1 /* 2 * generic functions used by VFIO devices 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 #ifdef CONFIG_KVM 24 #include <linux/kvm.h> 25 #endif 26 #include <linux/vfio.h> 27 28 #include "hw/vfio/vfio-common.h" 29 #include "hw/vfio/pci.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "exec/ram_addr.h" 33 #include "hw/hw.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/range.h" 37 #include "sysemu/kvm.h" 38 #include "sysemu/reset.h" 39 #include "sysemu/runstate.h" 40 #include "trace.h" 41 #include "qapi/error.h" 42 #include "migration/migration.h" 43 #include "migration/misc.h" 44 #include "migration/blocker.h" 45 #include "migration/qemu-file.h" 46 #include "sysemu/tpm.h" 47 48 VFIODeviceList vfio_device_list = 49 QLIST_HEAD_INITIALIZER(vfio_device_list); 50 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = 51 QLIST_HEAD_INITIALIZER(vfio_address_spaces); 52 53 #ifdef CONFIG_KVM 54 /* 55 * We have a single VFIO pseudo device per KVM VM. Once created it lives 56 * for the life of the VM. Closing the file descriptor only drops our 57 * reference to it and the device's reference to kvm. Therefore once 58 * initialized, this file descriptor is only released on QEMU exit and 59 * we'll re-use it should another vfio device be attached before then. 60 */ 61 int vfio_kvm_device_fd = -1; 62 #endif 63 64 /* 65 * Device state interfaces 66 */ 67 68 bool vfio_mig_active(void) 69 { 70 VFIODevice *vbasedev; 71 72 if (QLIST_EMPTY(&vfio_device_list)) { 73 return false; 74 } 75 76 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 77 if (vbasedev->migration_blocker) { 78 return false; 79 } 80 } 81 return true; 82 } 83 84 static Error *multiple_devices_migration_blocker; 85 86 /* 87 * Multiple devices migration is allowed only if all devices support P2P 88 * migration. Single device migration is allowed regardless of P2P migration 89 * support. 90 */ 91 static bool vfio_multiple_devices_migration_is_supported(void) 92 { 93 VFIODevice *vbasedev; 94 unsigned int device_num = 0; 95 bool all_support_p2p = true; 96 97 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 98 if (vbasedev->migration) { 99 device_num++; 100 101 if (!(vbasedev->migration->mig_flags & VFIO_MIGRATION_P2P)) { 102 all_support_p2p = false; 103 } 104 } 105 } 106 107 return all_support_p2p || device_num <= 1; 108 } 109 110 int vfio_block_multiple_devices_migration(VFIODevice *vbasedev, Error **errp) 111 { 112 int ret; 113 114 if (vfio_multiple_devices_migration_is_supported()) { 115 return 0; 116 } 117 118 if (vbasedev->enable_migration == ON_OFF_AUTO_ON) { 119 error_setg(errp, "Multiple VFIO devices migration is supported only if " 120 "all of them support P2P migration"); 121 return -EINVAL; 122 } 123 124 if (multiple_devices_migration_blocker) { 125 return 0; 126 } 127 128 error_setg(&multiple_devices_migration_blocker, 129 "Multiple VFIO devices migration is supported only if all of " 130 "them support P2P migration"); 131 ret = migrate_add_blocker(&multiple_devices_migration_blocker, errp); 132 133 return ret; 134 } 135 136 void vfio_unblock_multiple_devices_migration(void) 137 { 138 if (!multiple_devices_migration_blocker || 139 !vfio_multiple_devices_migration_is_supported()) { 140 return; 141 } 142 143 migrate_del_blocker(&multiple_devices_migration_blocker); 144 } 145 146 bool vfio_viommu_preset(VFIODevice *vbasedev) 147 { 148 return vbasedev->bcontainer->space->as != &address_space_memory; 149 } 150 151 static void vfio_set_migration_error(int err) 152 { 153 MigrationState *ms = migrate_get_current(); 154 155 if (migration_is_setup_or_active()) { 156 WITH_QEMU_LOCK_GUARD(&ms->qemu_file_lock) { 157 if (ms->to_dst_file) { 158 qemu_file_set_error(ms->to_dst_file, err); 159 } 160 } 161 } 162 } 163 164 bool vfio_device_state_is_running(VFIODevice *vbasedev) 165 { 166 VFIOMigration *migration = vbasedev->migration; 167 168 return migration->device_state == VFIO_DEVICE_STATE_RUNNING || 169 migration->device_state == VFIO_DEVICE_STATE_RUNNING_P2P; 170 } 171 172 bool vfio_device_state_is_precopy(VFIODevice *vbasedev) 173 { 174 VFIOMigration *migration = vbasedev->migration; 175 176 return migration->device_state == VFIO_DEVICE_STATE_PRE_COPY || 177 migration->device_state == VFIO_DEVICE_STATE_PRE_COPY_P2P; 178 } 179 180 static bool vfio_devices_all_dirty_tracking(VFIOContainerBase *bcontainer) 181 { 182 VFIODevice *vbasedev; 183 MigrationState *ms = migrate_get_current(); 184 185 if (ms->state != MIGRATION_STATUS_ACTIVE && 186 ms->state != MIGRATION_STATUS_DEVICE) { 187 return false; 188 } 189 190 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 191 VFIOMigration *migration = vbasedev->migration; 192 193 if (!migration) { 194 return false; 195 } 196 197 if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF && 198 (vfio_device_state_is_running(vbasedev) || 199 vfio_device_state_is_precopy(vbasedev))) { 200 return false; 201 } 202 } 203 return true; 204 } 205 206 bool vfio_devices_all_device_dirty_tracking(const VFIOContainerBase *bcontainer) 207 { 208 VFIODevice *vbasedev; 209 210 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 211 if (!vbasedev->dirty_pages_supported) { 212 return false; 213 } 214 } 215 216 return true; 217 } 218 219 /* 220 * Check if all VFIO devices are running and migration is active, which is 221 * essentially equivalent to the migration being in pre-copy phase. 