2397 } 2398 2399 static int vfio_get_iommu_info(VFIOContainer *container, 2400 struct vfio_iommu_type1_info **info) 2401 { 2402 2403 size_t argsz = sizeof(struct vfio_iommu_type1_info); 2404 2405 *info = g_new0(struct vfio_iommu_type1_info, 1); 2406 again: 2407 (*info)->argsz = argsz; 2408 2409 if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) { 2410 g_free(*info); 2411 *info = NULL; 2412 return -errno; 2413 } 2414 2415 if (((*info)->argsz > argsz)) { 2416 argsz = (*info)->argsz; 2417 *info = g_realloc(*info, argsz); 2418 goto again; 2419 } 2420 2421 return 0; 2422 } 2423 2424 static struct vfio_info_cap_header * 2425 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) 2426 { 2427 struct vfio_info_cap_header *hdr; 2428 void *ptr = info; 2429 2430 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { 2431 return NULL; 2432 } 2433 2434 for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) { 2435 if (hdr->id == id) { 2436 return hdr; 2437 } 2438 } 2439 2440 return NULL; 2441 } 2442 2443 static void vfio_get_iommu_info_migration(VFIOContainer *container, 2444 struct vfio_iommu_type1_info *info) 2445 { 2446 struct vfio_info_cap_header *hdr; 2447 struct vfio_iommu_type1_info_cap_migration *cap_mig; 2448 2449 hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION); 2450 if (!hdr) { 2451 return; 2452 } 2453 2454 cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration, 2455 header); 2456 2457 /* 2458 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of 2459 * qemu_real_host_page_size to mark those dirty. 2460 */ 2461 if (cap_mig->pgsize_bitmap & qemu_real_host_page_size()) { 2462 container->dirty_pages_supported = true; 2463 container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size; 2464 container->dirty_pgsizes = cap_mig->pgsize_bitmap; 2465 } 2466 } 2467 2468 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as, 2469 Error **errp) 2470 { 2471 VFIOContainer *container; 2472 int ret, fd; 2473 VFIOAddressSpace *space; 2474 2475 space = vfio_get_address_space(as); 2476 2477 /* 2478 * VFIO is currently incompatible with discarding of RAM insofar as the 2479 * madvise to purge (zap) the page from QEMU's address space does not 2480 * interact with the memory API and therefore leaves stale virtual to 2481 * physical mappings in the IOMMU if the page was previously pinned. We 2482 * therefore set discarding broken for each group added to a container, 2483 * whether the container is used individually or shared. This provides 2484 * us with options to allow devices within a group to opt-in and allow 2485 * discarding, so long as it is done consistently for a group (for instance 2486 * if the device is an mdev device where it is known that the host vendor 2487 * driver will never pin pages outside of the working set of the guest 2488 * driver, which would thus not be discarding candidates). 2489 * 2490 * The first opportunity to induce pinning occurs here where we attempt to 2491 * attach the group to existing containers within the AddressSpace. If any 2492 * pages are already zapped from the virtual address space, such as from 2493 * previous discards, new pinning will cause valid mappings to be 2494 * re-established. Likewise, when the overall MemoryListener for a new 2495 * container is registered, a replay of mappings within the AddressSpace 2496 * will occur, re-establishing any previously zapped pages as well. 2497 * 2498 * Especially virtio-balloon is currently only prevented from discarding 2499 * new memory, it will not yet set ram_block_discard_set_required() and 2500 * therefore, neither stops us here or deals with the sudden memory 2501 * consumption of inflated memory. 2502 * 2503 * We do support discarding of memory coordinated via the RamDiscardManager 2504 * with some IOMMU types. vfio_ram_block_discard_disable() handles the 2505 * details once we know which type of IOMMU we are using. 