xref: /openbmc/qemu/hw/vfio/common.c (revision 7e6055c9)
1 /*
2  * generic functions used by VFIO devices
3  *
4  * Copyright Red Hat, Inc. 2012
5  *
6  * Authors:
7  *  Alex Williamson <alex.williamson@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Based on qemu-kvm device-assignment:
13  *  Adapted for KVM by Qumranet.
14  *  Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15  *  Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16  *  Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17  *  Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18  *  Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 #ifdef CONFIG_KVM
24 #include <linux/kvm.h>
25 #endif
26 #include <linux/vfio.h>
27 
28 #include "hw/vfio/vfio-common.h"
29 #include "hw/vfio/vfio.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "exec/ram_addr.h"
33 #include "hw/hw.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/range.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "trace.h"
41 #include "qapi/error.h"
42 #include "migration/migration.h"
43 
44 VFIOGroupList vfio_group_list =
45     QLIST_HEAD_INITIALIZER(vfio_group_list);
46 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces =
47     QLIST_HEAD_INITIALIZER(vfio_address_spaces);
48 
49 #ifdef CONFIG_KVM
50 /*
51  * We have a single VFIO pseudo device per KVM VM.  Once created it lives
52  * for the life of the VM.  Closing the file descriptor only drops our
53  * reference to it and the device's reference to kvm.  Therefore once
54  * initialized, this file descriptor is only released on QEMU exit and
55  * we'll re-use it should another vfio device be attached before then.
56  */
57 static int vfio_kvm_device_fd = -1;
58 #endif
59 
60 /*
61  * Common VFIO interrupt disable
62  */
63 void vfio_disable_irqindex(VFIODevice *vbasedev, int index)
64 {
65     struct vfio_irq_set irq_set = {
66         .argsz = sizeof(irq_set),
67         .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
68         .index = index,
69         .start = 0,
70         .count = 0,
71     };
72 
73     ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
74 }
75 
76 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index)
77 {
78     struct vfio_irq_set irq_set = {
79         .argsz = sizeof(irq_set),
80         .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK,
81         .index = index,
82         .start = 0,
83         .count = 1,
84     };
85 
86     ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
87 }
88 
89 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index)
90 {
91     struct vfio_irq_set irq_set = {
92         .argsz = sizeof(irq_set),
93         .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK,
94         .index = index,
95         .start = 0,
96         .count = 1,
97     };
98 
99     ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
100 }
101 
102 static inline const char *action_to_str(int action)
103 {
104     switch (action) {
105     case VFIO_IRQ_SET_ACTION_MASK:
106         return "MASK";
107     case VFIO_IRQ_SET_ACTION_UNMASK:
108         return "UNMASK";
109     case VFIO_IRQ_SET_ACTION_TRIGGER:
110         return "TRIGGER";
111     default:
112         return "UNKNOWN ACTION";
113     }
114 }
115 
116 static const char *index_to_str(VFIODevice *vbasedev, int index)
117 {
118     if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
119         return NULL;
120     }
121 
122     switch (index) {
123     case VFIO_PCI_INTX_IRQ_INDEX:
124         return "INTX";
125     case VFIO_PCI_MSI_IRQ_INDEX:
126         return "MSI";
127     case VFIO_PCI_MSIX_IRQ_INDEX:
128         return "MSIX";
129     case VFIO_PCI_ERR_IRQ_INDEX:
130         return "ERR";
131     case VFIO_PCI_REQ_IRQ_INDEX:
132         return "REQ";
133     default:
134         return NULL;
135     }
136 }
137 
138 static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state)
139 {
140     switch (container->iommu_type) {
141     case VFIO_TYPE1v2_IOMMU:
142     case VFIO_TYPE1_IOMMU:
143         /*
144          * We support coordinated discarding of RAM via the RamDiscardManager.
145          */
146         return ram_block_uncoordinated_discard_disable(state);
147     default:
148         /*
149          * VFIO_SPAPR_TCE_IOMMU most probably works just fine with
150          * RamDiscardManager, however, it is completely untested.
151          *
152          * VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does
153          * completely the opposite of managing mapping/pinning dynamically as
154          * required by RamDiscardManager. We would have to special-case sections
155          * with a RamDiscardManager.
156          */
157         return ram_block_discard_disable(state);
158     }
159 }
160 
161 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex,
162                            int action, int fd, Error **errp)
163 {
164     struct vfio_irq_set *irq_set;
165     int argsz, ret = 0;
166     const char *name;
167     int32_t *pfd;
168 
169     argsz = sizeof(*irq_set) + sizeof(*pfd);
170 
171     irq_set = g_malloc0(argsz);
172     irq_set->argsz = argsz;
173     irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action;
174     irq_set->index = index;
175     irq_set->start = subindex;
176     irq_set->count = 1;
177     pfd = (int32_t *)&irq_set->data;
178     *pfd = fd;
179 
180     if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
181         ret = -errno;
182     }
183     g_free(irq_set);
184 
185     if (!ret) {
186         return 0;
187     }
188 
189     error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure");
190 
191     name = index_to_str(vbasedev, index);
192     if (name) {
193         error_prepend(errp, "%s-%d: ", name, subindex);
194     } else {
195         error_prepend(errp, "index %d-%d: ", index, subindex);
196     }
197     error_prepend(errp,
198                   "Failed to %s %s eventfd signaling for interrupt ",
199                   fd < 0 ? "tear down" : "set up", action_to_str(action));
200     return ret;
201 }
202 
203 /*
204  * IO Port/MMIO - Beware of the endians, VFIO is always little endian
205  */
206 void vfio_region_write(void *opaque, hwaddr addr,
207                        uint64_t data, unsigned size)
208 {
209     VFIORegion *region = opaque;
210     VFIODevice *vbasedev = region->vbasedev;
211     union {
212         uint8_t byte;
213         uint16_t word;
214         uint32_t dword;
215         uint64_t qword;
216     } buf;
217 
218     switch (size) {
219     case 1:
220         buf.byte = data;
221         break;
222     case 2:
223         buf.word = cpu_to_le16(data);
224         break;
225     case 4:
226         buf.dword = cpu_to_le32(data);
227         break;
228     case 8:
229         buf.qword = cpu_to_le64(data);
230         break;
231     default:
232         hw_error("vfio: unsupported write size, %u bytes", size);
233         break;
234     }
235 
236     if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
237         error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64
238                      ",%d) failed: %m",
239                      __func__, vbasedev->name, region->nr,
240                      addr, data, size);
241     }
242 
243     trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size);
244 
245     /*
246      * A read or write to a BAR always signals an INTx EOI.  This will
247      * do nothing if not pending (including not in INTx mode).  We assume
248      * that a BAR access is in response to an interrupt and that BAR
249      * accesses will service the interrupt.  Unfortunately, we don't know
250      * which access will service the interrupt, so we're potentially
251      * getting quite a few host interrupts per guest interrupt.
252      */
253     vbasedev->ops->vfio_eoi(vbasedev);
254 }
255 
256 uint64_t vfio_region_read(void *opaque,
257                           hwaddr addr, unsigned size)
258 {
259     VFIORegion *region = opaque;
260     VFIODevice *vbasedev = region->vbasedev;
261     union {
262         uint8_t byte;
263         uint16_t word;
264         uint32_t dword;
265         uint64_t qword;
266     } buf;
267     uint64_t data = 0;
268 
269     if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
270         error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m",
271                      __func__, vbasedev->name, region->nr,
272                      addr, size);
273         return (uint64_t)-1;
274     }
275     switch (size) {
276     case 1:
277         data = buf.byte;
278         break;
279     case 2:
280         data = le16_to_cpu(buf.word);
281         break;
282     case 4:
283         data = le32_to_cpu(buf.dword);
284         break;
285     case 8:
286         data = le64_to_cpu(buf.qword);
287         break;
288     default:
289         hw_error("vfio: unsupported read size, %u bytes", size);
290         break;
291     }
292 
293     trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data);
294 
295     /* Same as write above */
296     vbasedev->ops->vfio_eoi(vbasedev);
297 
298     return data;
299 }
300 
301 const MemoryRegionOps vfio_region_ops = {
302     .read = vfio_region_read,
303     .write = vfio_region_write,
304     .endianness = DEVICE_LITTLE_ENDIAN,
305     .valid = {
306         .min_access_size = 1,
307         .max_access_size = 8,
308     },
309     .impl = {
310         .min_access_size = 1,
311         .max_access_size = 8,
312     },
313 };
314 
315 /*
316  * Device state interfaces
317  */
318 
319 bool vfio_mig_active(void)
320 {
321     VFIOGroup *group;
322     VFIODevice *vbasedev;
323 
324     if (QLIST_EMPTY(&vfio_group_list)) {
325         return false;
326     }
327 
328     QLIST_FOREACH(group, &vfio_group_list, next) {
329         QLIST_FOREACH(vbasedev, &group->device_list, next) {
330             if (vbasedev->migration_blocker) {
331                 return false;
332             }
333         }
334     }
335     return true;
336 }
337 
338 static bool vfio_devices_all_dirty_tracking(VFIOContainer *container)
339 {
340     VFIOGroup *group;
341     VFIODevice *vbasedev;
342     MigrationState *ms = migrate_get_current();
343 
344     if (!migration_is_setup_or_active(ms->state)) {
345         return false;
346     }
347 
348     QLIST_FOREACH(group, &container->group_list, container_next) {
349         QLIST_FOREACH(vbasedev, &group->device_list, next) {
350             VFIOMigration *migration = vbasedev->migration;
351 
352             if (!migration) {
353                 return false;
354             }
355 
356             if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF)
357                 && (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) {
358                 return false;
359             }
360         }
361     }
362     return true;
363 }
364 
365 static bool vfio_devices_all_running_and_saving(VFIOContainer *container)
366 {
367     VFIOGroup *group;
368     VFIODevice *vbasedev;
369     MigrationState *ms = migrate_get_current();
370 
371     if (!migration_is_setup_or_active(ms->state)) {
372         return false;
373     }
374 
375     QLIST_FOREACH(group, &container->group_list, container_next) {
376         QLIST_FOREACH(vbasedev, &group->device_list, next) {
377             VFIOMigration *migration = vbasedev->migration;
378 
379             if (!migration) {
380                 return false;
381             }
382 
383             if ((migration->device_state & VFIO_DEVICE_STATE_SAVING) &&
384                 (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) {
385                 continue;
386             } else {
387                 return false;
388             }
389         }
390     }
391     return true;
392 }
393 
394 static int vfio_dma_unmap_bitmap(VFIOContainer *container,
395                                  hwaddr iova, ram_addr_t size,
396                                  IOMMUTLBEntry *iotlb)
397 {
398     struct vfio_iommu_type1_dma_unmap *unmap;
399     struct vfio_bitmap *bitmap;
400     uint64_t pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size;
401     int ret;
402 
403     unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap));
404 
405     unmap->argsz = sizeof(*unmap) + sizeof(*bitmap);
406     unmap->iova = iova;
407     unmap->size = size;
408     unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP;
409     bitmap = (struct vfio_bitmap *)&unmap->data;
410 
411     /*
412      * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
413      * qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize
414      * to qemu_real_host_page_size.