222 */ 223 bool 224 vfio_devices_all_running_and_mig_active(const VFIOContainerBase *bcontainer) 225 { 226 VFIODevice *vbasedev; 227 228 if (!migration_is_active(migrate_get_current())) { 229 return false; 230 } 231 232 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 233 VFIOMigration *migration = vbasedev->migration; 234 235 if (!migration) { 236 return false; 237 } 238 239 if (vfio_device_state_is_running(vbasedev) || 240 vfio_device_state_is_precopy(vbasedev)) { 241 continue; 242 } else { 243 return false; 244 } 245 } 246 return true; 247 } 248 249 static bool vfio_listener_skipped_section(MemoryRegionSection *section) 250 { 251 return (!memory_region_is_ram(section->mr) && 252 !memory_region_is_iommu(section->mr)) || 253 memory_region_is_protected(section->mr) || 254 /* 255 * Sizing an enabled 64-bit BAR can cause spurious mappings to 256 * addresses in the upper part of the 64-bit address space. These 257 * are never accessed by the CPU and beyond the address width of 258 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. 259 */ 260 section->offset_within_address_space & (1ULL << 63); 261 } 262 263 /* Called with rcu_read_lock held. */ 264 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 265 ram_addr_t *ram_addr, bool *read_only) 266 { 267 bool ret, mr_has_discard_manager; 268 269 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only, 270 &mr_has_discard_manager); 271 if (ret && mr_has_discard_manager) { 272 /* 273 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The 274 * pages will remain pinned inside vfio until unmapped, resulting in a 275 * higher memory consumption than expected. If memory would get 276 * populated again later, there would be an inconsistency between pages 277 * pinned by vfio and pages seen by QEMU. This is the case until 278 * unmapped from the IOMMU (e.g., during device reset). 279 * 280 * With malicious guests, we really only care about pinning more memory 281 * than expected. RLIMIT_MEMLOCK set for the user/process can never be 282 * exceeded and can be used to mitigate this problem. 283 */ 284 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" 285 " RAM (e.g., virtio-mem) works, however, malicious" 286 " guests can trigger pinning of more memory than" 287 " intended via an IOMMU. It's possible to mitigate " 288 " by setting/adjusting RLIMIT_MEMLOCK."); 289 } 290 return ret; 291 } 292 293 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 294 { 295 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); 296 VFIOContainerBase *bcontainer = giommu->bcontainer; 297 hwaddr iova = iotlb->iova + giommu->iommu_offset; 298 void *vaddr; 299 int ret; 300 301 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", 302 iova, iova + iotlb->addr_mask); 303 304 if (iotlb->target_as != &address_space_memory) { 305 error_report("Wrong target AS \"%s\", only system memory is allowed", 306 iotlb->target_as->name ? iotlb->target_as->name : "none"); 307 vfio_set_migration_error(-EINVAL); 308 return; 309 } 310 311 rcu_read_lock(); 312 313 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 314 bool read_only; 315 316 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) { 317 goto out; 318 } 319 /* 320 * vaddr is only valid until rcu_read_unlock(). But after 321 * vfio_dma_map has set up the mapping the pages will be 322 * pinned by the kernel. This makes sure that the RAM backend 323 * of vaddr will always be there, even if the memory object is 324 * destroyed and its backing memory munmap-ed. 325 */ 326 ret = vfio_container_dma_map(bcontainer, iova, 327 iotlb->addr_mask + 1, vaddr, 328 read_only); 329 if (ret) { 330 error_report("vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " 331 "0x%"HWADDR_PRIx", %p) = %d (%s)", 332 bcontainer, iova, 333 iotlb->addr_mask + 1, vaddr, ret, strerror(-ret)); 334 } 335 } else { 336 ret = vfio_container_dma_unmap(bcontainer, iova, 337 iotlb->addr_mask + 1, iotlb); 338 if (ret) { 339 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 340 "0x%"HWADDR_PRIx") = %d (%s)", 341 bcontainer, iova, 342 iotlb->addr_mask + 1, ret, strerror(-ret)); 343 vfio_set_migration_error(ret); 344 } 345 } 346 out: 347 rcu_read_unlock(); 348 } 349 350 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, 351 MemoryRegionSection *section) 352 { 353 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 354 listener); 355 VFIOContainerBase *bcontainer = vrdl->bcontainer; 356 const hwaddr size = int128_get64(section->size); 357 const hwaddr iova = section->offset_within_address_space; 358 int ret; 359 360 /* Unmap with a single call. */ 361 ret = vfio_container_dma_unmap(bcontainer, iova, size , NULL); 362 if (ret) { 363 error_report("%s: vfio_container_dma_unmap() failed: %s", __func__, 364 strerror(-ret)); 365 } 366 } 367 368 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, 369 MemoryRegionSection *section) 370 { 371 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 372 listener); 373 VFIOContainerBase *bcontainer = vrdl->bcontainer; 374 const hwaddr end = section->offset_within_region + 375 int128_get64(section->size); 376 hwaddr start, next, iova; 377 void *vaddr; 378 int ret; 379 380 /* 381 * Map in (aligned within memory region) minimum granularity, so we can 382 * unmap in minimum granularity later. 