2506 */ 2507 2508 QLIST_FOREACH(container, &space->containers, next) { 2509 if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) { 2510 ret = vfio_ram_block_discard_disable(container, true); 2511 if (ret) { 2512 error_setg_errno(errp, -ret, 2513 "Cannot set discarding of RAM broken"); 2514 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, 2515 &container->fd)) { 2516 error_report("vfio: error disconnecting group %d from" 2517 " container", group->groupid); 2518 } 2519 return ret; 2520 } 2521 group->container = container; 2522 QLIST_INSERT_HEAD(&container->group_list, group, container_next); 2523 vfio_kvm_device_add_group(group); 2524 return 0; 2525 } 2526 } 2527 2528 fd = qemu_open_old("/dev/vfio/vfio", O_RDWR); 2529 if (fd < 0) { 2530 error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio"); 2531 ret = -errno; 2532 goto put_space_exit; 2533 } 2534 2535 ret = ioctl(fd, VFIO_GET_API_VERSION); 2536 if (ret != VFIO_API_VERSION) { 2537 error_setg(errp, "supported vfio version: %d, " 2538 "reported version: %d", VFIO_API_VERSION, ret); 2539 ret = -EINVAL; 2540 goto close_fd_exit; 2541 } 2542 2543 container = g_malloc0(sizeof(*container)); 2544 container->space = space; 2545 container->fd = fd; 2546 container->error = NULL; 2547 container->dirty_pages_supported = false; 2548 container->dma_max_mappings = 0; 2549 QLIST_INIT(&container->giommu_list); 2550 QLIST_INIT(&container->hostwin_list); 2551 QLIST_INIT(&container->vrdl_list); 2552 2553 ret = vfio_init_container(container, group->fd, errp); 2554 if (ret) { 2555 goto free_container_exit; 2556 } 2557 2558 ret = vfio_ram_block_discard_disable(container, true); 2559 if (ret) { 2560 error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken"); 2561 goto free_container_exit; 2562 } 2563 2564 switch (container->iommu_type) { 2565 case VFIO_TYPE1v2_IOMMU: 2566 case VFIO_TYPE1_IOMMU: 2567 { 2568 struct vfio_iommu_type1_info *info; 2569 2570 ret = vfio_get_iommu_info(container, &info); 2571 if (ret) { 2572 error_setg_errno(errp, -ret, "Failed to get VFIO IOMMU info"); 2573 goto enable_discards_exit; 2574 } 2575 2576 if (info->flags & VFIO_IOMMU_INFO_PGSIZES) { 2577 container->pgsizes = info->iova_pgsizes; 2578 } else { 2579 container->pgsizes = qemu_real_host_page_size(); 2580 } 2581 2582 if (!vfio_get_info_dma_avail(info, &container->dma_max_mappings)) { 2583 container->dma_max_mappings = 65535; 2584 } 2585 vfio_get_iommu_info_migration(container, info); 2586 g_free(info); 2587 2588 /* 2589 * FIXME: We should parse VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 2590 * information to get the actual window extent rather than assume 2591 * a 64-bit IOVA address space. 2592 */ 2593 vfio_host_win_add(container, 0, (hwaddr)-1, container->pgsizes); 2594 2595 break; 2596 } 2597 case VFIO_SPAPR_TCE_v2_IOMMU: 2598 case VFIO_SPAPR_TCE_IOMMU: 2599 { 2600 struct vfio_iommu_spapr_tce_info info; 2601 bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU; 2602 2603 /* 2604 * The host kernel code implementing VFIO_IOMMU_DISABLE is called 2605 * when container fd is closed so we do not call it explicitly 2606 * in this file. 2607 */ 2608 if (!v2) { 2609 ret = ioctl(fd, VFIO_IOMMU_ENABLE); 2610 if (ret) { 2611 error_setg_errno(errp, errno, "failed to enable container"); 2612 ret = -errno; 2613 goto enable_discards_exit; 2614 } 2615 } else { 2616 container->prereg_listener = vfio_prereg_listener; 2617 2618 memory_listener_register(&container->prereg_listener, 2619 &address_space_memory); 2620 if (container->error) { 2621 memory_listener_unregister(&container->prereg_listener); 2622 ret = -1; 2623 error_propagate_prepend(errp, container->error, 2624 "RAM memory listener initialization failed: "); 2625 goto enable_discards_exit; 2626 } 2627 } 2628 2629 info.argsz = sizeof(info); 2630 ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info); 2631 if (ret) { 2632 error_setg_errno(errp, errno, 2633 "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed"); 2634 ret = -errno; 2635 if (v2) { 2636 memory_listener_unregister(&container->prereg_listener); 2637 } 2638 goto enable_discards_exit; 2639 } 2640 2641 if (v2) { 2642 container->pgsizes = info.ddw.pgsizes; 2643 /* 2644 * There is a default window in just created container. 