1 /* 2 * generic functions used by VFIO devices 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 #ifdef CONFIG_KVM 24 #include <linux/kvm.h> 25 #endif 26 #include <linux/vfio.h> 27 28 #include "hw/vfio/vfio-common.h" 29 #include "hw/vfio/pci.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "exec/ram_addr.h" 33 #include "hw/hw.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/range.h" 37 #include "system/kvm.h" 38 #include "system/reset.h" 39 #include "system/runstate.h" 40 #include "trace.h" 41 #include "qapi/error.h" 42 #include "migration/misc.h" 43 #include "migration/blocker.h" 44 #include "migration/qemu-file.h" 45 #include "system/tpm.h" 46 47 VFIODeviceList vfio_device_list = 48 QLIST_HEAD_INITIALIZER(vfio_device_list); 49 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = 50 QLIST_HEAD_INITIALIZER(vfio_address_spaces); 51 52 #ifdef CONFIG_KVM 53 /* 54 * We have a single VFIO pseudo device per KVM VM. Once created it lives 55 * for the life of the VM. Closing the file descriptor only drops our 56 * reference to it and the device's reference to kvm. Therefore once 57 * initialized, this file descriptor is only released on QEMU exit and 58 * we'll re-use it should another vfio device be attached before then. 59 */ 60 int vfio_kvm_device_fd = -1; 61 #endif 62 63 /* 64 * Device state interfaces 65 */ 66 67 bool vfio_mig_active(void) 68 { 69 VFIODevice *vbasedev; 70 71 if (QLIST_EMPTY(&vfio_device_list)) { 72 return false; 73 } 74 75 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 76 if (vbasedev->migration_blocker) { 77 return false; 78 } 79 } 80 return true; 81 } 82 83 static Error *multiple_devices_migration_blocker; 84 85 /* 86 * Multiple devices migration is allowed only if all devices support P2P 87 * migration. Single device migration is allowed regardless of P2P migration 88 * support. 89 */ 90 static bool vfio_multiple_devices_migration_is_supported(void) 91 { 92 VFIODevice *vbasedev; 93 unsigned int device_num = 0; 94 bool all_support_p2p = true; 95 96 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 97 if (vbasedev->migration) { 98 device_num++; 99 100 if (!(vbasedev->migration->mig_flags & VFIO_MIGRATION_P2P)) { 101 all_support_p2p = false; 102 } 103 } 104 } 105 106 return all_support_p2p || device_num <= 1; 107 } 108 109 int vfio_block_multiple_devices_migration(VFIODevice *vbasedev, Error **errp) 110 { 111 int ret; 112 113 if (vfio_multiple_devices_migration_is_supported()) { 114 return 0; 115 } 116 117 if (vbasedev->enable_migration == ON_OFF_AUTO_ON) { 118 error_setg(errp, "Multiple VFIO devices migration is supported only if " 119 "all of them support P2P migration"); 120 return -EINVAL; 121 } 122 123 if (multiple_devices_migration_blocker) { 124 return 0; 125 } 126 127 error_setg(&multiple_devices_migration_blocker, 128 "Multiple VFIO devices migration is supported only if all of " 129 "them support P2P migration"); 130 ret = migrate_add_blocker_normal(&multiple_devices_migration_blocker, errp); 131 132 return ret; 133 } 134 135 void vfio_unblock_multiple_devices_migration(void) 136 { 137 if (!multiple_devices_migration_blocker || 138 !vfio_multiple_devices_migration_is_supported()) { 139 return; 140 } 141 142 migrate_del_blocker(&multiple_devices_migration_blocker); 143 } 144 145 bool vfio_viommu_preset(VFIODevice *vbasedev) 146 { 147 return vbasedev->bcontainer->space->as != &address_space_memory; 148 } 149 150 static void vfio_set_migration_error(int ret) 151 { 152 if (migration_is_running()) { 153 migration_file_set_error(ret, NULL); 154 } 155 } 156 157 bool vfio_device_state_is_running(VFIODevice *vbasedev) 158 { 159 VFIOMigration *migration = vbasedev->migration; 160 161 return migration->device_state == VFIO_DEVICE_STATE_RUNNING || 162 migration->device_state == VFIO_DEVICE_STATE_RUNNING_P2P; 163 } 164 165 bool vfio_device_state_is_precopy(VFIODevice *vbasedev) 166 { 167 VFIOMigration *migration = vbasedev->migration; 168 169 return migration->device_state == VFIO_DEVICE_STATE_PRE_COPY || 170 migration->device_state == VFIO_DEVICE_STATE_PRE_COPY_P2P; 171 } 172 173 static bool vfio_devices_all_device_dirty_tracking_started( 174 const VFIOContainerBase *bcontainer) 175 { 176 VFIODevice *vbasedev; 177 178 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 179 if (!vbasedev->dirty_tracking) { 180 return false; 181 } 182 } 183 184 return true; 185 } 186 187 bool vfio_devices_all_dirty_tracking_started( 188 const VFIOContainerBase *bcontainer) 189 { 190 return vfio_devices_all_device_dirty_tracking_started(bcontainer) || 191 bcontainer->dirty_pages_started; 192 } 193 194 static bool vfio_log_sync_needed(const VFIOContainerBase *bcontainer) 195 { 196 VFIODevice *vbasedev; 197 198 if (!vfio_devices_all_dirty_tracking_started(bcontainer)) { 199 return false; 200 } 201 202 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 203 VFIOMigration *migration = vbasedev->migration; 204 205 if (!migration) { 206 return false; 207 } 208 209 if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF && 210 (vfio_device_state_is_running(vbasedev) || 211 vfio_device_state_is_precopy(vbasedev))) { 212 return false; 213 } 214 } 215 return true; 216 } 217 218 bool vfio_devices_all_device_dirty_tracking(const VFIOContainerBase *bcontainer) 219 { 220 VFIODevice *vbasedev; 221 222 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 223 if (vbasedev->device_dirty_page_tracking == ON_OFF_AUTO_OFF) { 224 return false; 225 } 226 if (!vbasedev->dirty_pages_supported) { 227 return false; 228 } 229 } 230 231 return true; 232 } 233 234 static bool vfio_listener_skipped_section(MemoryRegionSection *section) 235 { 236 return (!memory_region_is_ram(section->mr) && 237 !memory_region_is_iommu(section->mr)) || 238 memory_region_is_protected(section->mr) || 239 /* 240 * Sizing an enabled 64-bit BAR can cause spurious mappings to 241 * addresses in the upper part of the 64-bit address space. These 242 * are never accessed by the CPU and beyond the address width of 243 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. 