383 */ 384 for (start = section->offset_within_region; start < end; start = next) { 385 next = ROUND_UP(start + 1, vrdl->granularity); 386 next = MIN(next, end); 387 388 iova = start - section->offset_within_region + 389 section->offset_within_address_space; 390 vaddr = memory_region_get_ram_ptr(section->mr) + start; 391 392 ret = vfio_container_dma_map(bcontainer, iova, next - start, 393 vaddr, section->readonly); 394 if (ret) { 395 /* Rollback */ 396 vfio_ram_discard_notify_discard(rdl, section); 397 return ret; 398 } 399 } 400 return 0; 401 } 402 403 static void vfio_register_ram_discard_listener(VFIOContainerBase *bcontainer, 404 MemoryRegionSection *section) 405 { 406 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 407 VFIORamDiscardListener *vrdl; 408 409 /* Ignore some corner cases not relevant in practice. */ 410 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); 411 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, 412 TARGET_PAGE_SIZE)); 413 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); 414 415 vrdl = g_new0(VFIORamDiscardListener, 1); 416 vrdl->bcontainer = bcontainer; 417 vrdl->mr = section->mr; 418 vrdl->offset_within_address_space = section->offset_within_address_space; 419 vrdl->size = int128_get64(section->size); 420 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, 421 section->mr); 422 423 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); 424 g_assert(bcontainer->pgsizes && 425 vrdl->granularity >= 1ULL << ctz64(bcontainer->pgsizes)); 426 427 ram_discard_listener_init(&vrdl->listener, 428 vfio_ram_discard_notify_populate, 429 vfio_ram_discard_notify_discard, true); 430 ram_discard_manager_register_listener(rdm, &vrdl->listener, section); 431 QLIST_INSERT_HEAD(&bcontainer->vrdl_list, vrdl, next); 432 433 /* 434 * Sanity-check if we have a theoretically problematic setup where we could 435 * exceed the maximum number of possible DMA mappings over time. We assume 436 * that each mapped section in the same address space as a RamDiscardManager 437 * section consumes exactly one DMA mapping, with the exception of 438 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections 439 * in the same address space as RamDiscardManager sections. 440 * 441 * We assume that each section in the address space consumes one memslot. 442 * We take the number of KVM memory slots as a best guess for the maximum 443 * number of sections in the address space we could have over time, 444 * also consuming DMA mappings. 445 */ 446 if (bcontainer->dma_max_mappings) { 447 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; 448 449 #ifdef CONFIG_KVM 450 if (kvm_enabled()) { 451 max_memslots = kvm_get_max_memslots(); 452 } 453 #endif 454 455 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 456 hwaddr start, end; 457 458 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, 459 vrdl->granularity); 460 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, 461 vrdl->granularity); 462 vrdl_mappings += (end - start) / vrdl->granularity; 463 vrdl_count++; 464 } 465 466 if (vrdl_mappings + max_memslots - vrdl_count > 467 bcontainer->dma_max_mappings) { 468 warn_report("%s: possibly running out of DMA mappings. E.g., try" 469 " increasing the 'block-size' of virtio-mem devies." 470 " Maximum possible DMA mappings: %d, Maximum possible" 471 " memslots: %d", __func__, bcontainer->dma_max_mappings, 472 max_memslots); 473 } 474 } 475 } 476 477 static void vfio_unregister_ram_discard_listener(VFIOContainerBase *bcontainer, 478 MemoryRegionSection *section) 479 { 480 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 481 VFIORamDiscardListener *vrdl = NULL; 482 483 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 484 if (vrdl->mr == section->mr && 485 vrdl->offset_within_address_space == 486 section->offset_within_address_space) { 487 break; 488 } 489 } 490 491 if (!vrdl) { 492 hw_error("vfio: Trying to unregister missing RAM discard listener"); 493 } 494 495 ram_discard_manager_unregister_listener(rdm, &vrdl->listener); 496 QLIST_REMOVE(vrdl, next); 497 g_free(vrdl); 498 } 499 500 static bool vfio_known_safe_misalignment(MemoryRegionSection *section) 501 { 502 MemoryRegion *mr = section->mr; 503 504 if (!TPM_IS_CRB(mr->owner)) { 505 return false; 506 } 507 508 /* this is a known safe misaligned region, just trace for debug purpose */ 509 trace_vfio_known_safe_misalignment(memory_region_name(mr), 510 section->offset_within_address_space, 511 section->offset_within_region, 512 qemu_real_host_page_size()); 513 return true; 514 } 515 516 static bool vfio_listener_valid_section(MemoryRegionSection *section, 517 const char *name) 518 { 519 if (vfio_listener_skipped_section(section)) { 520 trace_vfio_listener_region_skip(name, 521 section->offset_within_address_space, 522 section->offset_within_address_space + 523 int128_get64(int128_sub(section->size, int128_one()))); 524 return false; 525 } 526 527 if (unlikely((section->offset_within_address_space & 528 ~qemu_real_host_page_mask()) != 529 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 530 if (!vfio_known_safe_misalignment(section)) { 531 error_report("%s received unaligned region %s iova=0x%"PRIx64 532 " offset_within_region=0x%"PRIx64 533 " qemu_real_host_page_size=0x%"PRIxPTR, 534 __func__, memory_region_name(section->mr), 535 section->offset_within_address_space, 536 section->offset_within_region, 537 qemu_real_host_page_size()); 538 } 539 return false; 540 } 541 542 return true; 543 } 544 545 static bool vfio_get_section_iova_range(VFIOContainerBase *bcontainer, 546 MemoryRegionSection *section, 547 hwaddr *out_iova, hwaddr *out_end, 548 Int128 *out_llend) 549 { 550 Int128 llend; 551 hwaddr iova; 552 553 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 554 llend = int128_make64(section->offset_within_address_space); 555 llend = int128_add(llend, section->size); 556 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 557 558 if (int128_ge(int128_make64(iova), llend)) { 559 return false; 560 } 561 562 *out_iova = iova; 563 *out_end = int128_get64(int128_sub(llend, int128_one())); 564 if (out_llend) { 565 *out_llend = llend; 566 } 567 return true; 568 } 569 570 static void vfio_listener_region_add(MemoryListener *listener, 571 MemoryRegionSection *section) 572 { 573 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 574 listener); 575 hwaddr iova, end; 576 Int128 llend, llsize; 577 void *vaddr; 578 int ret; 579 Error *err = NULL; 580 581 if (!vfio_listener_valid_section(section, "region_add")) { 582 return; 583 } 584 585 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, 586 &llend)) { 587 if (memory_region_is_ram_device(section->mr)) { 588 trace_vfio_listener_region_add_no_dma_map( 589 memory_region_name(section->mr), 590 section->offset_within_address_space, 591 int128_getlo(section->size), 592 qemu_real_host_page_size()); 593 } 594 return; 595 } 596 597 if (vfio_container_add_section_window(bcontainer, section, &err)) { 598 goto fail; 599 } 600 601 memory_region_ref(section->mr); 602 603 if (memory_region_is_iommu(section->mr)) { 604 VFIOGuestIOMMU *giommu; 605 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 606 int iommu_idx; 607 608 trace_vfio_listener_region_add_iommu(iova, end); 609 /* 610 * FIXME: For VFIO iommu types which have KVM acceleration to 611 * avoid bouncing all map/unmaps through qemu this way, this 612 * would be the right place to wire that up (tell the KVM 613 * device emulation the VFIO iommu handles to use). 614 */ 615 giommu = g_malloc0(sizeof(*giommu)); 616 giommu->iommu_mr = iommu_mr; 617 giommu->iommu_offset = section->offset_within_address_space - 618 section->offset_within_region; 619 giommu->bcontainer = bcontainer; 620 llend = int128_add(int128_make64(section->offset_within_region), 621 section->size); 622 llend = int128_sub(llend, int128_one()); 623 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 624 MEMTXATTRS_UNSPECIFIED); 625 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, 626 IOMMU_NOTIFIER_IOTLB_EVENTS, 627 section->offset_within_region, 628 int128_get64(llend), 629 iommu_idx); 630 631 ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr, 632 bcontainer->pgsizes, 633 &err); 634 if (ret) { 635 g_free(giommu); 636 goto fail; 637 } 638 639 if (bcontainer->iova_ranges) { 640 ret = memory_region_iommu_set_iova_ranges(giommu->iommu_mr, 641 bcontainer->iova_ranges, 642 &err); 643 if (ret) { 644 g_free(giommu); 645 goto fail; 646 } 647 } 648 649 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, 650 &err); 651 if (ret) { 652 g_free(giommu); 653 goto fail; 654 } 655 QLIST_INSERT_HEAD(&bcontainer->giommu_list, giommu, giommu_next); 656 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n); 657 658 return; 659 } 660 661 /* Here we assume that memory_region_is_ram(section->mr)==true */ 662 663 /* 664 * For RAM memory regions with a RamDiscardManager, we only want to map the 665 * actually populated parts - and update the mapping whenever we're notified 666 * about changes. 667 */ 668 if (memory_region_has_ram_discard_manager(section->mr)) { 669 vfio_register_ram_discard_listener(bcontainer, section); 670 return; 671 } 672 673 vaddr = memory_region_get_ram_ptr(section->mr) + 674 section->offset_within_region + 675 (iova - section->offset_within_address_space); 676 677 trace_vfio_listener_region_add_ram(iova, end, vaddr); 678 679 llsize = int128_sub(llend, int128_make64(iova)); 680 681 if (memory_region_is_ram_device(section->mr)) { 682 hwaddr pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; 683 684 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { 685 trace_vfio_listener_region_add_no_dma_map( 686 memory_region_name(section->mr), 687 section->offset_within_address_space, 688 int128_getlo(section->size), 689 pgmask + 1); 690 return; 691 } 692 } 693 694 ret = vfio_container_dma_map(bcontainer, iova, int128_get64(llsize), 695 vaddr, section->readonly); 696 if (ret) { 697 error_setg(&err, "vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " 698 "0x%"HWADDR_PRIx", %p) = %d (%s)", 699 bcontainer, iova, int128_get64(llsize), vaddr, ret, 700 strerror(-ret)); 701 if (memory_region_is_ram_device(section->mr)) { 702 /* Allow unexpected mappings not to be fatal for RAM devices */ 703 error_report_err(err); 704 return; 705 } 706 goto fail; 707 } 708 709 return; 710 711 fail: 712 if (memory_region_is_ram_device(section->mr)) { 713 error_reportf_err(err, "PCI p2p may not work: "); 714 return; 715 } 716 /* 717 * On the initfn path, store the first error in the container so we 718 * can gracefully fail. Runtime, there's not much we can do other 719 * than throw a hardware error. 720 */ 721 if (!bcontainer->initialized) { 722 if (!bcontainer->error) { 723 error_propagate_prepend(&bcontainer->error, err, 724 "Region %s: ", 725 memory_region_name(section->mr)); 726 } else { 727 error_free(err); 728 } 729 } else { 730 error_report_err(err); 731 hw_error("vfio: DMA mapping failed, unable to continue"); 732 } 733 } 734 735 static void vfio_listener_region_del(MemoryListener *listener, 736 MemoryRegionSection *section) 737 { 738 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 739 listener); 740 hwaddr iova, end; 741 Int128 llend, llsize; 742 int ret; 743 bool try_unmap = true; 744 745 if (!vfio_listener_valid_section(section, "region_del")) { 746 return; 747 } 748 749 if (memory_region_is_iommu(section->mr)) { 750 VFIOGuestIOMMU *giommu; 751 752 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { 753 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 754 giommu->n.start == section->offset_within_region) { 755 memory_region_unregister_iommu_notifier(section->mr, 756 &giommu->n); 757 QLIST_REMOVE(giommu, giommu_next); 758 g_free(giommu); 759 break; 760 } 761 } 762 763 /* 764 * FIXME: We assume the one big unmap below is adequate to 765 * remove any individual page mappings in the IOMMU which 766 * might have been copied into VFIO. This works for a page table 767 * based IOMMU where a big unmap flattens a large range of IO-PTEs. 768 * That may not be true for all IOMMU types. 