415      */
416 
417     bitmap->pgsize = qemu_real_host_page_size;
418     bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
419                    BITS_PER_BYTE;
420 
421     if (bitmap->size > container->max_dirty_bitmap_size) {
422         error_report("UNMAP: Size of bitmap too big 0x%"PRIx64,
423                      (uint64_t)bitmap->size);
424         ret = -E2BIG;
425         goto unmap_exit;
426     }
427 
428     bitmap->data = g_try_malloc0(bitmap->size);
429     if (!bitmap->data) {
430         ret = -ENOMEM;
431         goto unmap_exit;
432     }
433 
434     ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap);
435     if (!ret) {
436         cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data,
437                 iotlb->translated_addr, pages);
438     } else {
439         error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m");
440     }
441 
442     g_free(bitmap->data);
443 unmap_exit:
444     g_free(unmap);
445     return ret;
446 }
447 
448 /*
449  * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86
450  */
451 static int vfio_dma_unmap(VFIOContainer *container,
452                           hwaddr iova, ram_addr_t size,
453                           IOMMUTLBEntry *iotlb)
454 {
455     struct vfio_iommu_type1_dma_unmap unmap = {
456         .argsz = sizeof(unmap),
457         .flags = 0,
458         .iova = iova,
459         .size = size,
460     };
461 
462     if (iotlb && container->dirty_pages_supported &&
463         vfio_devices_all_running_and_saving(container)) {
464         return vfio_dma_unmap_bitmap(container, iova, size, iotlb);
465     }
466 
467     while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) {
468         /*
469          * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c
470          * v4.15) where an overflow in its wrap-around check prevents us from
471          * unmapping the last page of the address space.  Test for the error
472          * condition and re-try the unmap excluding the last page.  The
473          * expectation is that we've never mapped the last page anyway and this
474          * unmap request comes via vIOMMU support which also makes it unlikely
475          * that this page is used.  This bug was introduced well after type1 v2
476          * support was introduced, so we shouldn't need to test for v1.  A fix
477          * is queued for kernel v5.0 so this workaround can be removed once
478          * affected kernels are sufficiently deprecated.
479          */
480         if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) &&
481             container->iommu_type == VFIO_TYPE1v2_IOMMU) {
482             trace_vfio_dma_unmap_overflow_workaround();
483             unmap.size -= 1ULL << ctz64(container->pgsizes);
484             continue;
485         }
486         error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno));
487         return -errno;
488     }
489 
490     return 0;
491 }
492 
493 static int vfio_dma_map(VFIOContainer *container, hwaddr iova,
494                         ram_addr_t size, void *vaddr, bool readonly)
495 {
496     struct vfio_iommu_type1_dma_map map = {
497         .argsz = sizeof(map),
498         .flags = VFIO_DMA_MAP_FLAG_READ,
499         .vaddr = (__u64)(uintptr_t)vaddr,
500         .iova = iova,
501         .size = size,
502     };
503 
504     if (!readonly) {
505         map.flags |= VFIO_DMA_MAP_FLAG_WRITE;
506     }
507 
508     /*
509      * Try the mapping, if it fails with EBUSY, unmap the region and try
510      * again.  This shouldn't be necessary, but we sometimes see it in
511      * the VGA ROM space.
512      */
513     if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 ||
514         (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 &&
515          ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) {
516         return 0;
517     }
518 
519     error_report("VFIO_MAP_DMA failed: %s", strerror(errno));
520     return -errno;
521 }
522 
523 static void vfio_host_win_add(VFIOContainer *container,
524                               hwaddr min_iova, hwaddr max_iova,
525                               uint64_t iova_pgsizes)
526 {
527     VFIOHostDMAWindow *hostwin;
528 
529     QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
530         if (ranges_overlap(hostwin->min_iova,
531                            hostwin->max_iova - hostwin->min_iova + 1,
532                            min_iova,
533                            max_iova - min_iova + 1)) {
534             hw_error("%s: Overlapped IOMMU are not enabled", __func__);
535         }
536     }
537 
538     hostwin = g_malloc0(sizeof(*hostwin));
539 
540     hostwin->min_iova = min_iova;
541     hostwin->max_iova = max_iova;
542     hostwin->iova_pgsizes = iova_pgsizes;
543     QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next);
544 }
545 
546 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova,
547                              hwaddr max_iova)
548 {
549     VFIOHostDMAWindow *hostwin;
550 
551     QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
552         if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) {
553             QLIST_REMOVE(hostwin, hostwin_next);
554             return 0;
555         }
556     }
557 
558     return -1;
559 }
560 
561 static bool vfio_listener_skipped_section(MemoryRegionSection *section)
562 {
563     return (!memory_region_is_ram(section->mr) &&
564             !memory_region_is_iommu(section->mr)) ||
565            memory_region_is_protected(section->mr) ||
566            /*
567             * Sizing an enabled 64-bit BAR can cause spurious mappings to
568             * addresses in the upper part of the 64-bit address space.  These
569             * are never accessed by the CPU and beyond the address width of
570             * some IOMMU hardware.  TODO: VFIO should tell us the IOMMU width.
571             */
572            section->offset_within_address_space & (1ULL << 63);
573 }
574 
575 /* Called with rcu_read_lock held.  */
576 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
577                                ram_addr_t *ram_addr, bool *read_only)
578 {
579     MemoryRegion *mr;
580     hwaddr xlat;
581     hwaddr len = iotlb->addr_mask + 1;
582     bool writable = iotlb->perm & IOMMU_WO;
583 
584     /*
585      * The IOMMU TLB entry we have just covers translation through
586      * this IOMMU to its immediate target.  We need to translate
587      * it the rest of the way through to memory.
588      */
589     mr = address_space_translate(&address_space_memory,
590                                  iotlb->translated_addr,
591                                  &xlat, &len, writable,
592                                  MEMTXATTRS_UNSPECIFIED);
593     if (!memory_region_is_ram(mr)) {
594         error_report("iommu map to non memory area %"HWADDR_PRIx"",
595                      xlat);
596         return false;
597     } else if (memory_region_has_ram_discard_manager(mr)) {
598         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
599         MemoryRegionSection tmp = {
600             .mr = mr,
601             .offset_within_region = xlat,
602             .size = int128_make64(len),
603         };
604 
605         /*
606          * Malicious VMs can map memory into the IOMMU, which is expected
607          * to remain discarded. vfio will pin all pages, populating memory.
608          * Disallow that. vmstate priorities make sure any RamDiscardManager
609          * were already restored before IOMMUs are restored.
610          */
611         if (!ram_discard_manager_is_populated(rdm, &tmp)) {
612             error_report("iommu map to discarded memory (e.g., unplugged via"
613                          " virtio-mem): %"HWADDR_PRIx"",
614                          iotlb->translated_addr);
615             return false;
616         }
617 
618         /*
619          * Malicious VMs might trigger discarding of IOMMU-mapped memory. The
620          * pages will remain pinned inside vfio until unmapped, resulting in a
621          * higher memory consumption than expected. If memory would get
622          * populated again later, there would be an inconsistency between pages
623          * pinned by vfio and pages seen by QEMU. This is the case until
624          * unmapped from the IOMMU (e.g., during device reset).
625          *
626          * With malicious guests, we really only care about pinning more memory
627          * than expected. RLIMIT_MEMLOCK set for the user/process can never be
628          * exceeded and can be used to mitigate this problem.
629          */
630         warn_report_once("Using vfio with vIOMMUs and coordinated discarding of"
631                          " RAM (e.g., virtio-mem) works, however, malicious"
632                          " guests can trigger pinning of more memory than"
633                          " intended via an IOMMU. It's possible to mitigate "
634                          " by setting/adjusting RLIMIT_MEMLOCK.");
635     }
636 
637     /*
638      * Translation truncates length to the IOMMU page size,
639      * check that it did not truncate too much.
640      */
641     if (len & iotlb->addr_mask) {
642         error_report("iommu has granularity incompatible with target AS");
643         return false;
644     }
645 
646     if (vaddr) {
647         *vaddr = memory_region_get_ram_ptr(mr) + xlat;
648     }
649 
650     if (ram_addr) {
651         *ram_addr = memory_region_get_ram_addr(mr) + xlat;
652     }
653 
654     if (read_only) {
655         *read_only = !writable || mr->readonly;
656     }
657 
658     return true;
659 }
660 
661 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
662 {
663     VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n);
664     VFIOContainer *container = giommu->container;
665     hwaddr iova = iotlb->iova + giommu->iommu_offset;
666     void *vaddr;
667     int ret;
668 
669     trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP",
670                                 iova, iova + iotlb->addr_mask);
671 
672     if (iotlb->target_as != &address_space_memory) {
673         error_report("Wrong target AS \"%s\", only system memory is allowed",
674                      iotlb->target_as->name ? iotlb->target_as->name : "none");
675         return;
676     }
677 
678     rcu_read_lock();
679 
680     if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
681         bool read_only;
682 
683         if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) {
684             goto out;
685         }
686         /*
687          * vaddr is only valid until rcu_read_unlock(). But after
688          * vfio_dma_map has set up the mapping the pages will be
689          * pinned by the kernel. This makes sure that the RAM backend
690          * of vaddr will always be there, even if the memory object is
691          * destroyed and its backing memory munmap-ed.