244 */ 245 section->offset_within_address_space & (1ULL << 63); 246 } 247 248 /* Called with rcu_read_lock held. */ 249 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 250 ram_addr_t *ram_addr, bool *read_only, 251 Error **errp) 252 { 253 bool ret, mr_has_discard_manager; 254 255 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only, 256 &mr_has_discard_manager, errp); 257 if (ret && mr_has_discard_manager) { 258 /* 259 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The 260 * pages will remain pinned inside vfio until unmapped, resulting in a 261 * higher memory consumption than expected. If memory would get 262 * populated again later, there would be an inconsistency between pages 263 * pinned by vfio and pages seen by QEMU. This is the case until 264 * unmapped from the IOMMU (e.g., during device reset). 265 * 266 * With malicious guests, we really only care about pinning more memory 267 * than expected. RLIMIT_MEMLOCK set for the user/process can never be 268 * exceeded and can be used to mitigate this problem. 269 */ 270 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" 271 " RAM (e.g., virtio-mem) works, however, malicious" 272 " guests can trigger pinning of more memory than" 273 " intended via an IOMMU. It's possible to mitigate " 274 " by setting/adjusting RLIMIT_MEMLOCK."); 275 } 276 return ret; 277 } 278 279 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 280 { 281 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); 282 VFIOContainerBase *bcontainer = giommu->bcontainer; 283 hwaddr iova = iotlb->iova + giommu->iommu_offset; 284 void *vaddr; 285 int ret; 286 Error *local_err = NULL; 287 288 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", 289 iova, iova + iotlb->addr_mask); 290 291 if (iotlb->target_as != &address_space_memory) { 292 error_report("Wrong target AS \"%s\", only system memory is allowed", 293 iotlb->target_as->name ? iotlb->target_as->name : "none"); 294 vfio_set_migration_error(-EINVAL); 295 return; 296 } 297 298 rcu_read_lock(); 299 300 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 301 bool read_only; 302 303 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only, &local_err)) { 304 error_report_err(local_err); 305 goto out; 306 } 307 /* 308 * vaddr is only valid until rcu_read_unlock(). But after 309 * vfio_dma_map has set up the mapping the pages will be 310 * pinned by the kernel. This makes sure that the RAM backend 311 * of vaddr will always be there, even if the memory object is 312 * destroyed and its backing memory munmap-ed. 313 */ 314 ret = vfio_container_dma_map(bcontainer, iova, 315 iotlb->addr_mask + 1, vaddr, 316 read_only); 317 if (ret) { 318 error_report("vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " 319 "0x%"HWADDR_PRIx", %p) = %d (%s)", 320 bcontainer, iova, 321 iotlb->addr_mask + 1, vaddr, ret, strerror(-ret)); 322 } 323 } else { 324 ret = vfio_container_dma_unmap(bcontainer, iova, 325 iotlb->addr_mask + 1, iotlb); 326 if (ret) { 327 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 328 "0x%"HWADDR_PRIx") = %d (%s)", 329 bcontainer, iova, 330 iotlb->addr_mask + 1, ret, strerror(-ret)); 331 vfio_set_migration_error(ret); 332 } 333 } 334 out: 335 rcu_read_unlock(); 336 } 337 338 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, 339 MemoryRegionSection *section) 340 { 341 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 342 listener); 343 VFIOContainerBase *bcontainer = vrdl->bcontainer; 344 const hwaddr size = int128_get64(section->size); 345 const hwaddr iova = section->offset_within_address_space; 346 int ret; 347 348 /* Unmap with a single call. */ 349 ret = vfio_container_dma_unmap(bcontainer, iova, size , NULL); 350 if (ret) { 351 error_report("%s: vfio_container_dma_unmap() failed: %s", __func__, 352 strerror(-ret)); 353 } 354 } 355 356 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, 357 MemoryRegionSection *section) 358 { 359 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 360 listener); 361 VFIOContainerBase *bcontainer = vrdl->bcontainer; 362 const hwaddr end = section->offset_within_region + 363 int128_get64(section->size); 364 hwaddr start, next, iova; 365 void *vaddr; 366 int ret; 367 368 /* 369 * Map in (aligned within memory region) minimum granularity, so we can 370 * unmap in minimum granularity later. 371 */ 372 for (start = section->offset_within_region; start < end; start = next) { 373 next = ROUND_UP(start + 1, vrdl->granularity); 374 next = MIN(next, end); 375 376 iova = start - section->offset_within_region + 377 section->offset_within_address_space; 378 vaddr = memory_region_get_ram_ptr(section->mr) + start; 379 380 ret = vfio_container_dma_map(bcontainer, iova, next - start, 381 vaddr, section->readonly); 382 if (ret) { 383 /* Rollback */ 384 vfio_ram_discard_notify_discard(rdl, section); 385 return ret; 386 } 387 } 388 return 0; 389 } 390 391 static void vfio_register_ram_discard_listener(VFIOContainerBase *bcontainer, 392 MemoryRegionSection *section) 393 { 394 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 395 VFIORamDiscardListener *vrdl; 396 397 /* Ignore some corner cases not relevant in practice. */ 398 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); 399 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, 400 TARGET_PAGE_SIZE)); 401 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); 402 403 vrdl = g_new0(VFIORamDiscardListener, 1); 404 vrdl->bcontainer = bcontainer; 405 vrdl->mr = section->mr; 406 vrdl->offset_within_address_space = section->offset_within_address_space; 407 vrdl->size = int128_get64(section->size); 408 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, 409 section->mr); 410 411 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); 412 g_assert(bcontainer->pgsizes && 413 vrdl->granularity >= 1ULL << ctz64(bcontainer->pgsizes)); 414 415 ram_discard_listener_init(&vrdl->listener, 416 vfio_ram_discard_notify_populate, 417 vfio_ram_discard_notify_discard, true); 418 ram_discard_manager_register_listener(rdm, &vrdl->listener, section); 419 QLIST_INSERT_HEAD(&bcontainer->vrdl_list, vrdl, next); 420 421 /* 422 * Sanity-check if we have a theoretically problematic setup where we could 423 * exceed the maximum number of possible DMA mappings over time. We assume 424 * that each mapped section in the same address space as a RamDiscardManager 425 * section consumes exactly one DMA mapping, with the exception of 426 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections 427 * in the same address space as RamDiscardManager sections. 428 * 429 * We assume that each section in the address space consumes one memslot. 430 * We take the number of KVM memory slots as a best guess for the maximum 431 * number of sections in the address space we could have over time, 432 * also consuming DMA mappings. 433 */ 434 if (bcontainer->dma_max_mappings) { 435 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; 436 437 #ifdef CONFIG_KVM 438 if (kvm_enabled()) { 439 max_memslots = kvm_get_max_memslots(); 440 } 441 #endif 442 443 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 444 hwaddr start, end; 445 446 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, 447 vrdl->granularity); 448 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, 449 vrdl->granularity); 450 vrdl_mappings += (end - start) / vrdl->granularity; 451 vrdl_count++; 452 } 453 454 if (vrdl_mappings + max_memslots - vrdl_count > 455 bcontainer->dma_max_mappings) { 456 warn_report("%s: possibly running out of DMA mappings. E.g., try" 457 " increasing the 'block-size' of virtio-mem devies." 458 " Maximum possible DMA mappings: %d, Maximum possible" 459 " memslots: %d", __func__, bcontainer->dma_max_mappings, 460 max_memslots); 461 } 462 } 463 } 464 465 static void vfio_unregister_ram_discard_listener(VFIOContainerBase *bcontainer, 466 MemoryRegionSection *section) 467 { 468 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 469 VFIORamDiscardListener *vrdl = NULL; 470 471 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 472 if (vrdl->mr == section->mr && 473 vrdl->offset_within_address_space == 474 section->offset_within_address_space) { 475 break; 476 } 477 } 478 479 if (!vrdl) { 480 hw_error("vfio: Trying to unregister missing RAM discard listener"); 481 } 482 483 ram_discard_manager_unregister_listener(rdm, &vrdl->listener); 484 QLIST_REMOVE(vrdl, next); 485 g_free(vrdl); 486 } 487 488 static bool vfio_known_safe_misalignment(MemoryRegionSection *section) 489 { 490 MemoryRegion *mr = section->mr; 491 492 if (!TPM_IS_CRB(mr->owner)) { 493 return false; 494 } 495 496 /* this is a known safe misaligned region, just trace for debug purpose */ 497 trace_vfio_known_safe_misalignment(memory_region_name(mr), 498 section->offset_within_address_space, 499 section->offset_within_region, 500 qemu_real_host_page_size()); 501 return true; 502 } 503 504 static bool vfio_listener_valid_section(MemoryRegionSection *section, 505 const char *name) 506 { 507 if (vfio_listener_skipped_section(section)) { 508 trace_vfio_listener_region_skip(name, 509 section->offset_within_address_space, 510 section->offset_within_address_space + 511 int128_get64(int128_sub(section->size, int128_one()))); 512 return false; 513 } 514 515 if (unlikely((section->offset_within_address_space & 516 ~qemu_real_host_page_mask()) != 517 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 518 if (!vfio_known_safe_misalignment(section)) { 519 error_report("%s received unaligned region %s iova=0x%"PRIx64 520 " offset_within_region=0x%"PRIx64 521 " qemu_real_host_page_size=0x%"PRIxPTR, 522 __func__, memory_region_name(section->mr), 523 section->offset_within_address_space, 524 section->offset_within_region, 525 qemu_real_host_page_size()); 526 } 527 return false; 528 } 529 530 return true; 531 } 532 533 static bool vfio_get_section_iova_range(VFIOContainerBase *bcontainer, 534 MemoryRegionSection *section, 535 hwaddr *out_iova, hwaddr *out_end, 536 Int128 *out_llend) 537 { 538 Int128 llend; 539 hwaddr iova; 540 541 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 542 llend = int128_make64(section->offset_within_address_space); 543 llend = int128_add(llend, section->size); 544 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 545 546 if (int128_ge(int128_make64(iova), llend)) { 547 return false; 548 } 549 550 *out_iova = iova; 551 *out_end = int128_get64(int128_sub(llend, int128_one())); 552 if (out_llend) { 553 *out_llend = llend; 554 } 555 return true; 556 } 557 558 static void vfio_listener_region_add(MemoryListener *listener, 559 MemoryRegionSection *section) 560 { 561 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 562 listener); 563 hwaddr iova, end; 564 Int128 llend, llsize; 565 void *vaddr; 566 int ret; 567 Error *err = NULL; 568 569 if (!vfio_listener_valid_section(section, "region_add")) { 570 return; 571 } 572 573 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, 574 &llend)) { 575 if (memory_region_is_ram_device(section->mr)) { 576 trace_vfio_listener_region_add_no_dma_map( 577 memory_region_name(section->mr), 578 section->offset_within_address_space, 579 int128_getlo(section->size), 580 qemu_real_host_page_size()); 581 } 582 return; 583 } 584 585 if (!vfio_container_add_section_window(bcontainer, section, &err)) { 586 goto fail; 587 } 588 589 memory_region_ref(section->mr); 590 591 if (memory_region_is_iommu(section->mr)) { 592 VFIOGuestIOMMU *giommu; 593 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 594 int iommu_idx; 595 596 trace_vfio_listener_region_add_iommu(section->mr->name, iova, end); 597 /* 598 * FIXME: For VFIO iommu types which have KVM acceleration to 599 * avoid bouncing all map/unmaps through qemu this way, this 600 * would be the right place to wire that up (tell the KVM 601 * device emulation the VFIO iommu handles to use). 