2645 * To make region_add/del simpler, we better remove this 2646 * window now and let those iommu_listener callbacks 2647 * create/remove them when needed. 2648 */ 2649 ret = vfio_spapr_remove_window(container, info.dma32_window_start); 2650 if (ret) { 2651 error_setg_errno(errp, -ret, 2652 "failed to remove existing window"); 2653 goto enable_discards_exit; 2654 } 2655 } else { 2656 /* The default table uses 4K pages */ 2657 container->pgsizes = 0x1000; 2658 vfio_host_win_add(container, info.dma32_window_start, 2659 info.dma32_window_start + 2660 info.dma32_window_size - 1, 2661 0x1000); 2662 } 2663 } 2664 } 2665 2666 vfio_kvm_device_add_group(group); 2667 2668 QLIST_INIT(&container->group_list); 2669 QLIST_INSERT_HEAD(&space->containers, container, next); 2670 2671 group->container = container; 2672 QLIST_INSERT_HEAD(&container->group_list, group, container_next); 2673 2674 container->listener = vfio_memory_listener; 2675 2676 memory_listener_register(&container->listener, container->space->as); 2677 2678 if (container->error) { 2679 ret = -1; 2680 error_propagate_prepend(errp, container->error, 2681 "memory listener initialization failed: "); 2682 goto listener_release_exit; 2683 } 2684 2685 container->initialized = true; 2686 2687 return 0; 2688 listener_release_exit: 2689 QLIST_REMOVE(group, container_next); 2690 QLIST_REMOVE(container, next); 2691 vfio_kvm_device_del_group(group); 2692 vfio_listener_release(container); 2693 2694 enable_discards_exit: 2695 vfio_ram_block_discard_disable(container, false); 2696 2697 free_container_exit: 2698 g_free(container); 2699 2700 close_fd_exit: 2701 close(fd); 2702 2703 put_space_exit: 2704 vfio_put_address_space(space); 2705 2706 return ret; 2707 } 2708 2709 static void vfio_disconnect_container(VFIOGroup *group) 2710 { 2711 VFIOContainer *container = group->container; 2712 2713 QLIST_REMOVE(group, container_next); 2714 group->container = NULL; 2715 2716 /* 2717 * Explicitly release the listener first before unset container, 2718 * since unset may destroy the backend container if it's the last 2719 * group. 2720 */ 2721 if (QLIST_EMPTY(&container->group_list)) { 2722 vfio_listener_release(container); 2723 } 2724 2725 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) { 2726 error_report("vfio: error disconnecting group %d from container", 2727 group->groupid); 2728 } 2729 2730 if (QLIST_EMPTY(&container->group_list)) { 2731 VFIOAddressSpace *space = container->space; 2732 VFIOGuestIOMMU *giommu, *tmp; 2733 VFIOHostDMAWindow *hostwin, *next; 2734 2735 QLIST_REMOVE(container, next); 2736 2737 QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) { 2738 memory_region_unregister_iommu_notifier( 2739 MEMORY_REGION(giommu->iommu_mr), &giommu->n); 2740 QLIST_REMOVE(giommu, giommu_next); 2741 g_free(giommu); 2742 } 2743 2744 QLIST_FOREACH_SAFE(hostwin, &container->hostwin_list, hostwin_next, 2745 next) { 2746 QLIST_REMOVE(hostwin, hostwin_next); 2747 g_free(hostwin); 2748 } 2749 2750 trace_vfio_disconnect_container(container->fd); 2751 close(container->fd); 2752 g_free(container); 2753 2754 vfio_put_address_space(space); 2755 } 2756 } 2757 2758 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp) 2759 { 2760 VFIOGroup *group; 2761 char path[32]; 2762 struct vfio_group_status status = { .argsz = sizeof(status) }; 2763 2764 QLIST_FOREACH(group, &vfio_group_list, next) { 2765 if (group->groupid == groupid) { 2766 /* Found it. Now is it already in the right context? */ 2767 if (group->container->space->as == as) { 2768 return group; 2769 } else { 2770 error_setg(errp, "group %d used in multiple address spaces", 2771 group->groupid); 2772 return NULL; 2773 } 2774 } 2775 } 2776 2777 group = g_malloc0(sizeof(*group)); 2778 2779 snprintf(path, sizeof(path), "/dev/vfio/%d", groupid); 2780 group->fd = qemu_open_old(path, O_RDWR); 2781 if (group->fd < 0) { 2782 error_setg_errno(errp, errno, "failed to open %s", path); 2783 goto free_group_exit; 2784 } 2785 2786 if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) { 2787 error_setg_errno(errp, errno, "failed to get group %d status", groupid); 2788 goto close_fd_exit; 2789 } 2790 2791 if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) { 2792 error_setg(errp, "group %d is not viable", groupid); 2793 error_append_hint(errp, 2794 "Please ensure all devices within the iommu_group " 2795 "are bound to their vfio bus driver.