692          */
693         ret = vfio_dma_map(container, iova,
694                            iotlb->addr_mask + 1, vaddr,
695                            read_only);
696         if (ret) {
697             error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
698                          "0x%"HWADDR_PRIx", %p) = %d (%m)",
699                          container, iova,
700                          iotlb->addr_mask + 1, vaddr, ret);
701         }
702     } else {
703         ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb);
704         if (ret) {
705             error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
706                          "0x%"HWADDR_PRIx") = %d (%m)",
707                          container, iova,
708                          iotlb->addr_mask + 1, ret);
709         }
710     }
711 out:
712     rcu_read_unlock();
713 }
714 
715 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl,
716                                             MemoryRegionSection *section)
717 {
718     VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
719                                                 listener);
720     const hwaddr size = int128_get64(section->size);
721     const hwaddr iova = section->offset_within_address_space;
722     int ret;
723 
724     /* Unmap with a single call. */
725     ret = vfio_dma_unmap(vrdl->container, iova, size , NULL);
726     if (ret) {
727         error_report("%s: vfio_dma_unmap() failed: %s", __func__,
728                      strerror(-ret));
729     }
730 }
731 
732 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl,
733                                             MemoryRegionSection *section)
734 {
735     VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
736                                                 listener);
737     const hwaddr end = section->offset_within_region +
738                        int128_get64(section->size);
739     hwaddr start, next, iova;
740     void *vaddr;
741     int ret;
742 
743     /*
744      * Map in (aligned within memory region) minimum granularity, so we can
745      * unmap in minimum granularity later.
746      */
747     for (start = section->offset_within_region; start < end; start = next) {
748         next = ROUND_UP(start + 1, vrdl->granularity);
749         next = MIN(next, end);
750 
751         iova = start - section->offset_within_region +
752                section->offset_within_address_space;
753         vaddr = memory_region_get_ram_ptr(section->mr) + start;
754 
755         ret = vfio_dma_map(vrdl->container, iova, next - start,
756                            vaddr, section->readonly);
757         if (ret) {
758             /* Rollback */
759             vfio_ram_discard_notify_discard(rdl, section);
760             return ret;
761         }
762     }
763     return 0;
764 }
765 
766 static void vfio_register_ram_discard_listener(VFIOContainer *container,
767                                                MemoryRegionSection *section)
768 {
769     RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
770     VFIORamDiscardListener *vrdl;
771 
772     /* Ignore some corner cases not relevant in practice. */
773     g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE));
774     g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space,
775                              TARGET_PAGE_SIZE));
776     g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE));
777 
778     vrdl = g_new0(VFIORamDiscardListener, 1);
779     vrdl->container = container;
780     vrdl->mr = section->mr;
781     vrdl->offset_within_address_space = section->offset_within_address_space;
782     vrdl->size = int128_get64(section->size);
783     vrdl->granularity = ram_discard_manager_get_min_granularity(rdm,
784                                                                 section->mr);
785 
786     g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity));
787     g_assert(container->pgsizes &&
788              vrdl->granularity >= 1ULL << ctz64(container->pgsizes));
789 
790     ram_discard_listener_init(&vrdl->listener,
791                               vfio_ram_discard_notify_populate,
792                               vfio_ram_discard_notify_discard, true);
793     ram_discard_manager_register_listener(rdm, &vrdl->listener, section);
794     QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next);
795 
796     /*
797      * Sanity-check if we have a theoretically problematic setup where we could
798      * exceed the maximum number of possible DMA mappings over time. We assume
799      * that each mapped section in the same address space as a RamDiscardManager
800      * section consumes exactly one DMA mapping, with the exception of
801      * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections
802      * in the same address space as RamDiscardManager sections.
803      *
804      * We assume that each section in the address space consumes one memslot.
805      * We take the number of KVM memory slots as a best guess for the maximum
806      * number of sections in the address space we could have over time,
807      * also consuming DMA mappings.
808      */
809     if (container->dma_max_mappings) {
810         unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512;
811 
812 #ifdef CONFIG_KVM
813         if (kvm_enabled()) {
814             max_memslots = kvm_get_max_memslots();
815         }
816 #endif
817 
818         QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
819             hwaddr start, end;
820 
821             start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space,
822                                     vrdl->granularity);
823             end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size,
824                            vrdl->granularity);
825             vrdl_mappings += (end - start) / vrdl->granularity;
826             vrdl_count++;
827         }
828 
829         if (vrdl_mappings + max_memslots - vrdl_count >
830             container->dma_max_mappings) {
831             warn_report("%s: possibly running out of DMA mappings. E.g., try"
832                         " increasing the 'block-size' of virtio-mem devies."
833                         " Maximum possible DMA mappings: %d, Maximum possible"
834                         " memslots: %d", __func__, container->dma_max_mappings,
835                         max_memslots);
836         }
837     }
838 }
839 
840 static void vfio_unregister_ram_discard_listener(VFIOContainer *container,
841                                                  MemoryRegionSection *section)
842 {
843     RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
844     VFIORamDiscardListener *vrdl = NULL;
845 
846     QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
847         if (vrdl->mr == section->mr &&
848             vrdl->offset_within_address_space ==
849             section->offset_within_address_space) {
850             break;
851         }
852     }
853 
854     if (!vrdl) {
855         hw_error("vfio: Trying to unregister missing RAM discard listener");
856     }
857 
858     ram_discard_manager_unregister_listener(rdm, &vrdl->listener);
859     QLIST_REMOVE(vrdl, next);
860     g_free(vrdl);
861 }
862 
863 static void vfio_listener_region_add(MemoryListener *listener,
864                                      MemoryRegionSection *section)
865 {
866     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
867     hwaddr iova, end;
868     Int128 llend, llsize;
869     void *vaddr;
870     int ret;
871     VFIOHostDMAWindow *hostwin;
872     bool hostwin_found;
873     Error *err = NULL;
874 
875     if (vfio_listener_skipped_section(section)) {
876         trace_vfio_listener_region_add_skip(
877                 section->offset_within_address_space,
878                 section->offset_within_address_space +
879                 int128_get64(int128_sub(section->size, int128_one())));
880         return;
881     }
882 
883     if (unlikely((section->offset_within_address_space &
884                   ~qemu_real_host_page_mask) !=
885                  (section->offset_within_region & ~qemu_real_host_page_mask))) {
886         error_report("%s received unaligned region", __func__);
887         return;
888     }
889 
890     iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
891     llend = int128_make64(section->offset_within_address_space);
892     llend = int128_add(llend, section->size);
893     llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask));
894 
895     if (int128_ge(int128_make64(iova), llend)) {
896         if (memory_region_is_ram_device(section->mr)) {
897             trace_vfio_listener_region_add_no_dma_map(
898                 memory_region_name(section->mr),
899                 section->offset_within_address_space,
900                 int128_getlo(section->size),
901                 qemu_real_host_page_size);
902         }
903         return;
904     }
905     end = int128_get64(int128_sub(llend, int128_one()));
906 
907     if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
908         hwaddr pgsize = 0;
909 
910         /* For now intersections are not allowed, we may relax this later */
911         QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
912             if (ranges_overlap(hostwin->min_iova,
913                                hostwin->max_iova - hostwin->min_iova + 1,
914                                section->offset_within_address_space,
915                                int128_get64(section->size))) {
916                 error_setg(&err,
917                     "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing"
918                     "host DMA window [0x%"PRIx64",0x%"PRIx64"]",
919                     section->offset_within_address_space,
920                     section->offset_within_address_space +
921                         int128_get64(section->size) - 1,
922                     hostwin->min_iova, hostwin->max_iova);
923                 goto fail;
924             }
925         }
926 
927         ret = vfio_spapr_create_window(container, section, &pgsize);
928         if (ret) {
929             error_setg_errno(&err, -ret, "Failed to create SPAPR window");
930             goto fail;
931         }
932 
933         vfio_host_win_add(container, section->offset_within_address_space,
934                           section->offset_within_address_space +
935                           int128_get64(section->size) - 1, pgsize);
936 #ifdef CONFIG_KVM
937         if (kvm_enabled()) {
938             VFIOGroup *group;
939             IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
940             struct kvm_vfio_spapr_tce param;
941             struct kvm_device_attr attr = {
942                 .group = KVM_DEV_VFIO_GROUP,
943                 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE,
944                 .addr = (uint64_t)(unsigned long)&param,
945             };
946 
947             if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD,
948                                               &param.tablefd)) {
949                 QLIST_FOREACH(group, &container->group_list, container_next) {
950                     param.groupfd = group->fd;
951                     if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
952                         error_report("vfio: failed to setup fd %d "
953                                      "for a group with fd %d: %s",
954                                      param.tablefd, param.groupfd,
955                                      strerror(errno));
956                         return;
957                     }
958                     trace_vfio_spapr_group_attach(param.groupfd, param.tablefd);
959                 }
960             }
961         }
962 #endif
963     }
964 
965     hostwin_found = false;
966     QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
967         if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
968             hostwin_found = true;
969             break;
970         }
971     }
972 
973     if (!hostwin_found) {
974         error_setg(&err, "Container %p can't map guest IOVA region"
975                    " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end);
976         goto fail;
977     }
978 
979     memory_region_ref(section->mr);
980 
981     if (memory_region_is_iommu(section->mr)) {
982         VFIOGuestIOMMU *giommu;
983         IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
984         int iommu_idx;
985 
986         trace_vfio_listener_region_add_iommu(iova, end);
987         /*
988          * FIXME: For VFIO iommu types which have KVM acceleration to
989          * avoid bouncing all map/unmaps through qemu this way, this
990          * would be the right place to wire that up (tell the KVM
991          * device emulation the VFIO iommu handles to use).