602 */ 603 giommu = g_malloc0(sizeof(*giommu)); 604 giommu->iommu_mr = iommu_mr; 605 giommu->iommu_offset = section->offset_within_address_space - 606 section->offset_within_region; 607 giommu->bcontainer = bcontainer; 608 llend = int128_add(int128_make64(section->offset_within_region), 609 section->size); 610 llend = int128_sub(llend, int128_one()); 611 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 612 MEMTXATTRS_UNSPECIFIED); 613 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, 614 IOMMU_NOTIFIER_IOTLB_EVENTS, 615 section->offset_within_region, 616 int128_get64(llend), 617 iommu_idx); 618 619 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, 620 &err); 621 if (ret) { 622 g_free(giommu); 623 goto fail; 624 } 625 QLIST_INSERT_HEAD(&bcontainer->giommu_list, giommu, giommu_next); 626 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n); 627 628 return; 629 } 630 631 /* Here we assume that memory_region_is_ram(section->mr)==true */ 632 633 /* 634 * For RAM memory regions with a RamDiscardManager, we only want to map the 635 * actually populated parts - and update the mapping whenever we're notified 636 * about changes. 637 */ 638 if (memory_region_has_ram_discard_manager(section->mr)) { 639 vfio_register_ram_discard_listener(bcontainer, section); 640 return; 641 } 642 643 vaddr = memory_region_get_ram_ptr(section->mr) + 644 section->offset_within_region + 645 (iova - section->offset_within_address_space); 646 647 trace_vfio_listener_region_add_ram(iova, end, vaddr); 648 649 llsize = int128_sub(llend, int128_make64(iova)); 650 651 if (memory_region_is_ram_device(section->mr)) { 652 hwaddr pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; 653 654 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { 655 trace_vfio_listener_region_add_no_dma_map( 656 memory_region_name(section->mr), 657 section->offset_within_address_space, 658 int128_getlo(section->size), 659 pgmask + 1); 660 return; 661 } 662 } 663 664 ret = vfio_container_dma_map(bcontainer, iova, int128_get64(llsize), 665 vaddr, section->readonly); 666 if (ret) { 667 error_setg(&err, "vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", " 668 "0x%"HWADDR_PRIx", %p) = %d (%s)", 669 bcontainer, iova, int128_get64(llsize), vaddr, ret, 670 strerror(-ret)); 671 if (memory_region_is_ram_device(section->mr)) { 672 /* Allow unexpected mappings not to be fatal for RAM devices */ 673 error_report_err(err); 674 return; 675 } 676 goto fail; 677 } 678 679 return; 680 681 fail: 682 if (memory_region_is_ram_device(section->mr)) { 683 error_reportf_err(err, "PCI p2p may not work: "); 684 return; 685 } 686 /* 687 * On the initfn path, store the first error in the container so we 688 * can gracefully fail. Runtime, there's not much we can do other 689 * than throw a hardware error. 690 */ 691 if (!bcontainer->initialized) { 692 if (!bcontainer->error) { 693 error_propagate_prepend(&bcontainer->error, err, 694 "Region %s: ", 695 memory_region_name(section->mr)); 696 } else { 697 error_free(err); 698 } 699 } else { 700 error_report_err(err); 701 hw_error("vfio: DMA mapping failed, unable to continue"); 702 } 703 } 704 705 static void vfio_listener_region_del(MemoryListener *listener, 706 MemoryRegionSection *section) 707 { 708 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 709 listener); 710 hwaddr iova, end; 711 Int128 llend, llsize; 712 int ret; 713 bool try_unmap = true; 714 715 if (!vfio_listener_valid_section(section, "region_del")) { 716 return; 717 } 718 719 if (memory_region_is_iommu(section->mr)) { 720 VFIOGuestIOMMU *giommu; 721 722 trace_vfio_listener_region_del_iommu(section->mr->name); 723 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { 724 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 725 giommu->n.start == section->offset_within_region) { 726 memory_region_unregister_iommu_notifier(section->mr, 727 &giommu->n); 728 QLIST_REMOVE(giommu, giommu_next); 729 g_free(giommu); 730 break; 731 } 732 } 733 734 /* 735 * FIXME: We assume the one big unmap below is adequate to 736 * remove any individual page mappings in the IOMMU which 737 * might have been copied into VFIO. This works for a page table 738 * based IOMMU where a big unmap flattens a large range of IO-PTEs. 739 * That may not be true for all IOMMU types. 