1 /* 2 * generic functions used by VFIO devices 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 #ifdef CONFIG_KVM 24 #include <linux/kvm.h> 25 #endif 26 #include <linux/vfio.h> 27 28 #include "hw/vfio/vfio-common.h" 29 #include "hw/vfio/vfio.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "exec/ram_addr.h" 33 #include "hw/hw.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/range.h" 37 #include "sysemu/kvm.h" 38 #include "sysemu/reset.h" 39 #include "trace.h" 40 #include "qapi/error.h" 41 #include "migration/migration.h" 42 43 VFIOGroupList vfio_group_list = 44 QLIST_HEAD_INITIALIZER(vfio_group_list); 45 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = 46 QLIST_HEAD_INITIALIZER(vfio_address_spaces); 47 48 #ifdef CONFIG_KVM 49 /* 50 * We have a single VFIO pseudo device per KVM VM. Once created it lives 51 * for the life of the VM. Closing the file descriptor only drops our 52 * reference to it and the device's reference to kvm. Therefore once 53 * initialized, this file descriptor is only released on QEMU exit and 54 * we'll re-use it should another vfio device be attached before then. 55 */ 56 static int vfio_kvm_device_fd = -1; 57 #endif 58 59 /* 60 * Common VFIO interrupt disable 61 */ 62 void vfio_disable_irqindex(VFIODevice *vbasedev, int index) 63 { 64 struct vfio_irq_set irq_set = { 65 .argsz = sizeof(irq_set), 66 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER, 67 .index = index, 68 .start = 0, 69 .count = 0, 70 }; 71 72 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 73 } 74 75 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index) 76 { 77 struct vfio_irq_set irq_set = { 78 .argsz = sizeof(irq_set), 79 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK, 80 .index = index, 81 .start = 0, 82 .count = 1, 83 }; 84 85 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 86 } 87 88 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index) 89 { 90 struct vfio_irq_set irq_set = { 91 .argsz = sizeof(irq_set), 92 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK, 93 .index = index, 94 .start = 0, 95 .count = 1, 96 }; 97 98 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); 99 } 100 101 static inline const char *action_to_str(int action) 102 { 103 switch (action) { 104 case VFIO_IRQ_SET_ACTION_MASK: 105 return "MASK"; 106 case VFIO_IRQ_SET_ACTION_UNMASK: 107 return "UNMASK"; 108 case VFIO_IRQ_SET_ACTION_TRIGGER: 109 return "TRIGGER"; 110 default: 111 return "UNKNOWN ACTION"; 112 } 113 } 114 115 static const char *index_to_str(VFIODevice *vbasedev, int index) 116 { 117 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { 118 return NULL; 119 } 120 121 switch (index) { 122 case VFIO_PCI_INTX_IRQ_INDEX: 123 return "INTX"; 124 case VFIO_PCI_MSI_IRQ_INDEX: 125 return "MSI"; 126 case VFIO_PCI_MSIX_IRQ_INDEX: 127 return "MSIX"; 128 case VFIO_PCI_ERR_IRQ_INDEX: 129 return "ERR"; 130 case VFIO_PCI_REQ_IRQ_INDEX: 131 return "REQ"; 132 default: 133 return NULL; 134 } 135 } 136 137 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex, 138 int action, int fd, Error **errp) 139 { 140 struct vfio_irq_set *irq_set; 141 int argsz, ret = 0; 142 const char *name; 143 int32_t *pfd; 144 145 argsz = sizeof(*irq_set) + sizeof(*pfd); 146 147 irq_set = g_malloc0(argsz); 148 irq_set->argsz = argsz; 149 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action; 150 irq_set->index = index; 151 irq_set->start = subindex; 152 irq_set->count = 1; 153 pfd = (int32_t *)&irq_set->data; 154 *pfd = fd; 155 156 if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 157 ret = -errno; 158 } 159 g_free(irq_set); 160 161 if (!ret) { 162 return 0; 163 } 164 165 error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure"); 166 167 name = index_to_str(vbasedev, index); 168 if (name) { 169 error_prepend(errp, "%s-%d: ", name, subindex); 170 } else { 171 error_prepend(errp, "index %d-%d: ", index, subindex); 172 } 173 error_prepend(errp, 174 "Failed to %s %s eventfd signaling for interrupt ", 175 fd < 0 ? "tear down" : "set up", action_to_str(action)); 176 return ret; 177 } 178 179 /* 180 * IO Port/MMIO - Beware of the endians, VFIO is always little endian 181 */ 182 void vfio_region_write(void *opaque, hwaddr addr, 183 uint64_t data, unsigned size) 184 { 185 VFIORegion *region = opaque; 186 VFIODevice *vbasedev = region->vbasedev; 187 union { 188 uint8_t byte; 189 uint16_t word; 190 uint32_t dword; 191 uint64_t qword; 192 } buf; 193 194 switch (size) { 195 case 1: 196 buf.byte = data; 197 break; 198 case 2: 199 buf.word = cpu_to_le16(data); 200 break; 201 case 4: 202 buf.dword = cpu_to_le32(data); 203 break; 204 case 8: 205 buf.qword = cpu_to_le64(data); 206 break; 207 default: 208 hw_error("vfio: unsupported write size, %u bytes", size); 209 break; 210 } 211 212 if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { 213 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64 214 ",%d) failed: %m", 215 __func__, vbasedev->name, region->nr, 216 addr, data, size); 217 } 218 219 trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size); 220 221 /* 222 * A read or write to a BAR always signals an INTx EOI. This will 223 * do nothing if not pending (including not in INTx mode). We assume 224 * that a BAR access is in response to an interrupt and that BAR 225 * accesses will service the interrupt. Unfortunately, we don't know 226 * which access will service the interrupt, so we're potentially 227 * getting quite a few host interrupts per guest interrupt. 