769 */ 770 } 771 772 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, 773 &llend)) { 774 return; 775 } 776 777 llsize = int128_sub(llend, int128_make64(iova)); 778 779 trace_vfio_listener_region_del(iova, end); 780 781 if (memory_region_is_ram_device(section->mr)) { 782 hwaddr pgmask; 783 784 pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; 785 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); 786 } else if (memory_region_has_ram_discard_manager(section->mr)) { 787 vfio_unregister_ram_discard_listener(bcontainer, section); 788 /* Unregistering will trigger an unmap. */ 789 try_unmap = false; 790 } 791 792 if (try_unmap) { 793 if (int128_eq(llsize, int128_2_64())) { 794 /* The unmap ioctl doesn't accept a full 64-bit span. */ 795 llsize = int128_rshift(llsize, 1); 796 ret = vfio_container_dma_unmap(bcontainer, iova, 797 int128_get64(llsize), NULL); 798 if (ret) { 799 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 800 "0x%"HWADDR_PRIx") = %d (%s)", 801 bcontainer, iova, int128_get64(llsize), ret, 802 strerror(-ret)); 803 } 804 iova += int128_get64(llsize); 805 } 806 ret = vfio_container_dma_unmap(bcontainer, iova, 807 int128_get64(llsize), NULL); 808 if (ret) { 809 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 810 "0x%"HWADDR_PRIx") = %d (%s)", 811 bcontainer, iova, int128_get64(llsize), ret, 812 strerror(-ret)); 813 } 814 } 815 816 memory_region_unref(section->mr); 817 818 vfio_container_del_section_window(bcontainer, section); 819 } 820 821 typedef struct VFIODirtyRanges { 822 hwaddr min32; 823 hwaddr max32; 824 hwaddr min64; 825 hwaddr max64; 826 hwaddr minpci64; 827 hwaddr maxpci64; 828 } VFIODirtyRanges; 829 830 typedef struct VFIODirtyRangesListener { 831 VFIOContainerBase *bcontainer; 832 VFIODirtyRanges ranges; 833 MemoryListener listener; 834 } VFIODirtyRangesListener; 835 836 static bool vfio_section_is_vfio_pci(MemoryRegionSection *section, 837 VFIOContainerBase *bcontainer) 838 { 839 VFIOPCIDevice *pcidev; 840 VFIODevice *vbasedev; 841 Object *owner; 842 843 owner = memory_region_owner(section->mr); 844 845 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 846 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { 847 continue; 848 } 849 pcidev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 850 if (OBJECT(pcidev) == owner) { 851 return true; 852 } 853 } 854 855 return false; 856 } 857 858 static void vfio_dirty_tracking_update(MemoryListener *listener, 859 MemoryRegionSection *section) 860 { 861 VFIODirtyRangesListener *dirty = container_of(listener, 862 VFIODirtyRangesListener, 863 listener); 864 VFIODirtyRanges *range = &dirty->ranges; 865 hwaddr iova, end, *min, *max; 866 867 if (!vfio_listener_valid_section(section, "tracking_update") || 868 !vfio_get_section_iova_range(dirty->bcontainer, section, 869 &iova, &end, NULL)) { 870 return; 871 } 872 873 /* 874 * The address space passed to the dirty tracker is reduced to three ranges: 875 * one for 32-bit DMA ranges, one for 64-bit DMA ranges and one for the 876 * PCI 64-bit hole. 877 * 878 * The underlying reports of dirty will query a sub-interval of each of 879 * these ranges. 880 * 881 * The purpose of the three range handling is to handle known cases of big 882 * holes in the address space, like the x86 AMD 1T hole, and firmware (like 883 * OVMF) which may relocate the pci-hole64 to the end of the address space. 884 * The latter would otherwise generate large ranges for tracking, stressing 885 * the limits of supported hardware. The pci-hole32 will always be below 4G 886 * (overlapping or not) so it doesn't need special handling and is part of 887 * the 32-bit range. 888 * 889 * The alternative would be an IOVATree but that has a much bigger runtime 890 * overhead and unnecessary complexity. 891 */ 892 if (vfio_section_is_vfio_pci(section, dirty->bcontainer) && 893 iova >= UINT32_MAX) { 894 min = &range->minpci64; 895 max = &range->maxpci64; 896 } else { 897 min = (end <= UINT32_MAX) ? &range->min32 : &range->min64; 898 max = (end <= UINT32_MAX) ? &range->max32 : &range->max64; 899 } 900 if (*min > iova) { 901 *min = iova; 902 } 903 if (*max < end) { 904 *max = end; 905 } 906 907 trace_vfio_device_dirty_tracking_update(iova, end, *min, *max); 908 return; 909 } 910 911 static const MemoryListener vfio_dirty_tracking_listener = { 912 .name = "vfio-tracking", 913 .region_add = vfio_dirty_tracking_update, 914 }; 915 916 static void vfio_dirty_tracking_init(VFIOContainerBase *bcontainer, 917 VFIODirtyRanges *ranges) 918 { 919 VFIODirtyRangesListener dirty; 920 921 memset(&dirty, 0, sizeof(dirty)); 922 dirty.ranges.min32 = UINT32_MAX; 923 dirty.ranges.min64 = UINT64_MAX; 924 dirty.ranges.minpci64 = UINT64_MAX; 925 dirty.listener = vfio_dirty_tracking_listener; 926 dirty.bcontainer = bcontainer; 927 928 memory_listener_register(&dirty.listener, 929 bcontainer->space->as); 930 931 *ranges = dirty.ranges; 932 933 /* 934 * The memory listener is synchronous, and used to calculate the range 935 * to dirty tracking. Unregister it after we are done as we are not 936 * interested in any follow-up updates. 