740 */ 741 } 742 743 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end, 744 &llend)) { 745 return; 746 } 747 748 llsize = int128_sub(llend, int128_make64(iova)); 749 750 trace_vfio_listener_region_del(iova, end); 751 752 if (memory_region_is_ram_device(section->mr)) { 753 hwaddr pgmask; 754 755 pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1; 756 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); 757 } else if (memory_region_has_ram_discard_manager(section->mr)) { 758 vfio_unregister_ram_discard_listener(bcontainer, section); 759 /* Unregistering will trigger an unmap. */ 760 try_unmap = false; 761 } 762 763 if (try_unmap) { 764 if (int128_eq(llsize, int128_2_64())) { 765 /* The unmap ioctl doesn't accept a full 64-bit span. */ 766 llsize = int128_rshift(llsize, 1); 767 ret = vfio_container_dma_unmap(bcontainer, iova, 768 int128_get64(llsize), NULL); 769 if (ret) { 770 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 771 "0x%"HWADDR_PRIx") = %d (%s)", 772 bcontainer, iova, int128_get64(llsize), ret, 773 strerror(-ret)); 774 } 775 iova += int128_get64(llsize); 776 } 777 ret = vfio_container_dma_unmap(bcontainer, iova, 778 int128_get64(llsize), NULL); 779 if (ret) { 780 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", " 781 "0x%"HWADDR_PRIx") = %d (%s)", 782 bcontainer, iova, int128_get64(llsize), ret, 783 strerror(-ret)); 784 } 785 } 786 787 memory_region_unref(section->mr); 788 789 vfio_container_del_section_window(bcontainer, section); 790 } 791 792 typedef struct VFIODirtyRanges { 793 hwaddr min32; 794 hwaddr max32; 795 hwaddr min64; 796 hwaddr max64; 797 hwaddr minpci64; 798 hwaddr maxpci64; 799 } VFIODirtyRanges; 800 801 typedef struct VFIODirtyRangesListener { 802 VFIOContainerBase *bcontainer; 803 VFIODirtyRanges ranges; 804 MemoryListener listener; 805 } VFIODirtyRangesListener; 806 807 static bool vfio_section_is_vfio_pci(MemoryRegionSection *section, 808 VFIOContainerBase *bcontainer) 809 { 810 VFIOPCIDevice *pcidev; 811 VFIODevice *vbasedev; 812 Object *owner; 813 814 owner = memory_region_owner(section->mr); 815 816 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 817 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { 818 continue; 819 } 820 pcidev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 821 if (OBJECT(pcidev) == owner) { 822 return true; 823 } 824 } 825 826 return false; 827 } 828 829 static void vfio_dirty_tracking_update_range(VFIODirtyRanges *range, 830 hwaddr iova, hwaddr end, 831 bool update_pci) 832 { 833 hwaddr *min, *max; 834 835 /* 836 * The address space passed to the dirty tracker is reduced to three ranges: 837 * one for 32-bit DMA ranges, one for 64-bit DMA ranges and one for the 838 * PCI 64-bit hole. 839 * 840 * The underlying reports of dirty will query a sub-interval of each of 841 * these ranges. 842 * 843 * The purpose of the three range handling is to handle known cases of big 844 * holes in the address space, like the x86 AMD 1T hole, and firmware (like 845 * OVMF) which may relocate the pci-hole64 to the end of the address space. 846 * The latter would otherwise generate large ranges for tracking, stressing 847 * the limits of supported hardware. The pci-hole32 will always be below 4G 848 * (overlapping or not) so it doesn't need special handling and is part of 849 * the 32-bit range. 850 * 851 * The alternative would be an IOVATree but that has a much bigger runtime 852 * overhead and unnecessary complexity. 853 */ 854 if (update_pci && iova >= UINT32_MAX) { 855 min = &range->minpci64; 856 max = &range->maxpci64; 857 } else { 858 min = (end <= UINT32_MAX) ? &range->min32 : &range->min64; 859 max = (end <= UINT32_MAX) ? &range->max32 : &range->max64; 860 } 861 if (*min > iova) { 862 *min = iova; 863 } 864 if (*max < end) { 865 *max = end; 866 } 867 868 trace_vfio_device_dirty_tracking_update(iova, end, *min, *max); 869 } 870 871 static void vfio_dirty_tracking_update(MemoryListener *listener, 872 MemoryRegionSection *section) 873 { 874 VFIODirtyRangesListener *dirty = 875 container_of(listener, VFIODirtyRangesListener, listener); 876 hwaddr iova, end; 877 878 if (!vfio_listener_valid_section(section, "tracking_update") || 879 !vfio_get_section_iova_range(dirty->bcontainer, section, 880 &iova, &end, NULL)) { 881 return; 882 } 883 884 vfio_dirty_tracking_update_range(&dirty->ranges, iova, end, 885 vfio_section_is_vfio_pci(section, dirty->bcontainer)); 886 } 887 888 static const MemoryListener vfio_dirty_tracking_listener = { 889 .name = "vfio-tracking", 890 .region_add = vfio_dirty_tracking_update, 891 }; 892 893 static void vfio_dirty_tracking_init(VFIOContainerBase *bcontainer, 894 VFIODirtyRanges *ranges) 895 { 896 VFIODirtyRangesListener dirty; 897 898 memset(&dirty, 0, sizeof(dirty)); 899 dirty.ranges.min32 = UINT32_MAX; 900 dirty.ranges.min64 = UINT64_MAX; 901 dirty.ranges.minpci64 = UINT64_MAX; 902 dirty.listener = vfio_dirty_tracking_listener; 903 dirty.bcontainer = bcontainer; 904 905 memory_listener_register(&dirty.listener, 906 bcontainer->space->as); 907 908 *ranges = dirty.ranges; 909 910 /* 911 * The memory listener is synchronous, and used to calculate the range 912 * to dirty tracking. Unregister it after we are done as we are not 913 * interested in any follow-up updates. 914 */ 915 memory_listener_unregister(&dirty.listener); 916 } 917 918 static void vfio_devices_dma_logging_stop(VFIOContainerBase *bcontainer) 919 { 920 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature), 921 sizeof(uint64_t))] = {}; 922 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 923 VFIODevice *vbasedev; 924 925 feature->argsz = sizeof(buf); 926 feature->flags = VFIO_DEVICE_FEATURE_SET | 927 VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP; 928 929 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 930 if (!vbasedev->dirty_tracking) { 931 continue; 932 } 933 934 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 935 warn_report("%s: Failed to stop DMA logging, err %d (%s)", 936 vbasedev->name, -errno, strerror(errno)); 937 } 938 vbasedev->dirty_tracking = false; 939 } 940 } 941 942 static struct vfio_device_feature * 943 vfio_device_feature_dma_logging_start_create(VFIOContainerBase *bcontainer, 944 VFIODirtyRanges *tracking) 945 { 946 struct vfio_device_feature *feature; 947 size_t feature_size; 948 struct vfio_device_feature_dma_logging_control *control; 949 struct