228 */ 229 vbasedev->ops->vfio_eoi(vbasedev); 230 } 231 232 uint64_t vfio_region_read(void *opaque, 233 hwaddr addr, unsigned size) 234 { 235 VFIORegion *region = opaque; 236 VFIODevice *vbasedev = region->vbasedev; 237 union { 238 uint8_t byte; 239 uint16_t word; 240 uint32_t dword; 241 uint64_t qword; 242 } buf; 243 uint64_t data = 0; 244 245 if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { 246 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m", 247 __func__, vbasedev->name, region->nr, 248 addr, size); 249 return (uint64_t)-1; 250 } 251 switch (size) { 252 case 1: 253 data = buf.byte; 254 break; 255 case 2: 256 data = le16_to_cpu(buf.word); 257 break; 258 case 4: 259 data = le32_to_cpu(buf.dword); 260 break; 261 case 8: 262 data = le64_to_cpu(buf.qword); 263 break; 264 default: 265 hw_error("vfio: unsupported read size, %u bytes", size); 266 break; 267 } 268 269 trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data); 270 271 /* Same as write above */ 272 vbasedev->ops->vfio_eoi(vbasedev); 273 274 return data; 275 } 276 277 const MemoryRegionOps vfio_region_ops = { 278 .read = vfio_region_read, 279 .write = vfio_region_write, 280 .endianness = DEVICE_LITTLE_ENDIAN, 281 .valid = { 282 .min_access_size = 1, 283 .max_access_size = 8, 284 }, 285 .impl = { 286 .min_access_size = 1, 287 .max_access_size = 8, 288 }, 289 }; 290 291 /* 292 * Device state interfaces 293 */ 294 295 bool vfio_mig_active(void) 296 { 297 VFIOGroup *group; 298 VFIODevice *vbasedev; 299 300 if (QLIST_EMPTY(&vfio_group_list)) { 301 return false; 302 } 303 304 QLIST_FOREACH(group, &vfio_group_list, next) { 305 QLIST_FOREACH(vbasedev, &group->device_list, next) { 306 if (vbasedev->migration_blocker) { 307 return false; 308 } 309 } 310 } 311 return true; 312 } 313 314 static bool vfio_devices_all_stopped_and_saving(VFIOContainer *container) 315 { 316 VFIOGroup *group; 317 VFIODevice *vbasedev; 318 MigrationState *ms = migrate_get_current(); 319 320 if (!migration_is_setup_or_active(ms->state)) { 321 return false; 322 } 323 324 QLIST_FOREACH(group, &container->group_list, container_next) { 325 QLIST_FOREACH(vbasedev, &group->device_list, next) { 326 VFIOMigration *migration = vbasedev->migration; 327 328 if (!migration) { 329 return false; 330 } 331 332 if ((migration->device_state & VFIO_DEVICE_STATE_SAVING) && 333 !(migration->device_state & VFIO_DEVICE_STATE_RUNNING)) { 334 continue; 335 } else { 336 return false; 337 } 338 } 339 } 340 return true; 341 } 342 343 static bool vfio_devices_all_running_and_saving(VFIOContainer *container) 344 { 345 VFIOGroup *group; 346 VFIODevice *vbasedev; 347 MigrationState *ms = migrate_get_current(); 348 349 if (!migration_is_setup_or_active(ms->state)) { 350 return false; 351 } 352 353 QLIST_FOREACH(group, &container->group_list, container_next) { 354 QLIST_FOREACH(vbasedev, &group->device_list, next) { 355 VFIOMigration *migration = vbasedev->migration; 356 357 if (!migration) { 358 return false; 359 } 360 361 if ((migration->device_state & VFIO_DEVICE_STATE_SAVING) && 362 (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) { 363 continue; 364 } else { 365 return false; 366 } 367 } 368 } 369 return true; 370 } 371 372 static int vfio_dma_unmap_bitmap(VFIOContainer *container, 373 hwaddr iova, ram_addr_t size, 374 IOMMUTLBEntry *iotlb) 375 { 376 struct vfio_iommu_type1_dma_unmap *unmap; 377 struct vfio_bitmap *bitmap; 378 uint64_t pages = TARGET_PAGE_ALIGN(size) >> TARGET_PAGE_BITS; 379 int ret; 380 381 unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap)); 382 383 unmap->argsz = sizeof(*unmap) + sizeof(*bitmap); 384 unmap->iova = iova; 385 unmap->size = size; 386 unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP; 387 bitmap = (struct vfio_bitmap *)&unmap->data; 388 389 /* 390 * cpu_physical_memory_set_dirty_lebitmap() expects pages in bitmap of 391 * TARGET_PAGE_SIZE to mark those dirty. Hence set bitmap_pgsize to 392 * TARGET_PAGE_SIZE. 393 */ 394 395 bitmap->pgsize = TARGET_PAGE_SIZE; 396 bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) / 397 BITS_PER_BYTE; 398 399 if (bitmap->size > container->max_dirty_bitmap_size) { 400 error_report("UNMAP: Size of bitmap too big 0x%"PRIx64, 401 (uint64_t)bitmap->size); 402 ret = -E2BIG; 403 goto unmap_exit; 404 } 405 406 bitmap->data = g_try_malloc0(bitmap->size); 407 if (!bitmap->data) { 408 ret = -ENOMEM; 409 goto unmap_exit; 410 } 411 412 ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap); 413 if (!ret) { 414 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data, 415 iotlb->translated_addr, pages); 416 } else { 417 error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m"); 418 } 419 420 g_free(bitmap->data); 421 unmap_exit: 422 g_free(unmap); 423 return ret; 424 } 425 426 /* 427 * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86 428 */ 429 static int vfio_dma_unmap(VFIOContainer *container, 430 hwaddr iova, ram_addr_t size, 431 IOMMUTLBEntry *iotlb) 432 { 433 struct vfio_iommu_type1_dma_unmap unmap = { 434 .argsz = sizeof(unmap), 435 .flags = 0, 436 .iova = iova, 437 .size = size, 438 }; 439 440 if (iotlb && container->dirty_pages_supported && 441 vfio_devices_all_running_and_saving(container)) { 442 return vfio_dma_unmap_bitmap(container, iova, size, iotlb); 443 } 444 445 while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) { 446 /* 447 * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c 448 * v4.15) where an overflow in its wrap-around check prevents us from 449 * unmapping the last page of the address space. Test for the error 450 * condition and re-try the unmap excluding the last page. The 451 * expectation is that we've never mapped the last page anyway and this 452 * unmap request comes via vIOMMU support which also makes it unlikely 453 * that this page is used. This bug was introduced well after type1 v2 454 * support was introduced, so we shouldn't need to test for v1. A fix 455 * is queued for kernel v5.0 so this workaround can be removed once 456 * affected kernels are sufficiently deprecated. 