992          */
993         giommu = g_malloc0(sizeof(*giommu));
994         giommu->iommu = iommu_mr;
995         giommu->iommu_offset = section->offset_within_address_space -
996                                section->offset_within_region;
997         giommu->container = container;
998         llend = int128_add(int128_make64(section->offset_within_region),
999                            section->size);
1000         llend = int128_sub(llend, int128_one());
1001         iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
1002                                                        MEMTXATTRS_UNSPECIFIED);
1003         iommu_notifier_init(&giommu->n, vfio_iommu_map_notify,
1004                             IOMMU_NOTIFIER_IOTLB_EVENTS,
1005                             section->offset_within_region,
1006                             int128_get64(llend),
1007                             iommu_idx);
1008 
1009         ret = memory_region_iommu_set_page_size_mask(giommu->iommu,
1010                                                      container->pgsizes,
1011                                                      &err);
1012         if (ret) {
1013             g_free(giommu);
1014             goto fail;
1015         }
1016 
1017         ret = memory_region_register_iommu_notifier(section->mr, &giommu->n,
1018                                                     &err);
1019         if (ret) {
1020             g_free(giommu);
1021             goto fail;
1022         }
1023         QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next);
1024         memory_region_iommu_replay(giommu->iommu, &giommu->n);
1025 
1026         return;
1027     }
1028 
1029     /* Here we assume that memory_region_is_ram(section->mr)==true */
1030 
1031     /*
1032      * For RAM memory regions with a RamDiscardManager, we only want to map the
1033      * actually populated parts - and update the mapping whenever we're notified
1034      * about changes.
1035      */
1036     if (memory_region_has_ram_discard_manager(section->mr)) {
1037         vfio_register_ram_discard_listener(container, section);
1038         return;
1039     }
1040 
1041     vaddr = memory_region_get_ram_ptr(section->mr) +
1042             section->offset_within_region +
1043             (iova - section->offset_within_address_space);
1044 
1045     trace_vfio_listener_region_add_ram(iova, end, vaddr);
1046 
1047     llsize = int128_sub(llend, int128_make64(iova));
1048 
1049     if (memory_region_is_ram_device(section->mr)) {
1050         hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1051 
1052         if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) {
1053             trace_vfio_listener_region_add_no_dma_map(
1054                 memory_region_name(section->mr),
1055                 section->offset_within_address_space,
1056                 int128_getlo(section->size),
1057                 pgmask + 1);
1058             return;
1059         }
1060     }
1061 
1062     ret = vfio_dma_map(container, iova, int128_get64(llsize),
1063                        vaddr, section->readonly);
1064     if (ret) {
1065         error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
1066                    "0x%"HWADDR_PRIx", %p) = %d (%m)",
1067                    container, iova, int128_get64(llsize), vaddr, ret);
1068         if (memory_region_is_ram_device(section->mr)) {
1069             /* Allow unexpected mappings not to be fatal for RAM devices */
1070             error_report_err(err);
1071             return;
1072         }
1073         goto fail;
1074     }
1075 
1076     return;
1077 
1078 fail:
1079     if (memory_region_is_ram_device(section->mr)) {
1080         error_report("failed to vfio_dma_map. pci p2p may not work");
1081         return;
1082     }
1083     /*
1084      * On the initfn path, store the first error in the container so we
1085      * can gracefully fail.  Runtime, there's not much we can do other
1086      * than throw a hardware error.
1087      */
1088     if (!container->initialized) {
1089         if (!container->error) {
1090             error_propagate_prepend(&container->error, err,
1091                                     "Region %s: ",
1092                                     memory_region_name(section->mr));
1093         } else {
1094             error_free(err);
1095         }
1096     } else {
1097         error_report_err(err);
1098         hw_error("vfio: DMA mapping failed, unable to continue");
1099     }
1100 }
1101 
1102 static void vfio_listener_region_del(MemoryListener *listener,
1103                                      MemoryRegionSection *section)
1104 {
1105     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1106     hwaddr iova, end;
1107     Int128 llend, llsize;
1108     int ret;
1109     bool try_unmap = true;
1110 
1111     if (vfio_listener_skipped_section(section)) {
1112         trace_vfio_listener_region_del_skip(
1113                 section->offset_within_address_space,
1114                 section->offset_within_address_space +
1115                 int128_get64(int128_sub(section->size, int128_one())));
1116         return;
1117     }
1118 
1119     if (unlikely((section->offset_within_address_space &
1120                   ~qemu_real_host_page_mask) !=
1121                  (section->offset_within_region & ~qemu_real_host_page_mask))) {
1122         error_report("%s received unaligned region", __func__);
1123         return;
1124     }
1125 
1126     if (memory_region_is_iommu(section->mr)) {
1127         VFIOGuestIOMMU *giommu;
1128 
1129         QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1130             if (MEMORY_REGION(giommu->iommu) == section->mr &&
1131                 giommu->n.start == section->offset_within_region) {
1132                 memory_region_unregister_iommu_notifier(section->mr,
1133                                                         &giommu->n);
1134                 QLIST_REMOVE(giommu, giommu_next);
1135                 g_free(giommu);
1136                 break;
1137             }
1138         }
1139 
1140         /*
1141          * FIXME: We assume the one big unmap below is adequate to
1142          * remove any individual page mappings in the IOMMU which
1143          * might have been copied into VFIO. This works for a page table
1144          * based IOMMU where a big unmap flattens a large range of IO-PTEs.
1145          * That may not be true for all IOMMU types.
1146          */
1147     }
1148 
1149     iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
1150     llend = int128_make64(section->offset_within_address_space);
1151     llend = int128_add(llend, section->size);
1152     llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask));
1153 
1154     if (int128_ge(int128_make64(iova), llend)) {
1155         return;
1156     }
1157     end = int128_get64(int128_sub(llend, int128_one()));
1158 
1159     llsize = int128_sub(llend, int128_make64(iova));
1160 
1161     trace_vfio_listener_region_del(iova, end);
1162 
1163     if (memory_region_is_ram_device(section->mr)) {
1164         hwaddr pgmask;
1165         VFIOHostDMAWindow *hostwin;
1166         bool hostwin_found = false;
1167 
1168         QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
1169             if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
1170                 hostwin_found = true;
1171                 break;
1172             }
1173         }
1174         assert(hostwin_found); /* or region_add() would have failed */
1175 
1176         pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1177         try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
1178     } else if (memory_region_has_ram_discard_manager(section->mr)) {
1179         vfio_unregister_ram_discard_listener(container, section);
1180         /* Unregistering will trigger an unmap. */
1181         try_unmap = false;
1182     }
1183 
1184     if (try_unmap) {
1185         if (int128_eq(llsize, int128_2_64())) {
1186             /* The unmap ioctl doesn't accept a full 64-bit span. */
1187             llsize = int128_rshift(llsize, 1);
1188             ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1189             if (ret) {
1190                 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1191                              "0x%"HWADDR_PRIx") = %d (%m)",
1192                              container, iova, int128_get64(llsize), ret);
1193             }
1194             iova += int128_get64(llsize);
1195         }
1196         ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1197         if (ret) {
1198             error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1199                          "0x%"HWADDR_PRIx") = %d (%m)",
1200                          container, iova, int128_get64(llsize), ret);
1201         }
1202     }
1203 
1204     memory_region_unref(section->mr);
1205 
1206     if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1207         vfio_spapr_remove_window(container,
1208                                  section->offset_within_address_space);
1209         if (vfio_host_win_del(container,
1210                               section->offset_within_address_space,
1211                               section->offset_within_address_space +
1212                               int128_get64(section->size) - 1) < 0) {
1213             hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx,
1214                      __func__, section->offset_within_address_space);
1215         }
1216     }
1217 }
1218 
1219 static void vfio_set_dirty_page_tracking(VFIOContainer *container, bool start)
1220 {
1221     int ret;
1222     struct vfio_iommu_type1_dirty_bitmap dirty = {
1223         .argsz = sizeof(dirty),
1224     };
1225 
1226     if (start) {
1227         dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START;
1228     } else {
1229         dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP;
1230     }
1231 
1232     ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty);
1233     if (ret) {
1234         error_report("Failed to set dirty tracking flag 0x%x errno: %d",
1235                      dirty.flags, errno);
1236     }
1237 }
1238 
1239 static void vfio_listener_log_global_start(MemoryListener *listener)
1240 {
1241     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1242 
1243     vfio_set_dirty_page_tracking(container, true);
1244 }
1245 
1246 static void vfio_listener_log_global_stop(MemoryListener *listener)
1247 {
1248     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1249 
1250     vfio_set_dirty_page_tracking(container, false);
1251 }
1252 
1253 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova,
1254                                  uint64_t size, ram_addr_t ram_addr)
1255 {
1256     struct vfio_iommu_type1_dirty_bitmap *dbitmap;
1257     struct vfio_iommu_type1_dirty_bitmap_get *range;
1258     uint64_t pages;
1259     int ret;
1260 
1261     dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range));
1262 
1263     dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range);
1264     dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
1265     range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data;
1266     range->iova = iova;
1267     range->size = size;
1268 
1269     /*
1270      * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
1271      * qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize
1272      * to qemu_real_host_page_size.
1273      */
1274     range->bitmap.pgsize = qemu_real_host_page_size;
1275 
1276     pages = REAL_HOST_PAGE_ALIGN(range->size) / qemu_real_host_page_size;
1277     range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
1278                                          BITS_PER_BYTE;
1279     range->bitmap.data = g_try_malloc0(range->bitmap.size);
1280     if (!range->bitmap.data) {
1281         ret = -ENOMEM;
1282         goto err_out;
1283     }
1284 
1285     ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap);
1286     if (ret) {
1287         error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64
1288                 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova,
1289                 (uint64_t)range->size, errno);
1290         goto err_out;
1291     }
1292 
1293     cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data,
1294                                             ram_addr, pages);
1295 
1296     trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size,
1297                                 range->bitmap.size, ram_addr);
1298 err_out:
1299     g_free(range->bitmap.data);
1300     g_free(dbitmap);
1301 
1302     return ret;
1303 }
1304 
1305 typedef struct {
1306     IOMMUNotifier n;
1307     VFIOGuestIOMMU *giommu;
1308 } vfio_giommu_dirty_notifier;
1309 
1310 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
1311 {
1312     vfio_giommu_dirty_notifier *gdn = container_of(n,
1313                                                 vfio_giommu_dirty_notifier, n);
1314     VFIOGuestIOMMU *giommu = gdn->giommu;
1315     VFIOContainer *container = giommu->container;
1316     hwaddr iova = iotlb->iova + giommu->iommu_offset;
1317     ram_addr_t translated_addr;
1318 
1319     trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask);
1320 
1321     if (iotlb->target_as != &address_space_memory) {
1322         error_report("Wrong target AS \"%s\", only system memory is allowed",
1323                      iotlb->target_as->name ? iotlb->target_as->name : "none");
1324         return;
1325     }
1326 
1327     rcu_read_lock();
1328     if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) {
1329         int ret;
1330 
1331         ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1,
1332                                     translated_addr);
1333         if (ret) {
1334             error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", "
1335                          "0x%"HWADDR_PRIx") = %d (%m)",
1336                          container, iova,
1337                          iotlb->addr_mask + 1, ret);
1338         }
1339     }
1340     rcu_read_unlock();
1341 }
1342 
1343 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section,
1344                                              void *opaque)
1345 {
1346     const hwaddr size = int128_get64(section->size);
1347     const hwaddr iova = section->offset_within_address_space;
1348     const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) +
1349                                 section->offset_within_region;
1350     VFIORamDiscardListener *vrdl = opaque;
1351 
1352     /*
1353      * Sync the whole mapped region (spanning multiple individual mappings)
1354      * in one go.