vfio_device_feature_dma_logging_range *ranges; 950 951 feature_size = sizeof(struct vfio_device_feature) + 952 sizeof(struct vfio_device_feature_dma_logging_control); 953 feature = g_try_malloc0(feature_size); 954 if (!feature) { 955 errno = ENOMEM; 956 return NULL; 957 } 958 feature->argsz = feature_size; 959 feature->flags = VFIO_DEVICE_FEATURE_SET | 960 VFIO_DEVICE_FEATURE_DMA_LOGGING_START; 961 962 control = (struct vfio_device_feature_dma_logging_control *)feature->data; 963 control->page_size = qemu_real_host_page_size(); 964 965 /* 966 * DMA logging uAPI guarantees to support at least a number of ranges that 967 * fits into a single host kernel base page. 968 */ 969 control->num_ranges = !!tracking->max32 + !!tracking->max64 + 970 !!tracking->maxpci64; 971 ranges = g_try_new0(struct vfio_device_feature_dma_logging_range, 972 control->num_ranges); 973 if (!ranges) { 974 g_free(feature); 975 errno = ENOMEM; 976 977 return NULL; 978 } 979 980 control->ranges = (uintptr_t)ranges; 981 if (tracking->max32) { 982 ranges->iova = tracking->min32; 983 ranges->length = (tracking->max32 - tracking->min32) + 1; 984 ranges++; 985 } 986 if (tracking->max64) { 987 ranges->iova = tracking->min64; 988 ranges->length = (tracking->max64 - tracking->min64) + 1; 989 ranges++; 990 } 991 if (tracking->maxpci64) { 992 ranges->iova = tracking->minpci64; 993 ranges->length = (tracking->maxpci64 - tracking->minpci64) + 1; 994 } 995 996 trace_vfio_device_dirty_tracking_start(control->num_ranges, 997 tracking->min32, tracking->max32, 998 tracking->min64, tracking->max64, 999 tracking->minpci64, tracking->maxpci64); 1000 1001 return feature; 1002 } 1003 1004 static void vfio_device_feature_dma_logging_start_destroy( 1005 struct vfio_device_feature *feature) 1006 { 1007 struct vfio_device_feature_dma_logging_control *control = 1008 (struct vfio_device_feature_dma_logging_control *)feature->data; 1009 struct vfio_device_feature_dma_logging_range *ranges = 1010 (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges; 1011 1012 g_free(ranges); 1013 g_free(feature); 1014 } 1015 1016 static bool vfio_devices_dma_logging_start(VFIOContainerBase *bcontainer, 1017 Error **errp) 1018 { 1019 struct vfio_device_feature *feature; 1020 VFIODirtyRanges ranges; 1021 VFIODevice *vbasedev; 1022 int ret = 0; 1023 1024 vfio_dirty_tracking_init(bcontainer, &ranges); 1025 feature = vfio_device_feature_dma_logging_start_create(bcontainer, 1026 &ranges); 1027 if (!feature) { 1028 error_setg_errno(errp, errno, "Failed to prepare DMA logging"); 1029 return false; 1030 } 1031 1032 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 1033 if (vbasedev->dirty_tracking) { 1034 continue; 1035 } 1036 1037 ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature); 1038 if (ret) { 1039 ret = -errno; 1040 error_setg_errno(errp, errno, "%s: Failed to start DMA logging", 1041 vbasedev->name); 1042 goto out; 1043 } 1044 vbasedev->dirty_tracking = true; 1045 } 1046 1047 out: 1048 if (ret) { 1049 vfio_devices_dma_logging_stop(bcontainer); 1050 } 1051 1052 vfio_device_feature_dma_logging_start_destroy(feature); 1053 1054 return ret == 0; 1055 } 1056 1057 static bool vfio_listener_log_global_start(MemoryListener *listener, 1058 Error **errp) 1059 { 1060 ERRP_GUARD(); 1061 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1062 listener); 1063 bool ret; 1064 1065 if (vfio_devices_all_device_dirty_tracking(bcontainer)) { 1066 ret = vfio_devices_dma_logging_start(bcontainer, errp); 1067 } else { 1068 ret = vfio_container_set_dirty_page_tracking(bcontainer, true, errp) == 0; 1069 } 1070 1071 if (!ret) { 1072 error_prepend(errp, "vfio: Could not start dirty page tracking - "); 1073 } 1074 return ret; 1075 } 1076 1077 static void vfio_listener_log_global_stop(MemoryListener *listener) 1078 { 1079 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1080 listener); 1081 Error *local_err = NULL; 1082 int ret = 0; 1083 1084 if (vfio_devices_all_device_dirty_tracking(bcontainer)) { 1085 vfio_devices_dma_logging_stop(bcontainer); 1086 } else { 1087 ret = vfio_container_set_dirty_page_tracking(bcontainer, false, 1088 &local_err); 1089 } 1090 1091 if (ret) { 1092 error_prepend(&local_err, 1093 "vfio: Could not stop dirty page tracking - "); 1094 error_report_err(local_err); 1095 vfio_set_migration_error(ret); 1096 } 1097 } 1098 1099 static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova, 1100 hwaddr size, void *bitmap) 1101 { 1102 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) + 1103 sizeof(struct vfio_device_feature_dma_logging_report), 1104 sizeof(uint64_t))] = {}; 1105 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 1106 struct vfio_device_feature_dma_logging_report *report = 1107 (struct vfio_device_feature_dma_logging_report *)feature->data; 1108 1109 report->iova = iova; 1110 report->length = size; 1111 report->page_size = qemu_real_host_page_size(); 1112 report->bitmap = (uintptr_t)bitmap; 1113 1114 feature->argsz = sizeof(buf); 1115 feature->flags = VFIO_DEVICE_FEATURE_GET | 1116 VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT; 1117 1118 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 1119 return -errno; 1120 } 1121 1122 return 0; 1123 } 1124 1125 int vfio_devices_query_dirty_bitmap(const VFIOContainerBase *bcontainer, 1126 VFIOBitmap *vbmap, hwaddr iova, hwaddr size, Error **errp) 1127 { 1128 VFIODevice *vbasedev; 1129 int ret; 1130 1131 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) { 1132 ret = vfio_device_dma_logging_report(vbasedev, iova, size, 1133 vbmap->bitmap); 1134 if (ret) { 1135 error_setg_errno(errp, -ret, 1136 "%s: Failed to get DMA logging report, iova: " 1137 "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx, 1138 