457 */ 458 if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) && 459 container->iommu_type == VFIO_TYPE1v2_IOMMU) { 460 trace_vfio_dma_unmap_overflow_workaround(); 461 unmap.size -= 1ULL << ctz64(container->pgsizes); 462 continue; 463 } 464 error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno)); 465 return -errno; 466 } 467 468 return 0; 469 } 470 471 static int vfio_dma_map(VFIOContainer *container, hwaddr iova, 472 ram_addr_t size, void *vaddr, bool readonly) 473 { 474 struct vfio_iommu_type1_dma_map map = { 475 .argsz = sizeof(map), 476 .flags = VFIO_DMA_MAP_FLAG_READ, 477 .vaddr = (__u64)(uintptr_t)vaddr, 478 .iova = iova, 479 .size = size, 480 }; 481 482 if (!readonly) { 483 map.flags |= VFIO_DMA_MAP_FLAG_WRITE; 484 } 485 486 /* 487 * Try the mapping, if it fails with EBUSY, unmap the region and try 488 * again. This shouldn't be necessary, but we sometimes see it in 489 * the VGA ROM space. 490 */ 491 if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 || 492 (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 && 493 ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) { 494 return 0; 495 } 496 497 error_report("VFIO_MAP_DMA failed: %s", strerror(errno)); 498 return -errno; 499 } 500 501 static void vfio_host_win_add(VFIOContainer *container, 502 hwaddr min_iova, hwaddr max_iova, 503 uint64_t iova_pgsizes) 504 { 505 VFIOHostDMAWindow *hostwin; 506 507 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 508 if (ranges_overlap(hostwin->min_iova, 509 hostwin->max_iova - hostwin->min_iova + 1, 510 min_iova, 511 max_iova - min_iova + 1)) { 512 hw_error("%s: Overlapped IOMMU are not enabled", __func__); 513 } 514 } 515 516 hostwin = g_malloc0(sizeof(*hostwin)); 517 518 hostwin->min_iova = min_iova; 519 hostwin->max_iova = max_iova; 520 hostwin->iova_pgsizes = iova_pgsizes; 521 QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next); 522 } 523 524 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova, 525 hwaddr max_iova) 526 { 527 VFIOHostDMAWindow *hostwin; 528 529 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 530 if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) { 531 QLIST_REMOVE(hostwin, hostwin_next); 532 return 0; 533 } 534 } 535 536 return -1; 537 } 538 539 static bool vfio_listener_skipped_section(MemoryRegionSection *section) 540 { 541 return (!memory_region_is_ram(section->mr) && 542 !memory_region_is_iommu(section->mr)) || 543 /* 544 * Sizing an enabled 64-bit BAR can cause spurious mappings to 545 * addresses in the upper part of the 64-bit address space. These 546 * are never accessed by the CPU and beyond the address width of 547 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. 548 */ 549 section->offset_within_address_space & (1ULL << 63); 550 } 551 552 /* Called with rcu_read_lock held. */ 553 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 554 ram_addr_t *ram_addr, bool *read_only) 555 { 556 MemoryRegion *mr; 557 hwaddr xlat; 558 hwaddr len = iotlb->addr_mask + 1; 559 bool writable = iotlb->perm & IOMMU_WO; 560 561 /* 562 * The IOMMU TLB entry we have just covers translation through 563 * this IOMMU to its immediate target. We need to translate 564 * it the rest of the way through to memory. 565 */ 566 mr = address_space_translate(&address_space_memory, 567 iotlb->translated_addr, 568 &xlat, &len, writable, 569 MEMTXATTRS_UNSPECIFIED); 570 if (!memory_region_is_ram(mr)) { 571 error_report("iommu map to non memory area %"HWADDR_PRIx"", 572 xlat); 573 return false; 574 } 575 576 /* 577 * Translation truncates length to the IOMMU page size, 578 * check that it did not truncate too much. 579 */ 580 if (len & iotlb->addr_mask) { 581 error_report("iommu has granularity incompatible with target AS"); 582 return false; 583 } 584 585 if (vaddr) { 586 *vaddr = memory_region_get_ram_ptr(mr) + xlat; 587 } 588 589 if (ram_addr) { 590 *ram_addr = memory_region_get_ram_addr(mr) + xlat; 591 } 592 593 if (read_only) { 594 *read_only = !writable || mr->readonly; 595 } 596 597 return true; 598 } 599 600 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 601 { 602 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); 603 VFIOContainer *container = giommu->container; 604 hwaddr iova = iotlb->iova + giommu->iommu_offset; 605 void *vaddr; 606 int ret; 607 608 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", 609 iova, iova + iotlb->addr_mask); 610 611 if (iotlb->target_as != &address_space_memory) { 612 error_report("Wrong target AS \"%s\", only system memory is allowed", 613 iotlb->target_as->name ? iotlb->target_as->name : "none"); 614 return; 615 } 616 617 rcu_read_lock(); 618 619 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 620 bool read_only; 621 622 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) { 623 goto out; 624 } 625 /* 626 * vaddr is only valid until rcu_read_unlock(). But after 627 * vfio_dma_map has set up the mapping the pages will be 628 * pinned by the kernel. This makes sure that the RAM backend 629 * of vaddr will always be there, even if the memory object is 630 * destroyed and its backing memory munmap-ed. 631 */ 632 ret = vfio_dma_map(container, iova, 633 iotlb->addr_mask + 1, vaddr, 634 read_only); 635 if (ret) { 636 error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 637 "0x%"HWADDR_PRIx", %p) = %d (%m)", 638 container, iova, 639 iotlb->addr_mask + 1, vaddr, ret); 640 } 641 } else { 642 ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb); 643 if (ret) { 644 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 645 "0x%"HWADDR_PRIx") = %d (%m)", 646 container, iova, 647 iotlb->addr_mask + 1, ret); 648 } 649 } 650 out: 651 rcu_read_unlock(); 652 } 653 654 static void vfio_listener_region_add(MemoryListener *listener, 655 MemoryRegionSection *section) 656 { 657 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 658 hwaddr iova, end; 