1355      */
1356     return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr);
1357 }
1358 
1359 static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container,
1360                                                    MemoryRegionSection *section)
1361 {
1362     RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
1363     VFIORamDiscardListener *vrdl = NULL;
1364 
1365     QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
1366         if (vrdl->mr == section->mr &&
1367             vrdl->offset_within_address_space ==
1368             section->offset_within_address_space) {
1369             break;
1370         }
1371     }
1372 
1373     if (!vrdl) {
1374         hw_error("vfio: Trying to sync missing RAM discard listener");
1375     }
1376 
1377     /*
1378      * We only want/can synchronize the bitmap for actually mapped parts -
1379      * which correspond to populated parts. Replay all populated parts.
1380      */
1381     return ram_discard_manager_replay_populated(rdm, section,
1382                                               vfio_ram_discard_get_dirty_bitmap,
1383                                                 &vrdl);
1384 }
1385 
1386 static int vfio_sync_dirty_bitmap(VFIOContainer *container,
1387                                   MemoryRegionSection *section)
1388 {
1389     ram_addr_t ram_addr;
1390 
1391     if (memory_region_is_iommu(section->mr)) {
1392         VFIOGuestIOMMU *giommu;
1393 
1394         QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1395             if (MEMORY_REGION(giommu->iommu) == section->mr &&
1396                 giommu->n.start == section->offset_within_region) {
1397                 Int128 llend;
1398                 vfio_giommu_dirty_notifier gdn = { .giommu = giommu };
1399                 int idx = memory_region_iommu_attrs_to_index(giommu->iommu,
1400                                                        MEMTXATTRS_UNSPECIFIED);
1401 
1402                 llend = int128_add(int128_make64(section->offset_within_region),
1403                                    section->size);
1404                 llend = int128_sub(llend, int128_one());
1405 
1406                 iommu_notifier_init(&gdn.n,
1407                                     vfio_iommu_map_dirty_notify,
1408                                     IOMMU_NOTIFIER_MAP,
1409                                     section->offset_within_region,
1410                                     int128_get64(llend),
1411                                     idx);
1412                 memory_region_iommu_replay(giommu->iommu, &gdn.n);
1413                 break;
1414             }
1415         }
1416         return 0;
1417     } else if (memory_region_has_ram_discard_manager(section->mr)) {
1418         return vfio_sync_ram_discard_listener_dirty_bitmap(container, section);
1419     }
1420 
1421     ram_addr = memory_region_get_ram_addr(section->mr) +
1422                section->offset_within_region;
1423 
1424     return vfio_get_dirty_bitmap(container,
1425                    REAL_HOST_PAGE_ALIGN(section->offset_within_address_space),
1426                    int128_get64(section->size), ram_addr);
1427 }
1428 
1429 static void vfio_listener_log_sync(MemoryListener *listener,
1430         MemoryRegionSection *section)
1431 {
1432     VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1433 
1434     if (vfio_listener_skipped_section(section) ||
1435         !container->dirty_pages_supported) {
1436         return;
1437     }
1438 
1439     if (vfio_devices_all_dirty_tracking(container)) {
1440         vfio_sync_dirty_bitmap(container, section);
1441     }
1442 }
1443 
1444 static const MemoryListener vfio_memory_listener = {
1445     .name = "vfio",
1446     .region_add = vfio_listener_region_add,
1447     .region_del = vfio_listener_region_del,
1448     .log_global_start = vfio_listener_log_global_start,
1449     .log_global_stop = vfio_listener_log_global_stop,
1450     .log_sync = vfio_listener_log_sync,
1451 };
1452 
1453 static void vfio_listener_release(VFIOContainer *container)
1454 {
1455     memory_listener_unregister(&container->listener);
1456     if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1457         memory_listener_unregister(&container->prereg_listener);
1458     }
1459 }
1460 
1461 static struct vfio_info_cap_header *
1462 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id)
1463 {
1464     struct vfio_info_cap_header *hdr;
1465 
1466     for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1467         if (hdr->id == id) {
1468             return hdr;
1469         }
1470     }
1471 
1472     return NULL;
1473 }
1474 
1475 struct vfio_info_cap_header *
1476 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id)
1477 {
1478     if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) {
1479         return NULL;
1480     }
1481 
1482     return vfio_get_cap((void *)info, info->cap_offset, id);
1483 }
1484 
1485 static struct vfio_info_cap_header *
1486 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1487 {
1488     if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1489         return NULL;
1490     }
1491 
1492     return vfio_get_cap((void *)info, info->cap_offset, id);
1493 }
1494 
1495 struct vfio_info_cap_header *
1496 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id)
1497 {
1498     if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) {
1499         return NULL;
1500     }
1501 
1502     return vfio_get_cap((void *)info, info->cap_offset, id);
1503 }
1504 
1505 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info,
1506                              unsigned int *avail)
1507 {
1508     struct vfio_info_cap_header *hdr;
1509     struct vfio_iommu_type1_info_dma_avail *cap;
1510 
1511     /* If the capability cannot be found, assume no DMA limiting */
1512     hdr = vfio_get_iommu_type1_info_cap(info,
1513                                         VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL);
1514     if (hdr == NULL) {
1515         return false;
1516     }
1517 
1518     if (avail != NULL) {
1519         cap = (void *) hdr;
1520         *avail = cap->avail;
1521     }
1522 
1523     return true;
1524 }
1525 
1526 static int vfio_setup_region_sparse_mmaps(VFIORegion *region,
1527                                           struct vfio_region_info *info)
1528 {
1529     struct vfio_info_cap_header *hdr;
1530     struct vfio_region_info_cap_sparse_mmap *sparse;
1531     int i, j;
1532 
1533     hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP);
1534     if (!hdr) {
1535         return -ENODEV;
1536     }
1537 
1538     sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header);
1539 
1540     trace_vfio_region_sparse_mmap_header(region->vbasedev->name,
1541                                          region->nr, sparse->nr_areas);
1542 
1543     region->mmaps = g_new0(VFIOMmap, sparse->nr_areas);
1544 
1545     for (i = 0, j = 0; i < sparse->nr_areas; i++) {
1546         trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset,
1547                                             sparse->areas[i].offset +
1548                                             sparse->areas[i].size);
1549 
1550         if (sparse->areas[i].size) {
1551             region->mmaps[j].offset = sparse->areas[i].offset;
1552             region->mmaps[j].size = sparse->areas[i].size;
1553             j++;
1554         }
1555     }
1556 
1557     region->nr_mmaps = j;
1558     region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap));
1559 
1560     return 0;
1561 }
1562 
1563 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region,
1564                       int index, const char *name)
1565 {
1566     struct vfio_region_info *info;
1567     int ret;
1568 
1569     ret = vfio_get_region_info(vbasedev, index, &info);
1570     if (ret) {
1571         return ret;
1572     }
1573 
1574     region->vbasedev = vbasedev;
1575     region->flags = info->flags;
1576     region->size = info->size;
1577     region->fd_offset = info->offset;
1578     region->nr = index;
1579 
1580     if (region->size) {
1581         region->mem = g_new0(MemoryRegion, 1);
1582         memory_region_init_io(region->mem, obj, &vfio_region_ops,
1583                               region, name, region->size);
1584 
1585         if (!vbasedev->no_mmap &&
1586             region->flags & VFIO_REGION_INFO_FLAG_MMAP) {
1587 
1588             ret = vfio_setup_region_sparse_mmaps(region, info);
1589 
1590             if (ret) {
1591                 region->nr_mmaps = 1;
1592                 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps);
1593                 region->mmaps[0].offset = 0;
1594                 region->mmaps[0].size = region->size;
1595             }
1596         }
1597     }
1598 
1599     g_free(info);
1600 
1601     trace_vfio_region_setup(vbasedev->name, index, name,
1602                             region->flags, region->fd_offset, region->size);
1603     return 0;
1604 }
1605 
1606 static void vfio_subregion_unmap(VFIORegion *region, int index)
1607 {
1608     trace_vfio_region_unmap(memory_region_name(&region->mmaps[index].mem),
1609                             region->mmaps[index].offset,
1610                             region->mmaps[index].offset +
1611                             region->mmaps[index].size - 1);
1612     memory_region_del_subregion(region->mem, &region->mmaps[index].mem);
1613     munmap(region->mmaps[index].mmap, region->mmaps[index].size);
1614     object_unparent(OBJECT(&region->mmaps[index].mem));
1615     region->mmaps[index].mmap = NULL;
1616 }
1617 
1618 int vfio_region_mmap(VFIORegion *region)
1619 {
1620     int i, prot = 0;
1621     char *name;
1622 
1623     if (!region->mem) {
1624         return 0;
1625     }
1626 
1627     prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0;
1628     prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0;
1629 
1630     for (i = 0; i < region->nr_mmaps; i++) {
1631         region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot,
1632                                      MAP_SHARED, region->vbasedev->fd,
1633                                      region->fd_offset +
1634                                      region->mmaps[i].offset);
1635         if (region->mmaps[i].mmap == MAP_FAILED) {
1636             int ret = -errno;
1637 
1638             trace_vfio_region_mmap_fault(memory_region_name(region->mem), i,