\n"); 2796 goto close_fd_exit; 2797 } 2798 2799 group->groupid = groupid; 2800 QLIST_INIT(&group->device_list); 2801 2802 if (vfio_connect_container(group, as, errp)) { 2803 error_prepend(errp, "failed to setup container for group %d: ", 2804 groupid); 2805 goto close_fd_exit; 2806 } 2807 2808 if (QLIST_EMPTY(&vfio_group_list)) { 2809 qemu_register_reset(vfio_reset_handler, NULL); 2810 } 2811 2812 QLIST_INSERT_HEAD(&vfio_group_list, group, next); 2813 2814 return group; 2815 2816 close_fd_exit: 2817 close(group->fd); 2818 2819 free_group_exit: 2820 g_free(group); 2821 2822 return NULL; 2823 } 2824 2825 void vfio_put_group(VFIOGroup *group) 2826 { 2827 if (!group || !QLIST_EMPTY(&group->device_list)) { 2828 return; 2829 } 2830 2831 if (!group->ram_block_discard_allowed) { 2832 vfio_ram_block_discard_disable(group->container, false); 2833 } 2834 vfio_kvm_device_del_group(group); 2835 vfio_disconnect_container(group); 2836 QLIST_REMOVE(group, next); 2837 trace_vfio_put_group(group->fd); 2838 close(group->fd); 2839 g_free(group); 2840 2841 if (QLIST_EMPTY(&vfio_group_list)) { 2842 qemu_unregister_reset(vfio_reset_handler, NULL); 2843 } 2844 } 2845 2846 int vfio_get_device(VFIOGroup *group, const char *name, 2847 VFIODevice *vbasedev, Error **errp) 2848 { 2849 struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) }; 2850 int ret, fd; 2851 2852 fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name); 2853 if (fd < 0) { 2854 error_setg_errno(errp, errno, "error getting device from group %d", 2855 group->groupid); 2856 error_append_hint(errp, 2857 "Verify all devices in group %d are bound to vfio-<bus> " 2858 "or pci-stub and not already in use\n", group->groupid); 2859 return fd; 2860 } 2861 2862 ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info); 2863 if (ret) { 2864 error_setg_errno(errp, errno, "error getting device info"); 2865 close(fd); 2866 return ret; 2867 } 2868 2869 /* 2870 * Set discarding of RAM as not broken for this group if the driver knows 2871 * the device operates compatibly with discarding. Setting must be 2872 * consistent per group, but since compatibility is really only possible 2873 * with mdev currently, we expect singleton groups. 2874 */ 2875 if (vbasedev->ram_block_discard_allowed != 2876 group->ram_block_discard_allowed) { 2877 if (!QLIST_EMPTY(&group->device_list)) { 2878 error_setg(errp, "Inconsistent setting of support for discarding " 2879 "RAM (e.g., balloon) within group"); 2880 close(fd); 2881 return -1; 2882 } 2883 2884 if (!group->ram_block_discard_allowed) { 2885 group->ram_block_discard_allowed = true; 2886 vfio_ram_block_discard_disable(group->container, false); 2887 } 2888 } 2889 2890 vbasedev->fd = fd; 2891 vbasedev->group = group; 2892 QLIST_INSERT_HEAD(&group->device_list, vbasedev, next); 2893 2894 vbasedev->num_irqs = dev_info.num_irqs; 2895 vbasedev->num_regions = dev_info.num_regions; 2896 vbasedev->flags = dev_info.flags; 2897 2898 trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions, 2899 dev_info.num_irqs); 2900 2901 vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET); 2902 return 0; 2903 } 2904 2905 void vfio_put_base_device(VFIODevice *vbasedev) 2906 { 2907 if (!vbasedev->group) { 2908 return; 2909 } 2910 QLIST_REMOVE(vbasedev, next); 2911 vbasedev->group = NULL; 2912 trace_vfio_put_base_device(vbasedev->fd); 2913 close(vbasedev->fd); 2914 } 2915 2916 int vfio_get_region_info(VFIODevice *vbasedev, int index, 2917 struct vfio_region_info **info) 2918 { 2919 size_t argsz = sizeof(struct vfio_region_info); 2920 2921 *info = g_malloc0(argsz); 2922 2923 (*info)->index = index; 2924 retry: 2925 (*info)->argsz = argsz; 2926 2927 