659 Int128 llend, llsize; 660 void *vaddr; 661 int ret; 662 VFIOHostDMAWindow *hostwin; 663 bool hostwin_found; 664 Error *err = NULL; 665 666 if (vfio_listener_skipped_section(section)) { 667 trace_vfio_listener_region_add_skip( 668 section->offset_within_address_space, 669 section->offset_within_address_space + 670 int128_get64(int128_sub(section->size, int128_one()))); 671 return; 672 } 673 674 if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) != 675 (section->offset_within_region & ~TARGET_PAGE_MASK))) { 676 error_report("%s received unaligned region", __func__); 677 return; 678 } 679 680 iova = TARGET_PAGE_ALIGN(section->offset_within_address_space); 681 llend = int128_make64(section->offset_within_address_space); 682 llend = int128_add(llend, section->size); 683 llend = int128_and(llend, int128_exts64(TARGET_PAGE_MASK)); 684 685 if (int128_ge(int128_make64(iova), llend)) { 686 return; 687 } 688 end = int128_get64(int128_sub(llend, int128_one())); 689 690 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 691 hwaddr pgsize = 0; 692 693 /* For now intersections are not allowed, we may relax this later */ 694 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 695 if (ranges_overlap(hostwin->min_iova, 696 hostwin->max_iova - hostwin->min_iova + 1, 697 section->offset_within_address_space, 698 int128_get64(section->size))) { 699 error_setg(&err, 700 "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing" 701 "host DMA window [0x%"PRIx64",0x%"PRIx64"]", 702 section->offset_within_address_space, 703 section->offset_within_address_space + 704 int128_get64(section->size) - 1, 705 hostwin->min_iova, hostwin->max_iova); 706 goto fail; 707 } 708 } 709 710 ret = vfio_spapr_create_window(container, section, &pgsize); 711 if (ret) { 712 error_setg_errno(&err, -ret, "Failed to create SPAPR window"); 713 goto fail; 714 } 715 716 vfio_host_win_add(container, section->offset_within_address_space, 717 section->offset_within_address_space + 718 int128_get64(section->size) - 1, pgsize); 719 #ifdef CONFIG_KVM 720 if (kvm_enabled()) { 721 VFIOGroup *group; 722 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 723 struct kvm_vfio_spapr_tce param; 724 struct kvm_device_attr attr = { 725 .group = KVM_DEV_VFIO_GROUP, 726 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE, 727 .addr = (uint64_t)(unsigned long)¶m, 728 }; 729 730 if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD, 731 ¶m.tablefd)) { 732 QLIST_FOREACH(group, &container->group_list, container_next) { 733 param.groupfd = group->fd; 734 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 735 error_report("vfio: failed to setup fd %d " 736 "for a group with fd %d: %s", 737 param.tablefd, param.groupfd, 738 strerror(errno)); 739 return; 740 } 741 trace_vfio_spapr_group_attach(param.groupfd, param.tablefd); 742 } 743 } 744 } 745 #endif 746 } 747 748 hostwin_found = false; 749 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 750 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { 751 hostwin_found = true; 752 break; 753 } 754 } 755 756 if (!hostwin_found) { 757 error_setg(&err, "Container %p can't map guest IOVA region" 758 " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end); 759 goto fail; 760 } 761 762 memory_region_ref(section->mr); 763 764 if (memory_region_is_iommu(section->mr)) { 765 VFIOGuestIOMMU *giommu; 766 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 767 int iommu_idx; 768 769 trace_vfio_listener_region_add_iommu(iova, end); 770 /* 771 * FIXME: For VFIO iommu types which have KVM acceleration to 772 * avoid bouncing all map/unmaps through qemu this way, this 773 * would be the right place to wire that up (tell the KVM 774 * device emulation the VFIO iommu handles to use). 775 */ 776 giommu = g_malloc0(sizeof(*giommu)); 777 giommu->iommu = iommu_mr; 778 giommu->iommu_offset = section->offset_within_address_space - 779 section->offset_within_region; 780 giommu->container = container; 781 llend = int128_add(int128_make64(section->offset_within_region), 782 section->size); 783 llend = int128_sub(llend, int128_one()); 784 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 785 MEMTXATTRS_UNSPECIFIED); 786 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, 787 IOMMU_NOTIFIER_ALL, 788 section->offset_within_region, 789 int128_get64(llend), 790 iommu_idx); 791 792 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, 793 &err); 794 if (ret) { 795 g_free(giommu); 796 goto fail; 797 } 798 QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next); 799 memory_region_iommu_replay(giommu->iommu, &giommu->n); 800 801 return; 802 } 803 804 /* Here we assume that memory_region_is_ram(section->mr)==true */ 805 806 vaddr = memory_region_get_ram_ptr(section->mr) + 807 section->offset_within_region + 808 (iova - section->offset_within_address_space); 809 810 trace_vfio_listener_region_add_ram(iova, end, vaddr); 811 812 llsize = int128_sub(llend, int128_make64(iova)); 813 814 if (memory_region_is_ram_device(section->mr)) { 815 hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 816 817 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { 818 trace_vfio_listener_region_add_no_dma_map( 819 memory_region_name(section->mr), 820 section->offset_within_address_space, 821 int128_getlo(section->size), 822 pgmask + 1); 823 return; 824 } 825 } 826 827 ret = vfio_dma_map(container, iova, int128_get64(llsize), 828 vaddr, section->readonly); 829 if (ret) { 830 error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 831 "0x%"HWADDR_PRIx", %p) = %d (%m)", 832 container, iova, int128_get64(llsize), vaddr, ret); 833 if (memory_region_is_ram_device(section->mr)) { 834 /* Allow unexpected mappings not to be fatal for RAM devices */ 835 error_report_err(err); 836 return; 837 } 838 goto fail; 839 } 840 841 return; 842 843 fail: 844 if (memory_region_is_ram_device(section->mr)) { 845 error_report("failed to vfio_dma_map. pci p2p may not work"); 846 return; 847 } 848 /* 849 * On the initfn path, store the first error in the container so we 850 * can gracefully fail. Runtime, there's not much we can do other 851 * than throw a hardware error. 