1639                                          region->fd_offset +
1640                                          region->mmaps[i].offset,
1641                                          region->fd_offset +
1642                                          region->mmaps[i].offset +
1643                                          region->mmaps[i].size - 1, ret);
1644 
1645             region->mmaps[i].mmap = NULL;
1646 
1647             for (i--; i >= 0; i--) {
1648                 vfio_subregion_unmap(region, i);
1649             }
1650 
1651             return ret;
1652         }
1653 
1654         name = g_strdup_printf("%s mmaps[%d]",
1655                                memory_region_name(region->mem), i);
1656         memory_region_init_ram_device_ptr(&region->mmaps[i].mem,
1657                                           memory_region_owner(region->mem),
1658                                           name, region->mmaps[i].size,
1659                                           region->mmaps[i].mmap);
1660         g_free(name);
1661         memory_region_add_subregion(region->mem, region->mmaps[i].offset,
1662                                     &region->mmaps[i].mem);
1663 
1664         trace_vfio_region_mmap(memory_region_name(&region->mmaps[i].mem),
1665                                region->mmaps[i].offset,
1666                                region->mmaps[i].offset +
1667                                region->mmaps[i].size - 1);
1668     }
1669 
1670     return 0;
1671 }
1672 
1673 void vfio_region_unmap(VFIORegion *region)
1674 {
1675     int i;
1676 
1677     if (!region->mem) {
1678         return;
1679     }
1680 
1681     for (i = 0; i < region->nr_mmaps; i++) {
1682         if (region->mmaps[i].mmap) {
1683             vfio_subregion_unmap(region, i);
1684         }
1685     }
1686 }
1687 
1688 void vfio_region_exit(VFIORegion *region)
1689 {
1690     int i;
1691 
1692     if (!region->mem) {
1693         return;
1694     }
1695 
1696     for (i = 0; i < region->nr_mmaps; i++) {
1697         if (region->mmaps[i].mmap) {
1698             memory_region_del_subregion(region->mem, &region->mmaps[i].mem);
1699         }
1700     }
1701 
1702     trace_vfio_region_exit(region->vbasedev->name, region->nr);
1703 }
1704 
1705 void vfio_region_finalize(VFIORegion *region)
1706 {
1707     int i;
1708 
1709     if (!region->mem) {
1710         return;
1711     }
1712 
1713     for (i = 0; i < region->nr_mmaps; i++) {
1714         if (region->mmaps[i].mmap) {
1715             munmap(region->mmaps[i].mmap, region->mmaps[i].size);
1716             object_unparent(OBJECT(&region->mmaps[i].mem));
1717         }
1718     }
1719 
1720     object_unparent(OBJECT(region->mem));
1721 
1722     g_free(region->mem);
1723     g_free(region->mmaps);
1724 
1725     trace_vfio_region_finalize(region->vbasedev->name, region->nr);
1726 
1727     region->mem = NULL;
1728     region->mmaps = NULL;
1729     region->nr_mmaps = 0;
1730     region->size = 0;
1731     region->flags = 0;
1732     region->nr = 0;
1733 }
1734 
1735 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled)
1736 {
1737     int i;
1738 
1739     if (!region->mem) {
1740         return;
1741     }
1742 
1743     for (i = 0; i < region->nr_mmaps; i++) {
1744         if (region->mmaps[i].mmap) {
1745             memory_region_set_enabled(&region->mmaps[i].mem, enabled);
1746         }
1747     }
1748 
1749     trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem),
1750                                         enabled);
1751 }
1752 
1753 void vfio_reset_handler(void *opaque)
1754 {
1755     VFIOGroup *group;
1756     VFIODevice *vbasedev;
1757 
1758     QLIST_FOREACH(group, &vfio_group_list, next) {
1759         QLIST_FOREACH(vbasedev, &group->device_list, next) {
1760             if (vbasedev->dev->realized) {
1761                 vbasedev->ops->vfio_compute_needs_reset(vbasedev);
1762             }
1763         }
1764     }
1765 
1766     QLIST_FOREACH(group, &vfio_group_list, next) {
1767         QLIST_FOREACH(vbasedev, &group->device_list, next) {
1768             if (vbasedev->dev->realized && vbasedev->needs_reset) {
1769                 vbasedev->ops->vfio_hot_reset_multi(vbasedev);
1770             }
1771         }
1772     }
1773 }
1774 
1775 static void vfio_kvm_device_add_group(VFIOGroup *group)
1776 {
1777 #ifdef CONFIG_KVM
1778     struct kvm_device_attr attr = {
1779         .group = KVM_DEV_VFIO_GROUP,
1780         .attr = KVM_DEV_VFIO_GROUP_ADD,
1781         .addr = (uint64_t)(unsigned long)&group->fd,
1782     };
1783 
1784     if (!kvm_enabled()) {
1785         return;
1786     }
1787 
1788     if (vfio_kvm_device_fd < 0) {
1789         struct kvm_create_device cd = {
1790             .type = KVM_DEV_TYPE_VFIO,
1791         };
1792 
1793         if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) {
1794             error_report("Failed to create KVM VFIO device: %m");
1795             return;
1796         }
1797 
1798         vfio_kvm_device_fd = cd.fd;
1799     }
1800 
1801     if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1802         error_report("Failed to add group %d to KVM VFIO device: %m",
1803                      group->groupid);
1804     }
1805 #endif
1806 }
1807 
1808 static void vfio_kvm_device_del_group(VFIOGroup *group)
1809 {
1810 #ifdef CONFIG_KVM
1811     struct kvm_device_attr attr = {
1812         .group = KVM_DEV_VFIO_GROUP,
1813         .attr = KVM_DEV_VFIO_GROUP_DEL,
1814         .addr = (uint64_t)(unsigned long)&group->fd,
1815     };
1816 
1817     if (vfio_kvm_device_fd < 0) {
1818         return;
1819     }
1820 
1821     if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1822         error_report("Failed to remove group %d from KVM VFIO device: %m",
1823                      group->groupid);
1824     }
1825 #endif
1826 }
1827 
1828 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as)
1829 {
1830     VFIOAddressSpace *space;
1831 
1832     QLIST_FOREACH(space, &vfio_address_spaces, list) {
1833         if (space->as == as) {
1834             return space;
1835         }
1836     }
1837 
1838     /* No suitable VFIOAddressSpace, create a new one */
1839     space = g_malloc0(sizeof(*space));
1840     space->as = as;
1841     QLIST_INIT(&space->containers);
1842 
1843     QLIST_INSERT_HEAD(&vfio_address_spaces, space, list);
1844 
1845     return space;
1846 }
1847 
1848 static void vfio_put_address_space(VFIOAddressSpace *space)
1849 {
1850     if (QLIST_EMPTY(&space->containers)) {
1851         QLIST_REMOVE(space, list);
1852         g_free(space);
1853     }
1854 }
1855 
1856 /*
1857  * vfio_get_iommu_type - selects the richest iommu_type (v2 first)
1858  */
1859 static int vfio_get_iommu_type(VFIOContainer *container,
1860                                Error **errp)
1861 {
1862     int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU,
1863                           VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU };
1864     int i;
1865 
1866     for (i = 0; i < ARRAY_SIZE(iommu_types); i++) {
1867         if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) {
1868             return iommu_types[i];
1869         }
1870     }
1871     error_setg(errp, "No available IOMMU models");
1872     return -EINVAL;
1873 }
1874 
1875 static int vfio_init_container(VFIOContainer *container, int group_fd,
1876                                Error **errp)
1877 {
1878     int iommu_type, ret;
1879 
1880     iommu_type = vfio_get_iommu_type(container, errp);
1881     if (iommu_type < 0) {
1882         return iommu_type;
1883     }
1884 
1885     ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd);
1886     if (ret) {
1887         error_setg_errno(errp, errno, "Failed to set group container");
1888         return -errno;
1889     }
1890 
1891     while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) {
1892         if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1893             /*
1894              * On sPAPR, despite the IOMMU subdriver always advertises v1 and
1895              * v2, the running platform may not support v2 and there is no
1896              * way to guess it until an IOMMU group gets added to the container.
1897              * So in case it fails with v2, try v1 as a fallback.
1898              */
1899             iommu_type = VFIO_SPAPR_TCE_IOMMU;
1900             continue;
1901         }
1902         error_setg_errno(errp, errno, "Failed to set iommu for container");
1903         return -errno;
1904     }
1905 
1906     container->iommu_type = iommu_type;
1907     return 0;
1908 }
1909 
1910 static int vfio_get_iommu_info(VFIOContainer *container,
1911                                struct vfio_iommu_type1_info **info)
1912 {
1913 
1914     size_t argsz = sizeof(struct vfio_iommu_type1_info);
1915 
1916     *info = g_new0(struct vfio_iommu_type1_info, 1);
1917 again:
1918     (*info)->argsz = argsz;
1919 
1920     if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) {
1921         g_free(*info);
1922         *info = NULL;
1923         return -errno;
1924     }
1925 
1926     if (((*info)->argsz > argsz)) {
1927         argsz = (*info)->argsz;
1928         *info = g_realloc(*info, argsz);
1929         goto again;
1930     }
1931 
1932     return 0;
1933 }
1934 
1935 static struct vfio_info_cap_header *
1936 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1937 {
1938     struct vfio_info_cap_header *hdr;
1939     void *ptr = info;
1940 
1941     if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1942         return NULL;
1943     }
1944 
1945     for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1946         if (hdr->id == id) {
1947             return hdr;
1948         }
1949     }
1950 
1951     return NULL;
1952 }
1953 
1954 static void vfio_get_iommu_info_migration(VFIOContainer *container,
1955                                          struct vfio_iommu_type1_info *info)
1956 {
1957     struct vfio_info_cap_header *hdr;
1958     struct vfio_iommu_type1_info_cap_migration *cap_mig;
1959 
1960     hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION);
1961     if (!hdr) {
1962         return;
1963     }
1964 
1965     cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration,
1966                             header);
1967 
1968     /*
1969      * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
1970      * qemu_real_host_page_size to mark those dirty.