937 */ 938 memory_listener_unregister(&dirty.listener); 939 } 940 941 static void vfio_devices_dma_logging_stop(VFIOContainerBase *bcontainer) 942 { 943 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature), 944 sizeof(uint64_t))] = {}; 945 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 946 VFIODevice *vbasedev; 947 948 feature->argsz = sizeof(buf); 949 feature->flags = VFIO_DEVICE_FEATURE_SET | 950 VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP; 951 952 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 953 if (!vbasedev->dirty_tracking) { 954 continue; 955 } 956 957 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 958 warn_report("%s: Failed to stop DMA logging, err %d (%s)", 959 vbasedev->name, -errno, strerror(errno)); 960 } 961 vbasedev->dirty_tracking = false; 962 } 963 } 964 965 static struct vfio_device_feature * 966 vfio_device_feature_dma_logging_start_create(VFIOContainerBase *bcontainer, 967 VFIODirtyRanges *tracking) 968 { 969 struct vfio_device_feature *feature; 970 size_t feature_size; 971 struct vfio_device_feature_dma_logging_control *control; 972 struct vfio_device_feature_dma_logging_range *ranges; 973 974 feature_size = sizeof(struct vfio_device_feature) + 975 sizeof(struct vfio_device_feature_dma_logging_control); 976 feature = g_try_malloc0(feature_size); 977 if (!feature) { 978 errno = ENOMEM; 979 return NULL; 980 } 981 feature->argsz = feature_size; 982 feature->flags = VFIO_DEVICE_FEATURE_SET | 983 VFIO_DEVICE_FEATURE_DMA_LOGGING_START; 984 985 control = (struct vfio_device_feature_dma_logging_control *)feature->data; 986 control->page_size = qemu_real_host_page_size(); 987 988 /* 989 * DMA logging uAPI guarantees to support at least a number of ranges that 990 * fits into a single host kernel base page. 991 */ 992 control->num_ranges = !!tracking->max32 + !!tracking->max64 + 993 !!tracking->maxpci64; 994 ranges = g_try_new0(struct vfio_device_feature_dma_logging_range, 995 control->num_ranges); 996 if (!ranges) { 997 g_free(feature); 998 errno = ENOMEM; 999 1000 return NULL; 1001 } 1002 1003 control->ranges = (uintptr_t)ranges; 1004 if (tracking->max32) { 1005 ranges->iova = tracking->min32; 1006 ranges->length = (tracking->max32 - tracking->min32) + 1; 1007 ranges++; 1008 } 1009 if (tracking->max64) { 1010 ranges->iova = tracking->min64; 1011 ranges->length = (tracking->max64 - tracking->min64) + 1; 1012 ranges++; 1013 } 1014 if (tracking->maxpci64) { 1015 ranges->iova = tracking->minpci64; 1016 ranges->length = (tracking->maxpci64 - tracking->minpci64) + 1; 1017 } 1018 1019 trace_vfio_device_dirty_tracking_start(control->num_ranges, 1020 tracking->min32, tracking->max32, 1021 tracking->min64, tracking->max64, 1022 tracking->minpci64, tracking->maxpci64); 1023 1024 return feature; 1025 } 1026 1027 static void vfio_device_feature_dma_logging_start_destroy( 1028 struct vfio_device_feature *feature) 1029 { 1030 struct vfio_device_feature_dma_logging_control *control = 1031 (struct vfio_device_feature_dma_logging_control *)feature->data; 1032 struct vfio_device_feature_dma_logging_range *ranges = 1033 (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges; 1034 1035 g_free(ranges); 1036 g_free(feature); 1037 } 1038 1039 static int vfio_devices_dma_logging_start(VFIOContainerBase *bcontainer) 1040 { 1041 struct vfio_device_feature *feature; 1042 VFIODirtyRanges ranges; 1043 VFIODevice *vbasedev; 1044 int ret = 0; 1045 1046 vfio_dirty_tracking_init(bcontainer, &ranges); 1047 feature = vfio_device_feature_dma_logging_start_create(bcontainer, 1048 &ranges); 1049 if (!feature) { 1050 return -errno; 1051 } 1052 1053 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 1054 if (vbasedev->dirty_tracking) { 1055 continue; 1056 } 1057 1058 ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature); 1059 if (ret) { 1060 ret = -errno; 1061 error_report("%s: Failed to start DMA logging, err %d (%s)", 1062 vbasedev->name, ret, strerror(errno)); 1063 goto out; 1064 } 1065 vbasedev->dirty_tracking = true; 1066 } 1067 1068 out: 1069 if (ret) { 1070 vfio_devices_dma_logging_stop(bcontainer); 1071 } 1072 1073 vfio_device_feature_dma_logging_start_destroy(feature); 1074 1075 return ret; 1076 } 1077 1078 static void vfio_listener_log_global_start(MemoryListener *listener) 1079 { 1080 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1081 listener); 1082 int ret; 1083 1084 if (vfio_devices_all_device_dirty_tracking(bcontainer)) { 1085 ret = vfio_devices_dma_logging_start(bcontainer); 1086 } else { 1087 ret = vfio_container_set_dirty_page_tracking(bcontainer, true); 1088 } 1089 1090 if (ret) { 1091 error_report("vfio: Could not start dirty page tracking, err: %d (%s)", 1092 ret, strerror(-ret)); 1093 vfio_set_migration_error(ret); 1094 } 1095 } 1096 1097 static void vfio_listener_log_global_stop(MemoryListener *listener) 1098 { 1099 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1100 listener); 1101 int ret = 0; 1102 1103 if (vfio_devices_all_device_dirty_tracking(bcontainer)) { 1104 vfio_devices_dma_logging_stop(bcontainer); 1105 } else { 1106 ret = vfio_container_set_dirty_page_tracking(bcontainer, false); 1107 } 1108 1109 if (ret) { 1110 error_report("vfio: Could not stop dirty page tracking, err: %d (%s)", 1111 ret, strerror(-ret)); 1112 vfio_set_migration_error(ret); 1113 } 1114 } 1115 1116 static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova, 1117 hwaddr size, void *bitmap) 1118 { 1119 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) + 1120 sizeof(struct vfio_device_feature_dma_logging_report), 1121 sizeof(uint64_t))] = {}; 1122 