852 */ 853 if (!container->initialized) { 854 if (!container->error) { 855 error_propagate_prepend(&container->error, err, 856 "Region %s: ", 857 memory_region_name(section->mr)); 858 } else { 859 error_free(err); 860 } 861 } else { 862 error_report_err(err); 863 hw_error("vfio: DMA mapping failed, unable to continue"); 864 } 865 } 866 867 static void vfio_listener_region_del(MemoryListener *listener, 868 MemoryRegionSection *section) 869 { 870 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 871 hwaddr iova, end; 872 Int128 llend, llsize; 873 int ret; 874 bool try_unmap = true; 875 876 if (vfio_listener_skipped_section(section)) { 877 trace_vfio_listener_region_del_skip( 878 section->offset_within_address_space, 879 section->offset_within_address_space + 880 int128_get64(int128_sub(section->size, int128_one()))); 881 return; 882 } 883 884 if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) != 885 (section->offset_within_region & ~TARGET_PAGE_MASK))) { 886 error_report("%s received unaligned region", __func__); 887 return; 888 } 889 890 if (memory_region_is_iommu(section->mr)) { 891 VFIOGuestIOMMU *giommu; 892 893 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 894 if (MEMORY_REGION(giommu->iommu) == section->mr && 895 giommu->n.start == section->offset_within_region) { 896 memory_region_unregister_iommu_notifier(section->mr, 897 &giommu->n); 898 QLIST_REMOVE(giommu, giommu_next); 899 g_free(giommu); 900 break; 901 } 902 } 903 904 /* 905 * FIXME: We assume the one big unmap below is adequate to 906 * remove any individual page mappings in the IOMMU which 907 * might have been copied into VFIO. This works for a page table 908 * based IOMMU where a big unmap flattens a large range of IO-PTEs. 909 * That may not be true for all IOMMU types. 910 */ 911 } 912 913 iova = TARGET_PAGE_ALIGN(section->offset_within_address_space); 914 llend = int128_make64(section->offset_within_address_space); 915 llend = int128_add(llend, section->size); 916 llend = int128_and(llend, int128_exts64(TARGET_PAGE_MASK)); 917 918 if (int128_ge(int128_make64(iova), llend)) { 919 return; 920 } 921 end = int128_get64(int128_sub(llend, int128_one())); 922 923 llsize = int128_sub(llend, int128_make64(iova)); 924 925 trace_vfio_listener_region_del(iova, end); 926 927 if (memory_region_is_ram_device(section->mr)) { 928 hwaddr pgmask; 929 VFIOHostDMAWindow *hostwin; 930 bool hostwin_found = false; 931 932 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 933 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { 934 hostwin_found = true; 935 break; 936 } 937 } 938 assert(hostwin_found); /* or region_add() would have failed */ 939 940 pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 941 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); 942 } 943 944 if (try_unmap) { 945 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); 946 if (ret) { 947 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 948 "0x%"HWADDR_PRIx") = %d (%m)", 949 container, iova, int128_get64(llsize), ret); 950 } 951 } 952 953 memory_region_unref(section->mr); 954 955 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 956 vfio_spapr_remove_window(container, 957 section->offset_within_address_space); 958 if (vfio_host_win_del(container, 959 section->offset_within_address_space, 960 section->offset_within_address_space + 961 int128_get64(section->size) - 1) < 0) { 962 hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx, 963 __func__, section->offset_within_address_space); 964 } 965 } 966 } 967 968 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova, 969 uint64_t size, ram_addr_t ram_addr) 970 { 971 struct vfio_iommu_type1_dirty_bitmap *dbitmap; 972 struct vfio_iommu_type1_dirty_bitmap_get *range; 973 uint64_t pages; 974 int ret; 975 976 dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range)); 977 978 dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range); 979 dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP; 980 range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data; 981 range->iova = iova; 982 range->size = size; 983 984 /* 985 * cpu_physical_memory_set_dirty_lebitmap() expects pages in bitmap of 986 * TARGET_PAGE_SIZE to mark those dirty. Hence set bitmap's pgsize to 987 * TARGET_PAGE_SIZE. 988 */ 989 range->bitmap.pgsize = TARGET_PAGE_SIZE; 990 991 pages = TARGET_PAGE_ALIGN(range->size) >> TARGET_PAGE_BITS; 992 range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) / 993 BITS_PER_BYTE; 994 range->bitmap.data = g_try_malloc0(range->bitmap.size); 995 if (!range->bitmap.data) { 996 ret = -ENOMEM; 997 goto err_out; 998 } 999 1000 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap); 1001 if (ret) { 1002 error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64 1003 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova, 1004 (uint64_t)range->size, errno); 1005 goto err_out; 1006 } 1007 1008 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data, 1009 ram_addr, pages); 1010 1011 trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size, 1012 range->bitmap.size, ram_addr); 1013 err_out: 1014 g_free(range->bitmap.data); 1015 g_free(dbitmap); 1016 1017 return ret; 1018 } 1019 1020 typedef struct { 1021 IOMMUNotifier n; 1022 VFIOGuestIOMMU *giommu; 1023 } vfio_giommu_dirty_notifier; 1024 1025 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 1026 { 1027 vfio_giommu_dirty_notifier *gdn = container_of(n, 1028 vfio_giommu_dirty_notifier, n); 