1971      */
1972     if (cap_mig->pgsize_bitmap & qemu_real_host_page_size) {
1973         container->dirty_pages_supported = true;
1974         container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size;
1975         container->dirty_pgsizes = cap_mig->pgsize_bitmap;
1976     }
1977 }
1978 
1979 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
1980                                   Error **errp)
1981 {
1982     VFIOContainer *container;
1983     int ret, fd;
1984     VFIOAddressSpace *space;
1985 
1986     space = vfio_get_address_space(as);
1987 
1988     /*
1989      * VFIO is currently incompatible with discarding of RAM insofar as the
1990      * madvise to purge (zap) the page from QEMU's address space does not
1991      * interact with the memory API and therefore leaves stale virtual to
1992      * physical mappings in the IOMMU if the page was previously pinned.  We
1993      * therefore set discarding broken for each group added to a container,
1994      * whether the container is used individually or shared.  This provides
1995      * us with options to allow devices within a group to opt-in and allow
1996      * discarding, so long as it is done consistently for a group (for instance
1997      * if the device is an mdev device where it is known that the host vendor
1998      * driver will never pin pages outside of the working set of the guest
1999      * driver, which would thus not be discarding candidates).
2000      *
2001      * The first opportunity to induce pinning occurs here where we attempt to
2002      * attach the group to existing containers within the AddressSpace.  If any
2003      * pages are already zapped from the virtual address space, such as from
2004      * previous discards, new pinning will cause valid mappings to be
2005      * re-established.  Likewise, when the overall MemoryListener for a new
2006      * container is registered, a replay of mappings within the AddressSpace
2007      * will occur, re-establishing any previously zapped pages as well.
2008      *
2009      * Especially virtio-balloon is currently only prevented from discarding
2010      * new memory, it will not yet set ram_block_discard_set_required() and
2011      * therefore, neither stops us here or deals with the sudden memory
2012      * consumption of inflated memory.
2013      *
2014      * We do support discarding of memory coordinated via the RamDiscardManager
2015      * with some IOMMU types. vfio_ram_block_discard_disable() handles the
2016      * details once we know which type of IOMMU we are using.
2017      */
2018 
2019     QLIST_FOREACH(container, &space->containers, next) {
2020         if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) {
2021             ret = vfio_ram_block_discard_disable(container, true);
2022             if (ret) {
2023                 error_setg_errno(errp, -ret,
2024                                  "Cannot set discarding of RAM broken");
2025                 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER,
2026                           &container->fd)) {
2027                     error_report("vfio: error disconnecting group %d from"
2028                                  " container", group->groupid);
2029                 }
2030                 return ret;
2031             }
2032             group->container = container;
2033             QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2034             vfio_kvm_device_add_group(group);
2035             return 0;
2036         }
2037     }
2038 
2039     fd = qemu_open_old("/dev/vfio/vfio", O_RDWR);
2040     if (fd < 0) {
2041         error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio");
2042         ret = -errno;
2043         goto put_space_exit;
2044     }
2045 
2046     ret = ioctl(fd, VFIO_GET_API_VERSION);
2047     if (ret != VFIO_API_VERSION) {
2048         error_setg(errp, "supported vfio version: %d, "
2049                    "reported version: %d", VFIO_API_VERSION, ret);
2050         ret = -EINVAL;
2051         goto close_fd_exit;
2052     }
2053 
2054     container = g_malloc0(sizeof(*container));
2055     container->space = space;
2056     container->fd = fd;
2057     container->error = NULL;
2058     container->dirty_pages_supported = false;
2059     container->dma_max_mappings = 0;
2060     QLIST_INIT(&container->giommu_list);
2061     QLIST_INIT(&container->hostwin_list);
2062     QLIST_INIT(&container->vrdl_list);
2063 
2064     ret = vfio_init_container(container, group->fd, errp);
2065     if (ret) {
2066         goto free_container_exit;
2067     }
2068 
2069     ret = vfio_ram_block_discard_disable(container, true);
2070     if (ret) {
2071         error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken");
2072         goto free_container_exit;
2073     }
2074 
2075     switch (container->iommu_type) {
2076     case VFIO_TYPE1v2_IOMMU:
2077     case VFIO_TYPE1_IOMMU:
2078     {
2079         struct vfio_iommu_type1_info *info;
2080 
2081         /*
2082          * FIXME: This assumes that a Type1 IOMMU can map any 64-bit
2083          * IOVA whatsoever.  That's not actually true, but the current
2084          * kernel interface doesn't tell us what it can map, and the
2085          * existing Type1 IOMMUs generally support any IOVA we're
2086          * going to actually try in practice.
2087          */
2088         ret = vfio_get_iommu_info(container, &info);
2089 
2090         if (ret || !(info->flags & VFIO_IOMMU_INFO_PGSIZES)) {
2091             /* Assume 4k IOVA page size */
2092             info->iova_pgsizes = 4096;
2093         }
2094         vfio_host_win_add(container, 0, (hwaddr)-1, info->iova_pgsizes);
2095         container->pgsizes = info->iova_pgsizes;
2096 
2097         /* The default in the kernel ("dma_entry_limit") is 65535. */
2098         container->dma_max_mappings = 65535;
2099         if (!ret) {
2100             vfio_get_info_dma_avail(info, &container->dma_max_mappings);
2101             vfio_get_iommu_info_migration(container, info);
2102         }
2103         g_free(info);
2104         break;
2105     }
2106     case VFIO_SPAPR_TCE_v2_IOMMU:
2107     case VFIO_SPAPR_TCE_IOMMU:
2108     {
2109         struct vfio_iommu_spapr_tce_info info;
2110         bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU;
2111 
2112         /*
2113          * The host kernel code implementing VFIO_IOMMU_DISABLE is called
2114          * when container fd is closed so we do not call it explicitly
2115          * in this file.
2116          */
2117         if (!v2) {
2118             ret = ioctl(fd, VFIO_IOMMU_ENABLE);
2119             if (ret) {
2120                 error_setg_errno(errp, errno, "failed to enable container");
2121                 ret = -errno;
2122                 goto enable_discards_exit;
2123             }
2124         } else {
2125             container->prereg_listener = vfio_prereg_listener;
2126 
2127             memory_listener_register(&container->prereg_listener,
2128                                      &address_space_memory);
2129             if (container->error) {
2130                 memory_listener_unregister(&container->prereg_listener);
2131                 ret = -1;
2132                 error_propagate_prepend(errp, container->error,
2133                     "RAM memory listener initialization failed: ");
2134                 goto enable_discards_exit;
2135             }
2136         }
2137 
2138         info.argsz = sizeof(info);
2139         ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
2140         if (ret) {
2141             error_setg_errno(errp, errno,
2142                              "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed");
2143             ret = -errno;
2144             if (v2) {
2145                 memory_listener_unregister(&container->prereg_listener);
2146             }
2147             goto enable_discards_exit;
2148         }
2149 
2150         if (v2) {
2151             container->pgsizes = info.ddw.pgsizes;
2152             /*
2153              * There is a default window in just created container.
2154              * To make region_add/del simpler, we better remove this
2155              * window now and let those iommu_listener callbacks
2156              * create/remove them when needed.
2157              */
2158             ret = vfio_spapr_remove_window(container, info.dma32_window_start);
2159             if (ret) {
2160                 error_setg_errno(errp, -ret,
2161                                  "failed to remove existing window");
2162                 goto enable_discards_exit;
2163             }
2164         } else {
2165             /* The default table uses 4K pages */
2166             container->pgsizes = 0x1000;
2167             vfio_host_win_add(container, info.dma32_window_start,
2168                               info.dma32_window_start +
2169                               info.dma32_window_size - 1,
2170                               0x1000);
2171         }
2172     }
2173     }
2174 
2175     vfio_kvm_device_add_group(group);
2176 
2177     QLIST_INIT(&container->group_list);
2178     QLIST_INSERT_HEAD(&space->containers, container, next);
2179 
2180     group->container = container;
2181     QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2182 
2183     container->listener = vfio_memory_listener;
2184 
2185     memory_listener_register(&container->listener, container->space->as);
2186 
2187     if (container->error) {
2188         ret = -1;
2189         error_propagate_prepend(errp, container->error,
2190             "memory listener initialization failed: ");
2191         goto listener_release_exit;
2192     }
2193 
2194     container->initialized = true;
2195 
2196     return 0;
2197 listener_release_exit:
2198     QLIST_REMOVE(group, container_next);
2199     QLIST_REMOVE(container, next);
2200     vfio_kvm_device_del_group(group);
2201     vfio_listener_release(container);
2202 
2203 enable_discards_exit:
2204     vfio_ram_block_discard_disable(container, false);
2205 
2206 free_container_exit:
2207     g_free(container);
2208 
2209 close_fd_exit:
2210     close(fd);
2211 
2212 put_space_exit:
2213     vfio_put_address_space(space);
2214 
2215     return ret;
2216 }
2217 
2218 static void vfio_disconnect_container(VFIOGroup *group)
2219 {
2220     VFIOContainer *container = group->container;
2221 
2222     QLIST_REMOVE(group, container_next);
2223     group->container = NULL;
2224 
2225     /*
2226      * Explicitly release the listener first before unset container,
2227      * since unset may destroy the backend container if it's the last
2228      * group.