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 1123 struct vfio_device_feature_dma_logging_report *report = 1124 (struct vfio_device_feature_dma_logging_report *)feature->data; 1125 1126 report->iova = iova; 1127 report->length = size; 1128 report->page_size = qemu_real_host_page_size(); 1129 report->bitmap = (uintptr_t)bitmap; 1130 1131 feature->argsz = sizeof(buf); 1132 feature->flags = VFIO_DEVICE_FEATURE_GET | 1133 VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT; 1134 1135 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 1136 return -errno; 1137 } 1138 1139 return 0; 1140 } 1141 1142 int vfio_devices_query_dirty_bitmap(const VFIOContainerBase *bcontainer, 1143 VFIOBitmap *vbmap, hwaddr iova, 1144 hwaddr size) 1145 { 1146 VFIODevice *vbasedev; 1147 int ret; 1148 1149 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 1150 ret = vfio_device_dma_logging_report(vbasedev, iova, size, 1151 vbmap->bitmap); 1152 if (ret) { 1153 error_report("%s: Failed to get DMA logging report, iova: " 1154 "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx 1155 ", err: %d (%s)", 1156 vbasedev->name, iova, size, ret, strerror(-ret)); 1157 1158 return ret; 1159 } 1160 } 1161 1162 return 0; 1163 } 1164 1165 int vfio_get_dirty_bitmap(const VFIOContainerBase *bcontainer, uint64_t iova, 1166 uint64_t size, ram_addr_t ram_addr) 1167 { 1168 bool all_device_dirty_tracking = 1169 vfio_devices_all_device_dirty_tracking(bcontainer); 1170 uint64_t dirty_pages; 1171 VFIOBitmap vbmap; 1172 int ret; 1173 1174 if (!bcontainer->dirty_pages_supported && !all_device_dirty_tracking) { 1175 cpu_physical_memory_set_dirty_range(ram_addr, size, 1176 tcg_enabled() ? DIRTY_CLIENTS_ALL : 1177 DIRTY_CLIENTS_NOCODE); 1178 return 0; 1179 } 1180 1181 ret = vfio_bitmap_alloc(&vbmap, size); 1182 if (ret) { 1183 return ret; 1184 } 1185 1186 if (all_device_dirty_tracking) { 1187 ret = vfio_devices_query_dirty_bitmap(bcontainer, &vbmap, iova, size); 1188 } else { 1189 ret = vfio_container_query_dirty_bitmap(bcontainer, &vbmap, iova, size); 1190 } 1191 1192 if (ret) { 1193 goto out; 1194 } 1195 1196 dirty_pages = cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr, 1197 vbmap.pages); 1198 1199 trace_vfio_get_dirty_bitmap(iova, size, vbmap.size, ram_addr, dirty_pages); 1200 out: 1201 g_free(vbmap.bitmap); 1202 1203 return ret; 1204 } 1205 1206 typedef struct { 1207 IOMMUNotifier n; 1208 VFIOGuestIOMMU *giommu; 1209 } vfio_giommu_dirty_notifier; 1210 1211 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 1212 { 1213 vfio_giommu_dirty_notifier *gdn = container_of(n, 1214 vfio_giommu_dirty_notifier, n); 1215 VFIOGuestIOMMU *giommu = gdn->giommu; 1216 VFIOContainerBase *bcontainer = giommu->bcontainer; 1217 hwaddr iova = iotlb->iova + giommu->iommu_offset; 1218 ram_addr_t translated_addr; 1219 int ret = -EINVAL; 1220 1221 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); 1222 1223 if (iotlb->target_as != &address_space_memory) { 1224 error_report("Wrong target AS \"%s\", only system memory is allowed", 1225 iotlb->target_as->name ? iotlb->target_as->name : "none"); 1226 goto out; 1227 } 1228 1229 rcu_read_lock(); 1230 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) { 1231 ret = vfio_get_dirty_bitmap(bcontainer, iova, iotlb->addr_mask + 1, 1232 translated_addr); 1233 if (ret) { 1234 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " 1235 "0x%"HWADDR_PRIx") = %d (%s)", 1236 bcontainer, iova, iotlb->addr_mask + 1, ret, 1237 strerror(-ret)); 1238 } 1239 } 1240 rcu_read_unlock(); 1241 1242 out: 1243 if (ret) { 1244 vfio_set_migration_error(ret); 1245 } 1246 } 1247 1248 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, 1249 void *opaque) 1250 { 1251 const hwaddr size = int128_get64(section->size); 1252 const hwaddr iova = section->offset_within_address_space; 1253 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + 1254 section->offset_within_region; 1255 VFIORamDiscardListener *vrdl = opaque; 1256 1257 /* 1258 * Sync the whole mapped region (spanning multiple individual mappings) 1259 * in one go. 1260 */ 1261 return vfio_get_dirty_bitmap(vrdl->bcontainer, iova, size, ram_addr); 1262 } 1263 1264 static int 1265 vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainerBase *bcontainer, 1266 MemoryRegionSection *section) 1267 { 1268 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 1269 VFIORamDiscardListener *vrdl = NULL; 1270 1271 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 1272 if (vrdl->mr == section->mr && 1273 vrdl->offset_within_address_space == 1274 section->offset_within_address_space) { 1275 break; 1276 } 1277 } 1278 1279 if (!vrdl) { 1280 hw_error("vfio: Trying to sync missing RAM discard listener"); 1281 } 1282 1283 /* 1284 * We only want/can synchronize the bitmap for actually mapped parts - 1285 * which correspond to populated parts. Replay all populated parts. 