1029 VFIOGuestIOMMU *giommu = gdn->giommu; 1030 VFIOContainer *container = giommu->container; 1031 hwaddr iova = iotlb->iova + giommu->iommu_offset; 1032 ram_addr_t translated_addr; 1033 1034 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); 1035 1036 if (iotlb->target_as != &address_space_memory) { 1037 error_report("Wrong target AS \"%s\", only system memory is allowed", 1038 iotlb->target_as->name ? iotlb->target_as->name : "none"); 1039 return; 1040 } 1041 1042 rcu_read_lock(); 1043 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) { 1044 int ret; 1045 1046 ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1, 1047 translated_addr); 1048 if (ret) { 1049 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " 1050 "0x%"HWADDR_PRIx") = %d (%m)", 1051 container, iova, 1052 iotlb->addr_mask + 1, ret); 1053 } 1054 } 1055 rcu_read_unlock(); 1056 } 1057 1058 static int vfio_sync_dirty_bitmap(VFIOContainer *container, 1059 MemoryRegionSection *section) 1060 { 1061 ram_addr_t ram_addr; 1062 1063 if (memory_region_is_iommu(section->mr)) { 1064 VFIOGuestIOMMU *giommu; 1065 1066 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 1067 if (MEMORY_REGION(giommu->iommu) == section->mr && 1068 giommu->n.start == section->offset_within_region) { 1069 Int128 llend; 1070 vfio_giommu_dirty_notifier gdn = { .giommu = giommu }; 1071 int idx = memory_region_iommu_attrs_to_index(giommu->iommu, 1072 MEMTXATTRS_UNSPECIFIED); 1073 1074 llend = int128_add(int128_make64(section->offset_within_region), 1075 section->size); 1076 llend = int128_sub(llend, int128_one()); 1077 1078 iommu_notifier_init(&gdn.n, 1079 vfio_iommu_map_dirty_notify, 1080 IOMMU_NOTIFIER_MAP, 1081 section->offset_within_region, 1082 int128_get64(llend), 1083 idx); 1084 memory_region_iommu_replay(giommu->iommu, &gdn.n); 1085 break; 1086 } 1087 } 1088 return 0; 1089 } 1090 1091 ram_addr = memory_region_get_ram_addr(section->mr) + 1092 section->offset_within_region; 1093 1094 return vfio_get_dirty_bitmap(container, 1095 TARGET_PAGE_ALIGN(section->offset_within_address_space), 1096 int128_get64(section->size), ram_addr); 1097 } 1098 1099 static void vfio_listerner_log_sync(MemoryListener *listener, 1100 MemoryRegionSection *section) 1101 { 1102 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1103 1104 if (vfio_listener_skipped_section(section) || 1105 !container->dirty_pages_supported) { 1106 return; 1107 } 1108 1109 if (vfio_devices_all_stopped_and_saving(container)) { 1110 vfio_sync_dirty_bitmap(container, section); 1111 } 1112 } 1113 1114 static const MemoryListener vfio_memory_listener = { 1115 .region_add = vfio_listener_region_add, 1116 .region_del = vfio_listener_region_del, 1117 .log_sync = vfio_listerner_log_sync, 1118 }; 1119 1120 static void vfio_listener_release(VFIOContainer *container) 1121 { 1122 memory_listener_unregister(&container->listener); 1123 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1124 memory_listener_unregister(&container->prereg_listener); 1125 } 1126 } 1127 1128 static struct vfio_info_cap_header * 1129 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id) 1130 { 1131 struct vfio_info_cap_header *hdr; 1132 1133 for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) { 1134 if (hdr->id == id) { 1135 return hdr; 1136 } 1137 } 1138 1139 return NULL; 1140 } 1141 1142 struct vfio_info_cap_header * 1143 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id) 1144 { 1145 if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) { 1146 return NULL; 1147 } 1148 1149 return vfio_get_cap((void *)info, info->cap_offset, id); 1150 } 1151 1152 static struct vfio_info_cap_header * 1153 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) 1154 { 1155 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { 1156 return NULL; 1157 } 1158 1159 return vfio_get_cap((void *)info, info->cap_offset, id); 1160 } 1161 1162 struct vfio_info_cap_header * 1163 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id) 1164 { 1165 if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) { 1166 return NULL; 1167 } 1168 1169 return vfio_get_cap((void *)info, info->cap_offset, id); 1170 } 1171 1172 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info, 1173 unsigned int *avail) 1174 { 1175 struct vfio_info_cap_header *hdr; 1176 struct vfio_iommu_type1_info_dma_avail *cap; 1177 1178 /* If the capability cannot be found, assume no DMA limiting */ 1179 hdr = vfio_get_iommu_type1_info_cap(info, 1180 VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL); 1181 if (hdr == NULL) { 1182 return false; 1183 } 1184 1185 if (avail != NULL) { 1186 cap = (void *) hdr; 1187 *avail = cap->avail; 1188 } 1189 1190 return true; 1191 } 1192 1193 static int vfio_setup_region_sparse_mmaps(VFIORegion *region, 1194 struct vfio_region_info *info) 1195 { 1196 struct vfio_info_cap_header *hdr; 1197 struct vfio_region_info_cap_sparse_mmap *sparse; 1198 int i, j; 1199 1200 hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP); 1201 if (!hdr) { 1202 return -ENODEV; 1203 } 1204 1205 sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header); 1206 1207 trace_vfio_region_sparse_mmap_header(region->vbasedev->name, 1208 region->nr, sparse->nr_areas); 1209 1210 region->mmaps = g_new0(VFIOMmap, sparse->nr_areas); 1211 1212 for (i = 0, j = 0; i < sparse->nr_areas; i++) { 1213 trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset, 1214 sparse->areas[i].offset + 1215 sparse->areas[i].size); 1216 1217 if (sparse->areas[i].size) { 1218 region->mmaps[j].offset = sparse->areas[i].offset; 1219 region->mmaps[j].size = sparse->areas[i].size; 1220 j++; 1221 } 1222 } 1223 1224 region->nr_mmaps = j; 1225 region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap)); 1226 1227 return 0; 1228 } 1229 1230 