2229      */
2230     if (QLIST_EMPTY(&container->group_list)) {
2231         vfio_listener_release(container);
2232     }
2233 
2234     if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) {
2235         error_report("vfio: error disconnecting group %d from container",
2236                      group->groupid);
2237     }
2238 
2239     if (QLIST_EMPTY(&container->group_list)) {
2240         VFIOAddressSpace *space = container->space;
2241         VFIOGuestIOMMU *giommu, *tmp;
2242 
2243         QLIST_REMOVE(container, next);
2244 
2245         QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) {
2246             memory_region_unregister_iommu_notifier(
2247                     MEMORY_REGION(giommu->iommu), &giommu->n);
2248             QLIST_REMOVE(giommu, giommu_next);
2249             g_free(giommu);
2250         }
2251 
2252         trace_vfio_disconnect_container(container->fd);
2253         close(container->fd);
2254         g_free(container);
2255 
2256         vfio_put_address_space(space);
2257     }
2258 }
2259 
2260 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp)
2261 {
2262     VFIOGroup *group;
2263     char path[32];
2264     struct vfio_group_status status = { .argsz = sizeof(status) };
2265 
2266     QLIST_FOREACH(group, &vfio_group_list, next) {
2267         if (group->groupid == groupid) {
2268             /* Found it.  Now is it already in the right context? */
2269             if (group->container->space->as == as) {
2270                 return group;
2271             } else {
2272                 error_setg(errp, "group %d used in multiple address spaces",
2273                            group->groupid);
2274                 return NULL;
2275             }
2276         }
2277     }
2278 
2279     group = g_malloc0(sizeof(*group));
2280 
2281     snprintf(path, sizeof(path), "/dev/vfio/%d", groupid);
2282     group->fd = qemu_open_old(path, O_RDWR);
2283     if (group->fd < 0) {
2284         error_setg_errno(errp, errno, "failed to open %s", path);
2285         goto free_group_exit;
2286     }
2287 
2288     if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) {
2289         error_setg_errno(errp, errno, "failed to get group %d status", groupid);
2290         goto close_fd_exit;
2291     }
2292 
2293     if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
2294         error_setg(errp, "group %d is not viable", groupid);
2295         error_append_hint(errp,
2296                           "Please ensure all devices within the iommu_group "
2297                           "are bound to their vfio bus driver.\n");
2298         goto close_fd_exit;
2299     }
2300 
2301     group->groupid = groupid;
2302     QLIST_INIT(&group->device_list);
2303 
2304     if (vfio_connect_container(group, as, errp)) {
2305         error_prepend(errp, "failed to setup container for group %d: ",
2306                       groupid);
2307         goto close_fd_exit;
2308     }
2309 
2310     if (QLIST_EMPTY(&vfio_group_list)) {
2311         qemu_register_reset(vfio_reset_handler, NULL);
2312     }
2313 
2314     QLIST_INSERT_HEAD(&vfio_group_list, group, next);
2315 
2316     return group;
2317 
2318 close_fd_exit:
2319     close(group->fd);
2320 
2321 free_group_exit:
2322     g_free(group);
2323 
2324     return NULL;
2325 }
2326 
2327 void vfio_put_group(VFIOGroup *group)
2328 {
2329     if (!group || !QLIST_EMPTY(&group->device_list)) {
2330         return;
2331     }
2332 
2333     if (!group->ram_block_discard_allowed) {
2334         vfio_ram_block_discard_disable(group->container, false);
2335     }
2336     vfio_kvm_device_del_group(group);
2337     vfio_disconnect_container(group);
2338     QLIST_REMOVE(group, next);
2339     trace_vfio_put_group(group->fd);
2340     close(group->fd);
2341     g_free(group);
2342 
2343     if (QLIST_EMPTY(&vfio_group_list)) {
2344         qemu_unregister_reset(vfio_reset_handler, NULL);
2345     }
2346 }
2347 
2348 int vfio_get_device(VFIOGroup *group, const char *name,
2349                     VFIODevice *vbasedev, Error **errp)
2350 {
2351     struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) };
2352     int ret, fd;
2353 
2354     fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name);
2355     if (fd < 0) {
2356         error_setg_errno(errp, errno, "error getting device from group %d",
2357                          group->groupid);
2358         error_append_hint(errp,
2359                       "Verify all devices in group %d are bound to vfio-<bus> "
2360                       "or pci-stub and not already in use\n", group->groupid);
2361         return fd;
2362     }
2363 
2364     ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info);
2365     if (ret) {
2366         error_setg_errno(errp, errno, "error getting device info");
2367         close(fd);
2368         return ret;
2369     }
2370 
2371     /*
2372      * Set discarding of RAM as not broken for this group if the driver knows
2373      * the device operates compatibly with discarding.  Setting must be
2374      * consistent per group, but since compatibility is really only possible
2375      * with mdev currently, we expect singleton groups.
2376      */
2377     if (vbasedev->ram_block_discard_allowed !=
2378         group->ram_block_discard_allowed) {
2379         if (!QLIST_EMPTY(&group->device_list)) {
2380             error_setg(errp, "Inconsistent setting of support for discarding "
2381                        "RAM (e.g., balloon) within group");
2382             close(fd);
2383             return -1;
2384         }
2385 
2386         if (!group->ram_block_discard_allowed) {
2387             group->ram_block_discard_allowed = true;
2388             vfio_ram_block_discard_disable(group->container, false);
2389         }
2390     }
2391 
2392     vbasedev->fd = fd;
2393     vbasedev->group = group;
2394     QLIST_INSERT_HEAD(&group->device_list, vbasedev, next);
2395 
2396     vbasedev->num_irqs = dev_info.num_irqs;
2397     vbasedev->num_regions = dev_info.num_regions;
2398     vbasedev->flags = dev_info.flags;
2399 
2400     trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions,
2401                           dev_info.num_irqs);
2402 
2403     vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET);
2404     return 0;
2405 }
2406 
2407 void vfio_put_base_device(VFIODevice *vbasedev)
2408 {
2409     if (!vbasedev->group) {
2410         return;
2411     }
2412     QLIST_REMOVE(vbasedev, next);
2413     vbasedev->group = NULL;
2414     trace_vfio_put_base_device(vbasedev->fd);
2415     close(vbasedev->fd);
2416 }
2417 
2418 int vfio_get_region_info(VFIODevice *vbasedev, int index,
2419                          struct vfio_region_info **info)
2420 {
2421     size_t argsz = sizeof(struct vfio_region_info);
2422 
2423     *info = g_malloc0(argsz);
2424 
2425     (*info)->index = index;
2426 retry:
2427     (*info)->argsz = argsz;
2428 
2429     if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) {
2430         g_free(*info);
2431         *info = NULL;
2432         return -errno;
2433     }
2434 
2435     if ((*info)->argsz > argsz) {
2436         argsz = (*info)->argsz;
2437         *info = g_realloc(*info, argsz);
2438 
2439         goto retry;
2440     }
2441 
2442     return 0;
2443 }
2444 
2445 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type,
2446                              uint32_t subtype, struct vfio_region_info **info)
2447 {
2448     int i;
2449 
2450     for (i = 0; i < vbasedev->num_regions; i++) {
2451         struct vfio_info_cap_header *hdr;
2452         struct vfio_region_info_cap_type *cap_type;
2453 
2454         if (vfio_get_region_info(vbasedev, i, info)) {
2455             continue;
2456         }
2457 
2458         hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE);
2459         if (!hdr) {
2460             g_free(*info);
2461             continue;
2462         }
2463 
2464         cap_type = container_of(hdr, struct vfio_region_info_cap_type, header);
2465 
2466         trace_vfio_get_dev_region(vbasedev->name, i,
2467                                   cap_type->type, cap_type->subtype);
2468 
2469         if (cap_type->type == type && cap_type->subtype == subtype) {
2470             return 0;
2471         }
2472 
2473         g_free(*info);
2474     }
2475 
2476     *info = NULL;
2477     return -ENODEV;
2478 }
2479 
2480 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type)
2481 {
2482     struct vfio_region_info *info = NULL;
2483     bool ret = false;
2484 
2485     if (!vfio_get_region_info(vbasedev, region, &info)) {
2486         if (vfio_get_region_info_cap(info, cap_type)) {
2487             ret = true;
2488         }
2489         g_free(info);
2490     }
2491 
2492     return ret;
2493 }
2494 
2495 /*
2496  * Interfaces for IBM EEH (Enhanced Error Handling)
2497  */
2498 static bool vfio_eeh_container_ok(VFIOContainer *container)
2499 {
2500     /*
2501      * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO
2502      * implementation is broken if there are multiple groups in a
2503      * container.  The hardware works in units of Partitionable
2504      * Endpoints (== IOMMU groups) and the EEH operations naively
2505      * iterate across all groups in the container, without any logic
2506      * to make sure the groups have their state synchronized.  For
2507      * certain operations (ENABLE) that might be ok, until an error
2508      * occurs, but for others (GET_STATE) it's clearly broken.
2509      */
2510 
2511     /*
2512      * XXX Once fixed kernels exist, test for them here
2513      */
2514 
2515     if (QLIST_EMPTY(&container->group_list)) {
2516         return false;
2517     }
2518 
2519     if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) {
2520         return false;
2521     }
2522 
2523     return true;
2524 }
2525 
2526 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op)
2527 {
2528     struct vfio_eeh_pe_op pe_op = {
2529         .argsz = sizeof(pe_op),
2530         .op = op,
2531     };
2532     int ret;
2533 
2534     if (!vfio_eeh_container_ok(container)) {
2535         error_report("vfio/eeh: EEH_PE_OP 0x%x: "
2536                      "kernel requires a container with exactly one group", op);
2537         return -EPERM;
2538     }
2539 
2540     ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op);
2541     if (ret < 0) {
2542         error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op);
2543         return -errno;
2544     }
2545 
2546     return ret;
2547 }
2548 
2549 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as)
2550 {
2551     VFIOAddressSpace *space = vfio_get_address_space(as);
2552     VFIOContainer *container = NULL;
2553 
2554     if (QLIST_EMPTY(&space->containers)) {
2555         /* No containers to act on */
2556         goto out;
2557     }
2558 
2559     container = QLIST_FIRST(&space->containers);
2560 
2561     if (QLIST_NEXT(container, next)) {
2562         /* We don't yet have logic to synchronize EEH state across
2563          * multiple containers */
2564         container = NULL;
2565         goto out;
2566     }
2567 
2568 out:
2569     vfio_put_address_space(space);
2570     return container;
2571 }
2572 
2573 bool vfio_eeh_as_ok(AddressSpace *as)
2574 {
2575     VFIOContainer *container = vfio_eeh_as_container(as);
2576 
2577     return (container != NULL) && vfio_eeh_container_ok(container);
2578 }
2579 
2580 int vfio_eeh_as_op(AddressSpace *as, uint32_t op)
2581 {
2582     VFIOContainer *container = vfio_eeh_as_container(as);
2583 
2584     if (!container) {
2585         return -ENODEV;
2586     }
2587     return vfio_eeh_container_op(container, op);
2588 }
2589