1286 */ 1287 return ram_discard_manager_replay_populated(rdm, section, 1288 vfio_ram_discard_get_dirty_bitmap, 1289 &vrdl); 1290 } 1291 1292 static int vfio_sync_dirty_bitmap(VFIOContainerBase *bcontainer, 1293 MemoryRegionSection *section) 1294 { 1295 ram_addr_t ram_addr; 1296 1297 if (memory_region_is_iommu(section->mr)) { 1298 VFIOGuestIOMMU *giommu; 1299 1300 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { 1301 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1302 giommu->n.start == section->offset_within_region) { 1303 Int128 llend; 1304 vfio_giommu_dirty_notifier gdn = { .giommu = giommu }; 1305 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr, 1306 MEMTXATTRS_UNSPECIFIED); 1307 1308 llend = int128_add(int128_make64(section->offset_within_region), 1309 section->size); 1310 llend = int128_sub(llend, int128_one()); 1311 1312 iommu_notifier_init(&gdn.n, 1313 vfio_iommu_map_dirty_notify, 1314 IOMMU_NOTIFIER_MAP, 1315 section->offset_within_region, 1316 int128_get64(llend), 1317 idx); 1318 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n); 1319 break; 1320 } 1321 } 1322 return 0; 1323 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1324 return vfio_sync_ram_discard_listener_dirty_bitmap(bcontainer, section); 1325 } 1326 1327 ram_addr = memory_region_get_ram_addr(section->mr) + 1328 section->offset_within_region; 1329 1330 return vfio_get_dirty_bitmap(bcontainer, 1331 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), 1332 int128_get64(section->size), ram_addr); 1333 } 1334 1335 static void vfio_listener_log_sync(MemoryListener *listener, 1336 MemoryRegionSection *section) 1337 { 1338 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1339 listener); 1340 int ret; 1341 1342 if (vfio_listener_skipped_section(section)) { 1343 return; 1344 } 1345 1346 if (vfio_devices_all_dirty_tracking(bcontainer)) { 1347 ret = vfio_sync_dirty_bitmap(bcontainer, section); 1348 if (ret) { 1349 error_report("vfio: Failed to sync dirty bitmap, err: %d (%s)", ret, 1350 strerror(-ret)); 1351 vfio_set_migration_error(ret); 1352 } 1353 } 1354 } 1355 1356 const MemoryListener vfio_memory_listener = { 1357 .name = "vfio", 1358 .region_add = vfio_listener_region_add, 1359 .region_del = vfio_listener_region_del, 1360 .log_global_start = vfio_listener_log_global_start, 1361 .log_global_stop = vfio_listener_log_global_stop, 1362 .log_sync = vfio_listener_log_sync, 1363 }; 1364 1365 void vfio_reset_handler(void *opaque) 1366 { 1367 VFIODevice *vbasedev; 1368 1369 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 1370 if (vbasedev->dev->realized) { 1371 vbasedev->ops->vfio_compute_needs_reset(vbasedev); 1372 } 1373 } 1374 1375 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 1376 if (vbasedev->dev->realized && vbasedev->needs_reset) { 1377 vbasedev->ops->vfio_hot_reset_multi(vbasedev); 1378 } 1379 } 1380 } 1381 1382 int vfio_kvm_device_add_fd(int fd, Error **errp) 1383 { 1384 #ifdef CONFIG_KVM 1385 struct kvm_device_attr attr = { 1386 .group = KVM_DEV_VFIO_FILE, 1387 .attr = KVM_DEV_VFIO_FILE_ADD, 1388 .addr = (uint64_t)(unsigned long)&fd, 1389 }; 1390 1391 if (!kvm_enabled()) { 1392 return 0; 1393 } 1394 1395 if (vfio_kvm_device_fd < 0) { 1396 struct kvm_create_device cd = { 1397 .type = KVM_DEV_TYPE_VFIO, 1398 }; 1399 1400 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { 1401 error_setg_errno(errp, errno, "Failed to create KVM VFIO device"); 1402 return -errno; 1403 } 1404 1405 vfio_kvm_device_fd = cd.fd; 1406 } 1407 1408 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1409 error_setg_errno(errp, errno, "Failed to add fd %d to KVM VFIO device", 1410 fd); 1411 return -errno; 1412 } 1413 #endif 1414 return 0; 1415 } 1416 1417 int vfio_kvm_device_del_fd(int fd, Error **errp) 1418 { 1419 #ifdef CONFIG_KVM 1420 struct kvm_device_attr attr = { 1421 .group = KVM_DEV_VFIO_FILE, 1422 .attr = KVM_DEV_VFIO_FILE_DEL, 1423 .addr = (uint64_t)(unsigned long)&fd, 1424 }; 1425 1426 if (vfio_kvm_device_fd < 0) { 1427 error_setg(errp, "KVM VFIO device isn't created yet"); 1428 return -EINVAL; 1429 } 1430 1431 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1432 error_setg_errno(errp, errno, 1433 "Failed to remove fd %d from KVM VFIO device", fd); 1434 return -errno; 1435 } 1436 #endif 1437 return 0; 1438 } 1439 1440 VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) 1441 { 1442 VFIOAddressSpace *space; 1443 1444 QLIST_FOREACH(space, &vfio_address_spaces, list) { 1445 if (space->as == as) { 1446 return space; 1447 } 1448 } 1449 1450 /* No suitable VFIOAddressSpace, create a new one */ 1451 space = g_malloc0(sizeof(*space)); 1452 space->as = as; 1453 QLIST_INIT(&space->containers); 1454 1455 if (QLIST_EMPTY(&vfio_address_spaces)) { 1456 qemu_register_reset(vfio_reset_handler, NULL); 1457 } 1458 1459 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); 1460 1461 return space; 1462 } 1463 1464 void vfio_put_address_space(VFIOAddressSpace *space) 1465 { 1466 if (!QLIST_EMPTY(&space->containers)) { 1467 return; 1468 } 1469 1470 QLIST_REMOVE(space, list); 1471 g_free(space); 1472 1473 if (QLIST_EMPTY(&vfio_address_spaces)) { 1474 qemu_unregister_reset(vfio_reset_handler, NULL); 1475 } 1476 } 1477 1478 struct vfio_device_info *vfio_get_device_info(int fd) 1479 { 1480 struct vfio_device_info *info; 1481 uint32_t argsz = sizeof(*info); 1482 1483 info = g_malloc0(argsz); 1484 1485 retry: 1486 info->argsz = argsz; 1487 1488 if (ioctl(fd, VFIO_DEVICE_GET_INFO, info)) { 1489 g_free(info); 1490 return NULL; 1491 } 1492 1493 if (info->argsz > argsz) { 1494 argsz = info->argsz; 1495 info = g_realloc(info, argsz); 1496 goto retry; 1497 } 1498 1499 return info; 1500 } 1501 1502 int vfio_attach_device(char *name, VFIODevice *vbasedev, 1503 AddressSpace *as, Error **errp) 1504 { 1505 const VFIOIOMMUClass *ops = 1506 VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_LEGACY)); 1507 1508 if (vbasedev->iommufd) { 1509 ops = VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_IOMMUFD)); 1510 } 1511 1512 assert(ops); 1513 1514 return ops->attach_device(name, vbasedev, as, errp); 1515 } 1516 1517 void vfio_detach_device(VFIODevice *vbasedev) 1518 { 1519 if (!vbasedev->bcontainer) { 1520 return; 1521 } 1522 vbasedev->bcontainer->ops->detach_device(vbasedev); 1523 } 1524