if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) { 2928 g_free(*info); 2929 *info = NULL; 2930 return -errno; 2931 } 2932 2933 if ((*info)->argsz > argsz) { 2934 argsz = (*info)->argsz; 2935 *info = g_realloc(*info, argsz); 2936 2937 goto retry; 2938 } 2939 2940 return 0; 2941 } 2942 2943 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type, 2944 uint32_t subtype, struct vfio_region_info **info) 2945 { 2946 int i; 2947 2948 for (i = 0; i < vbasedev->num_regions; i++) { 2949 struct vfio_info_cap_header *hdr; 2950 struct vfio_region_info_cap_type *cap_type; 2951 2952 if (vfio_get_region_info(vbasedev, i, info)) { 2953 continue; 2954 } 2955 2956 hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE); 2957 if (!hdr) { 2958 g_free(*info); 2959 continue; 2960 } 2961 2962 cap_type = container_of(hdr, struct vfio_region_info_cap_type, header); 2963 2964 trace_vfio_get_dev_region(vbasedev->name, i, 2965 cap_type->type, cap_type->subtype); 2966 2967 if (cap_type->type == type && cap_type->subtype == subtype) { 2968 return 0; 2969 } 2970 2971 g_free(*info); 2972 } 2973 2974 *info = NULL; 2975 return -ENODEV; 2976 } 2977 2978 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type) 2979 { 2980 struct vfio_region_info *info = NULL; 2981 bool ret = false; 2982 2983 if (!vfio_get_region_info(vbasedev, region, &info)) { 2984 if (vfio_get_region_info_cap(info, cap_type)) { 2985 ret = true; 2986 } 2987 g_free(info); 2988 } 2989 2990 return ret; 2991 } 2992 2993 /* 2994 * Interfaces for IBM EEH (Enhanced Error Handling) 2995 */ 2996 static bool vfio_eeh_container_ok(VFIOContainer *container) 2997 { 2998 /* 2999 * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO 3000 * implementation is broken if there are multiple groups in a 3001 * container. The hardware works in units of Partitionable 3002 * Endpoints (== IOMMU groups) and the EEH operations naively 3003 * iterate across all groups in the container, without any logic 3004 * to make sure the groups have their state synchronized. For 3005 * certain operations (ENABLE) that might be ok, until an error 3006 * occurs, but for others (GET_STATE) it's clearly broken. 3007 */ 3008 3009 /* 3010 * XXX Once fixed kernels exist, test for them here 3011 */ 3012 3013 if (QLIST_EMPTY(&container->group_list)) { 3014 return false; 3015 } 3016 3017 if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) { 3018 return false; 3019 } 3020 3021 return true; 3022 } 3023 3024 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op) 3025 { 3026 struct vfio_eeh_pe_op pe_op = { 3027 .argsz = sizeof(pe_op), 3028 .op = op, 3029 }; 3030 int ret; 3031 3032 if (!vfio_eeh_container_ok(container)) { 3033 error_report("vfio/eeh: EEH_PE_OP 0x%x: " 3034 "kernel requires a container with exactly one group", op); 3035 return -EPERM; 3036 } 3037 3038 ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op); 3039 if (ret < 0) { 3040 error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op); 3041 return -errno; 3042 } 3043 3044 return ret; 3045 } 3046 3047 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as) 3048 { 3049 VFIOAddressSpace *space = vfio_get_address_space(as); 3050 VFIOContainer *container = NULL; 3051 3052 if (QLIST_EMPTY(&space->containers)) { 3053 /* No containers to act on */ 3054 goto out; 3055 } 3056 3057 container = QLIST_FIRST(&space->containers); 3058 3059 if (QLIST_NEXT(container, next)) { 3060 /* We don't yet have logic to synchronize EEH state across 3061 * multiple containers */ 3062 container = NULL; 3063 goto out; 3064 } 3065 3066 out: 3067 vfio_put_address_space(space); 3068 return container; 3069 } 3070 3071 bool vfio_eeh_as_ok(AddressSpace *as) 3072 { 3073 VFIOContainer *container = vfio_eeh_as_container(as); 3074 3075 return (container != NULL) && vfio_eeh_container_ok(container); 3076 } 3077 3078 int vfio_eeh_as_op(AddressSpace *as, uint32_t op) 3079 { 3080 VFIOContainer *container = vfio_eeh_as_container(as); 3081 3082 if (!container) { 3083 return -ENODEV; 3084 } 3085 return vfio_eeh_container_op(container, op); 3086 } 3087