vbasedev->name, iova, size); 1139 1140 return ret; 1141 } 1142 } 1143 1144 return 0; 1145 } 1146 1147 int vfio_get_dirty_bitmap(const VFIOContainerBase *bcontainer, uint64_t iova, 1148 uint64_t size, ram_addr_t ram_addr, Error **errp) 1149 { 1150 bool all_device_dirty_tracking = 1151 vfio_devices_all_device_dirty_tracking(bcontainer); 1152 uint64_t dirty_pages; 1153 VFIOBitmap vbmap; 1154 int ret; 1155 1156 if (!bcontainer->dirty_pages_supported && !all_device_dirty_tracking) { 1157 cpu_physical_memory_set_dirty_range(ram_addr, size, 1158 tcg_enabled() ? DIRTY_CLIENTS_ALL : 1159 DIRTY_CLIENTS_NOCODE); 1160 return 0; 1161 } 1162 1163 ret = vfio_bitmap_alloc(&vbmap, size); 1164 if (ret) { 1165 error_setg_errno(errp, -ret, 1166 "Failed to allocate dirty tracking bitmap"); 1167 return ret; 1168 } 1169 1170 if (all_device_dirty_tracking) { 1171 ret = vfio_devices_query_dirty_bitmap(bcontainer, &vbmap, iova, size, 1172 errp); 1173 } else { 1174 ret = vfio_container_query_dirty_bitmap(bcontainer, &vbmap, iova, size, 1175 errp); 1176 } 1177 1178 if (ret) { 1179 goto out; 1180 } 1181 1182 dirty_pages = cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr, 1183 vbmap.pages); 1184 1185 trace_vfio_get_dirty_bitmap(iova, size, vbmap.size, ram_addr, dirty_pages); 1186 out: 1187 g_free(vbmap.bitmap); 1188 1189 return ret; 1190 } 1191 1192 typedef struct { 1193 IOMMUNotifier n; 1194 VFIOGuestIOMMU *giommu; 1195 } vfio_giommu_dirty_notifier; 1196 1197 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 1198 { 1199 vfio_giommu_dirty_notifier *gdn = container_of(n, 1200 vfio_giommu_dirty_notifier, n); 1201 VFIOGuestIOMMU *giommu = gdn->giommu; 1202 VFIOContainerBase *bcontainer = giommu->bcontainer; 1203 hwaddr iova = iotlb->iova + giommu->iommu_offset; 1204 ram_addr_t translated_addr; 1205 Error *local_err = NULL; 1206 int ret = -EINVAL; 1207 1208 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); 1209 1210 if (iotlb->target_as != &address_space_memory) { 1211 error_report("Wrong target AS \"%s\", only system memory is allowed", 1212 iotlb->target_as->name ? iotlb->target_as->name : "none"); 1213 goto out; 1214 } 1215 1216 rcu_read_lock(); 1217 if (!vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL, &local_err)) { 1218 error_report_err(local_err); 1219 goto out_unlock; 1220 } 1221 1222 ret = vfio_get_dirty_bitmap(bcontainer, iova, iotlb->addr_mask + 1, 1223 translated_addr, &local_err); 1224 if (ret) { 1225 error_prepend(&local_err, 1226 "vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " 1227 "0x%"HWADDR_PRIx") failed - ", bcontainer, iova, 1228 iotlb->addr_mask + 1); 1229 error_report_err(local_err); 1230 } 1231 1232 out_unlock: 1233 rcu_read_unlock(); 1234 1235 out: 1236 if (ret) { 1237 vfio_set_migration_error(ret); 1238 } 1239 } 1240 1241 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, 1242 void *opaque) 1243 { 1244 const hwaddr size = int128_get64(section->size); 1245 const hwaddr iova = section->offset_within_address_space; 1246 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + 1247 section->offset_within_region; 1248 VFIORamDiscardListener *vrdl = opaque; 1249 Error *local_err = NULL; 1250 int ret; 1251 1252 /* 1253 * Sync the whole mapped region (spanning multiple individual mappings) 1254 * in one go. 1255 */ 1256 ret = vfio_get_dirty_bitmap(vrdl->bcontainer, iova, size, ram_addr, 1257 &local_err); 1258 if (ret) { 1259 error_report_err(local_err); 1260 } 1261 return ret; 1262 } 1263 1264 static int 1265 vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainerBase *bcontainer, 1266 MemoryRegionSection *section) 1267 { 1268 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 1269 VFIORamDiscardListener *vrdl = NULL; 1270 1271 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) { 1272 if (vrdl->mr == section->mr && 1273 vrdl->offset_within_address_space == 1274 section->offset_within_address_space) { 1275 break; 1276 } 1277 } 1278 1279 if (!vrdl) { 1280 hw_error("vfio: Trying to sync missing RAM discard listener"); 1281 } 1282 1283 /* 1284 * We only want/can synchronize the bitmap for actually mapped parts - 1285 * which correspond to populated parts. Replay all populated parts. 1286 */ 1287 return ram_discard_manager_replay_populated(rdm, section, 1288 vfio_ram_discard_get_dirty_bitmap, 1289 &vrdl); 1290 } 1291 1292 static int vfio_sync_iommu_dirty_bitmap(VFIOContainerBase *bcontainer, 1293 MemoryRegionSection *section) 1294 { 1295 VFIOGuestIOMMU *giommu; 1296 bool found = false; 1297 Int128 llend; 1298 vfio_giommu_dirty_notifier gdn; 1299 int idx; 1300 1301 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) { 1302 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1303 giommu->n.start == section->offset_within_region) { 1304 found = true; 1305 break; 1306 } 1307 } 1308 1309 if (!found) { 1310 return 0; 1311 } 1312 1313 gdn.giommu = giommu; 1314 idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr, 1315 MEMTXATTRS_UNSPECIFIED); 1316 1317 llend = int128_add(int128_make64(section->offset_within_region), 1318 section->size); 1319 llend = int128_sub(llend, int128_one()); 1320 1321 iommu_notifier_init(&gdn.n, vfio_iommu_map_dirty_notify, IOMMU_NOTIFIER_MAP, 1322 section->offset_within_region, int128_get64(llend), 1323 idx); 1324 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n); 1325 1326 return 0; 1327 } 1328 1329 static int vfio_sync_dirty_bitmap(VFIOContainerBase *bcontainer, 1330 MemoryRegionSection *section, Error **errp) 1331 { 1332 ram_addr_t ram_addr; 1333 1334 if (memory_region_is_iommu(section->mr)) { 1335 return vfio_sync_iommu_dirty_bitmap(bcontainer, section); 1336 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1337 int ret; 1338 1339 ret = vfio_sync_ram_discard_listener_dirty_bitmap(bcontainer, section); 1340 if (ret) { 1341 error_setg(errp, 1342 "Failed to sync dirty bitmap with RAM discard listener"); 1343 } 1344 return ret; 1345 } 1346 1347 ram_addr = memory_region_get_ram_addr(section->mr) + 1348 section->offset_within_region; 1349 1350 return vfio_get_dirty_bitmap(bcontainer, 1351 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), 1352 int128_get64(section->size), ram_addr, errp); 1353 } 1354 1355 static void vfio_listener_log_sync(MemoryListener *listener, 1356 MemoryRegionSection *section) 1357 { 1358 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase, 1359 listener); 1360 int ret; 1361 Error *local_err = NULL; 1362 1363 if (vfio_listener_skipped_section(section)) { 1364 return; 1365 } 1366 1367 if (vfio_log_sync_needed(bcontainer)) { 1368 ret = vfio_sync_dirty_bitmap(bcontainer, section, &local_err); 1369 if (ret) { 1370 error_report_err(local_err); 1371 vfio_set_migration_error(ret); 1372 } 1373 } 1374 } 1375 1376 const MemoryListener vfio_memory_listener = { 1377 .name = "vfio", 1378 .region_add = vfio_listener_region_add, 1379 .region_del = vfio_listener_region_del, 1380 .log_global_start = vfio_listener_log_global_start, 1381 .log_global_stop = vfio_listener_log_global_stop, 1382 .log_sync = vfio_listener_log_sync, 1383 }; 1384 1385 void vfio_reset_handler(void *opaque) 1386 { 1387 VFIODevice *vbasedev; 1388 1389 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 1390 if (vbasedev->dev->realized) { 1391 vbasedev->ops->vfio_compute_needs_reset(vbasedev); 1392 } 1393 } 1394 1395 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) { 1396 if (vbasedev->dev->realized && vbasedev->needs_reset) { 1397 vbasedev->ops->vfio_hot_reset_multi(vbasedev); 1398 } 1399 } 1400 } 1401 1402 int vfio_kvm_device_add_fd(int fd, Error **errp) 1403 { 1404 #ifdef CONFIG_KVM 1405 struct kvm_device_attr attr = { 1406 .group = KVM_DEV_VFIO_FILE, 1407 .attr = KVM_DEV_VFIO_FILE_ADD, 1408 .addr = (uint64_t)(unsigned long)&fd, 1409 }; 1410 1411 if (!kvm_enabled()) { 1412 return 0; 1413 } 1414 1415 if (vfio_kvm_device_fd < 0) { 1416 struct kvm_create_device cd = { 1417 .type = KVM_DEV_TYPE_VFIO, 1418 }; 1419 1420 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { 1421 error_setg_errno(errp, errno, "Failed to create KVM VFIO device"); 1422 return -errno; 1423 } 1424 1425 vfio_kvm_device_fd = cd.fd; 1426 } 1427 1428 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1429 error_setg_errno(errp, errno, "Failed to add fd %d to KVM VFIO device", 1430 fd); 1431 return -errno; 1432 } 1433 #endif 1434 return 0; 1435 } 1436 1437 int vfio_kvm_device_del_fd(int fd, Error **errp) 1438 { 1439 #ifdef CONFIG_KVM 1440 struct kvm_device_attr attr = { 1441 .group = KVM_DEV_VFIO_FILE, 1442 .attr = KVM_DEV_VFIO_FILE_DEL, 1443 .addr = (uint64_t)(unsigned long)&fd, 1444 }; 1445 1446 if (vfio_kvm_device_fd < 0) { 1447 error_setg(errp, "KVM VFIO device isn't created yet"); 1448 return -EINVAL; 1449 } 1450 1451 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1452 error_setg_errno(errp, errno, 1453 "Failed to remove fd %d from KVM VFIO device", fd); 1454 return -errno; 1455 } 1456 #endif 1457 return 0; 1458 } 1459 1460 VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) 1461 { 1462 VFIOAddressSpace *space; 1463 1464 QLIST_FOREACH(space, &vfio_address_spaces, list) { 1465 if (space->as == as) { 1466 return space; 1467 } 1468 } 1469 1470 /* No suitable VFIOAddressSpace, create a new one */ 1471 space = g_malloc0(sizeof(*space)); 1472 space->as = as; 1473 QLIST_INIT(&space->containers); 1474 1475 if (QLIST_EMPTY(&vfio_address_spaces)) { 1476 qemu_register_reset(vfio_reset_handler, NULL); 1477 } 1478 1479 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); 1480 1481 return space; 1482 } 1483 1484 void vfio_put_address_space(VFIOAddressSpace *space) 1485 { 1486 if (!QLIST_EMPTY(&space->containers)) { 1487 return; 1488 } 1489 1490 QLIST_REMOVE(space, list); 1491 g_free(space); 1492 1493 if (QLIST_EMPTY(&vfio_address_spaces)) { 1494 qemu_unregister_reset(vfio_reset_handler, NULL); 1495 } 1496 } 1497 1498 void vfio_address_space_insert(VFIOAddressSpace *space, 1499 VFIOContainerBase *bcontainer) 1500 { 1501 QLIST_INSERT_HEAD(&space->containers, bcontainer, next); 1502 bcontainer->space = space; 1503 } 1504 1505 struct vfio_device_info *vfio_get_device_info(int fd) 1506 { 1507 struct vfio_device_info *info; 1508 uint32_t argsz = sizeof(*info); 1509 1510 info = g_malloc0(argsz); 1511 1512 retry: 1513 info->argsz = argsz; 1514 1515 if (ioctl(fd, VFIO_DEVICE_GET_INFO, info)) { 1516 g_free(info); 1517 return NULL; 1518 } 1519 1520 if (info->argsz > argsz) { 1521 argsz = info->argsz; 1522 info = g_realloc(info, argsz); 1523 goto retry; 1524 } 1525 1526 return info; 1527 } 1528 1529 bool vfio_attach_device(char *name, VFIODevice *vbasedev, 1530 AddressSpace *as, Error **errp) 1531 { 1532 const VFIOIOMMUClass *ops = 1533 VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_LEGACY)); 1534 HostIOMMUDevice *hiod = NULL; 1535 1536 if (vbasedev->iommufd) { 1537 ops = VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_IOMMUFD)); 1538 } 1539 1540 assert(ops); 1541 1542 1543 if (!vbasedev->mdev) { 1544 hiod = HOST_IOMMU_DEVICE(object_new(ops->hiod_typename)); 1545 vbasedev->hiod = hiod; 1546 } 1547 1548 if (!ops->attach_device(name, vbasedev, as, errp)) { 1549 object_unref(hiod); 1550 vbasedev->hiod = NULL; 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 void vfio_detach_device(VFIODevice *vbasedev) 1558 { 1559 if (!vbasedev->bcontainer) { 1560 return; 1561 } 1562 object_unref(vbasedev->hiod); 1563 VFIO_IOMMU_GET_CLASS(vbasedev->bcontainer)->detach_device(vbasedev); 1564 } 1565