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region, 1231 int index, const char *name) 1232 { 1233 struct vfio_region_info *info; 1234 int ret; 1235 1236 ret = vfio_get_region_info(vbasedev, index, &info); 1237 if (ret) { 1238 return ret; 1239 } 1240 1241 region->vbasedev = vbasedev; 1242 region->flags = info->flags; 1243 region->size = info->size; 1244 region->fd_offset = info->offset; 1245 region->nr = index; 1246 1247 if (region->size) { 1248 region->mem = g_new0(MemoryRegion, 1); 1249 memory_region_init_io(region->mem, obj, &vfio_region_ops, 1250 region, name, region->size); 1251 1252 if (!vbasedev->no_mmap && 1253 region->flags & VFIO_REGION_INFO_FLAG_MMAP) { 1254 1255 ret = vfio_setup_region_sparse_mmaps(region, info); 1256 1257 if (ret) { 1258 region->nr_mmaps = 1; 1259 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps); 1260 region->mmaps[0].offset = 0; 1261 region->mmaps[0].size = region->size; 1262 } 1263 } 1264 } 1265 1266 g_free(info); 1267 1268 trace_vfio_region_setup(vbasedev->name, index, name, 1269 region->flags, region->fd_offset, region->size); 1270 return 0; 1271 } 1272 1273 static void vfio_subregion_unmap(VFIORegion *region, int index) 1274 { 1275 trace_vfio_region_unmap(memory_region_name(®ion->mmaps[index].mem), 1276 region->mmaps[index].offset, 1277 region->mmaps[index].offset + 1278 region->mmaps[index].size - 1); 1279 memory_region_del_subregion(region->mem, ®ion->mmaps[index].mem); 1280 munmap(region->mmaps[index].mmap, region->mmaps[index].size); 1281 object_unparent(OBJECT(®ion->mmaps[index].mem)); 1282 region->mmaps[index].mmap = NULL; 1283 } 1284 1285 int vfio_region_mmap(VFIORegion *region) 1286 { 1287 int i, prot = 0; 1288 char *name; 1289 1290 if (!region->mem) { 1291 return 0; 1292 } 1293 1294 prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0; 1295 prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0; 1296 1297 for (i = 0; i < region->nr_mmaps; i++) { 1298 region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot, 1299 MAP_SHARED, region->vbasedev->fd, 1300 region->fd_offset + 1301 region->mmaps[i].offset); 1302 if (region->mmaps[i].mmap == MAP_FAILED) { 1303 int ret = -errno; 1304 1305 trace_vfio_region_mmap_fault(memory_region_name(region->mem), i, 1306 region->fd_offset + 1307 region->mmaps[i].offset, 1308 region->fd_offset + 1309 region->mmaps[i].offset + 1310 region->mmaps[i].size - 1, ret); 1311 1312 region->mmaps[i].mmap = NULL; 1313 1314 for (i--; i >= 0; i--) { 1315 vfio_subregion_unmap(region, i); 1316 } 1317 1318 return ret; 1319 } 1320 1321 name = g_strdup_printf("%s mmaps[%d]", 1322 memory_region_name(region->mem), i); 1323 memory_region_init_ram_device_ptr(®ion->mmaps[i].mem, 1324 memory_region_owner(region->mem), 1325 name, region->mmaps[i].size, 1326 region->mmaps[i].mmap); 1327 g_free(name); 1328 memory_region_add_subregion(region->mem, region->mmaps[i].offset, 1329 ®ion->mmaps[i].mem); 1330 1331 trace_vfio_region_mmap(memory_region_name(®ion->mmaps[i].mem), 1332 region->mmaps[i].offset, 1333 region->mmaps[i].offset + 1334 region->mmaps[i].size - 1); 1335 } 1336 1337 return 0; 1338 } 1339 1340 void vfio_region_unmap(VFIORegion *region) 1341 { 1342 int i; 1343 1344 if (!region->mem) { 1345 return; 1346 } 1347 1348 for (i = 0; i < region->nr_mmaps; i++) { 1349 if (region->mmaps[i].mmap) { 1350 vfio_subregion_unmap(region, i); 1351 } 1352 } 1353 } 1354 1355 void vfio_region_exit(VFIORegion *region) 1356 { 1357 int i; 1358 1359 if (!region->mem) { 1360 return; 1361 } 1362 1363 for (i = 0; i < region->nr_mmaps; i++) { 1364 if (region->mmaps[i].mmap) { 1365 memory_region_del_subregion(region->mem, ®ion->mmaps[i].mem); 1366 } 1367 } 1368 1369 trace_vfio_region_exit(region->vbasedev->name, region->nr); 1370 } 1371 1372 void vfio_region_finalize(VFIORegion *region) 1373 { 1374 int i; 1375 1376 if (!region->mem) { 1377 return; 1378 } 1379 1380 for (i = 0; i < region->nr_mmaps; i++) { 1381 if (region->mmaps[i].mmap) { 1382 munmap(region->mmaps[i].mmap, region->mmaps[i].size); 1383 object_unparent(OBJECT(®ion->mmaps[i].mem)); 1384 } 1385 } 1386 1387 object_unparent(OBJECT(region->mem)); 1388 1389 g_free(region->mem); 1390 g_free(region->mmaps); 1391 1392 trace_vfio_region_finalize(region->vbasedev->name, region->nr); 1393 1394 region->mem = NULL; 1395 region->mmaps = NULL; 1396 region->nr_mmaps = 0; 1397 region->size = 0; 1398 region->flags = 0; 1399 region->nr = 0; 1400 } 1401 1402 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled) 1403 { 1404 int i; 1405 1406 if (!region->mem) { 1407 return; 1408 } 1409 1410 for (i = 0; i < region->nr_mmaps; i++) { 1411 if (region->mmaps[i].mmap) { 1412 memory_region_set_enabled(®ion->mmaps[i].mem, enabled); 1413 } 1414 } 1415 1416 trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem), 1417 enabled); 1418 } 1419 1420 void vfio_reset_handler(void *opaque) 1421 { 1422 VFIOGroup *group; 1423 VFIODevice *vbasedev; 1424 1425 QLIST_FOREACH(group, &vfio_group_list, next) { 1426 QLIST_FOREACH(vbasedev, &group->device_list, next) { 1427 if (vbasedev->dev->realized) { 1428 vbasedev->ops->vfio_compute_needs_reset(vbasedev); 1429 } 1430 } 1431 } 1432 1433 QLIST_FOREACH(group, &vfio_group_list, next) { 1434 QLIST_FOREACH(vbasedev, &group->device_list, next) { 1435 if (vbasedev->dev->realized && vbasedev->needs_reset) { 1436 vbasedev->ops->vfio_hot_reset_multi(vbasedev); 1437 } 1438 } 1439 } 1440 } 1441 1442 static void vfio_kvm_device_add_group(VFIOGroup *group) 1443 { 1444 #ifdef CONFIG_KVM 1445 struct kvm_device_attr attr = { 1446 .group = KVM_DEV_VFIO_GROUP, 1447 .attr = KVM_DEV_VFIO_GROUP_ADD, 1448 .addr = (uint64_t)(unsigned long)&group->fd, 1449 }; 1450 1451 if (!kvm_enabled()) { 1452 return; 1453 } 1454 1455 if (vfio_kvm_device_fd < 0) { 1456 struct kvm_create_device cd = { 1457 .type = KVM_DEV_TYPE_VFIO, 1458 }; 1459 1460 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { 1461 error_report("Failed to create KVM VFIO device: %m"); 1462 return; 1463 } 1464 1465 vfio_kvm_device_fd = cd.fd; 1466 } 1467 1468 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1469 error_report("Failed to add group %d to KVM VFIO device: %m", 1470 group->groupid); 1471 } 1472 #endif 1473 } 1474 1475 static void vfio_kvm_device_del_group(VFIOGroup *group) 1476 { 1477 #ifdef CONFIG_KVM 1478 struct kvm_device_attr attr = { 1479 .group = KVM_DEV_VFIO_GROUP, 1480 .attr = KVM_DEV_VFIO_GROUP_DEL, 1481 .addr = (uint64_t)(unsigned long)&group->fd, 1482 }; 1483 1484 if (vfio_kvm_device_fd < 0) { 1485 return; 1486 } 1487 1488 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1489 error_report("Failed to remove group %d from KVM VFIO device: %m", 1490 group->groupid); 1491 } 1492 #endif 1493 } 1494 1495 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) 1496 { 1497 VFIOAddressSpace *space; 1498 1499 QLIST_FOREACH(space, &vfio_address_spaces, list) { 1500 if (space->as == as) { 1501 return space; 1502 } 1503 } 1504 1505 /* No suitable VFIOAddressSpace, create a new one */ 1506 space = g_malloc0(sizeof(*space)); 1507 space->as = as; 1508 QLIST_INIT(&space->containers); 1509 1510 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); 1511 1512 return space; 1513 } 1514 1515 static void vfio_put_address_space(VFIOAddressSpace *space) 1516 { 1517 if (QLIST_EMPTY(&space->containers)) { 1518 QLIST_REMOVE(space, list); 1519 g_free(space); 1520 } 1521 } 1522 1523 /* 1524 * vfio_get_iommu_type - selects the richest iommu_type (v2 first) 1525 */ 1526 static int vfio_get_iommu_type(VFIOContainer *container, 1527 Error **errp) 1528 { 1529 int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU, 1530 VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU }; 1531 int i; 1532 1533 for (i = 0; i < ARRAY_SIZE(iommu_types); i++) { 1534 if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) { 1535 return iommu_types[i]; 1536 } 1537 } 1538 error_setg(errp, "No available IOMMU models"); 1539 return -EINVAL; 1540 } 1541 1542 static int vfio_init_container(VFIOContainer *container, int group_fd, 1543 Error **errp) 1544 { 1545 int iommu_type, ret; 1546 1547 iommu_type = vfio_get_iommu_type(container, errp); 1548 if (iommu_type < 0) { 1549 return iommu_type; 1550 } 1551 1552 ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd); 1553 if (ret) { 1554 error_setg_errno(errp, errno, "Failed to set group container"); 1555 return -errno; 1556 } 1557 1558 while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) { 1559 if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { 1560 /* 1561 * On sPAPR, despite the IOMMU subdriver always advertises v1 and 1562 * v2, the running platform may not support v2 and there is no 1563 * way to guess it until an IOMMU group gets added to the container. 1564 * So in case it fails with v2, try v1 as a fallback. 1565 */ 1566 iommu_type = VFIO_SPAPR_TCE_IOMMU; 1567 continue; 1568 } 1569 error_setg_errno(errp, errno, "Failed to set iommu for container"); 1570 return -errno; 1571 } 1572 1573 container->iommu_type = iommu_type; 1574 return 0; 1575 } 1576 1577 static int vfio_get_iommu_info(VFIOContainer *container, 1578 struct vfio_iommu_type1_info **info) 1579 { 1580 1581 size_t argsz = sizeof(struct vfio_iommu_type1_info); 1582 1583 *info = g_new0(struct vfio_iommu_type1_info, 1); 1584 again: 1585 (*info)->argsz = argsz; 1586 1587 if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) { 1588 g_free(*info); 1589 *info = NULL; 1590 return -errno; 1591 } 1592 1593 if (((*info)->argsz > argsz)) { 1594 argsz = (*info)->argsz; 1595 *info = g_realloc(*info, argsz); 1596 goto again; 1597 } 1598 1599 return 0; 1600 } 1601 1602 static struct vfio_info_cap_header * 1603 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) 1604 { 1605 struct vfio_info_cap_header *hdr; 1606 void *ptr = info; 1607 1608 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { 1609 return NULL; 1610 } 1611 1612 for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) { 1613 if (hdr->id == id) { 1614 return hdr; 1615 } 1616 } 1617 1618 return NULL; 1619 } 1620 1621 static void vfio_get_iommu_info_migration(VFIOContainer *container, 1622 struct vfio_iommu_type1_info *info) 1623 { 1624 struct vfio_info_cap_header *hdr; 1625 struct vfio_iommu_type1_info_cap_migration *cap_mig; 1626 1627 hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION); 1628 if (!hdr) { 1629 return; 1630 } 1631 1632 cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration, 1633 header); 1634 1635 /* 1636 * cpu_physical_memory_set_dirty_lebitmap() expects pages in bitmap of 1637 * TARGET_PAGE_SIZE to mark those dirty. 1638 */ 1639 if (cap_mig->pgsize_bitmap & TARGET_PAGE_SIZE) { 1640 container->dirty_pages_supported = true; 1641 container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size; 1642 container->dirty_pgsizes = cap_mig->pgsize_bitmap; 1643 } 1644 } 1645 1646 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as, 1647 Error **errp) 1648 { 1649 VFIOContainer *container; 1650 int ret, fd; 1651 VFIOAddressSpace *space; 1652 1653 space = vfio_get_address_space(as); 1654 1655 /* 1656 * VFIO is currently incompatible with discarding of RAM insofar as the 1657 * madvise to purge (zap) the page from QEMU's address space does not 1658 * interact with the memory API and therefore leaves stale virtual to 1659 * physical mappings in the IOMMU if the page was previously pinned. We 1660 * therefore set discarding broken for each group added to a container, 1661 * whether the container is used individually or shared. This provides 1662 * us with options to allow devices within a group to opt-in and allow 1663 * discarding, so long as it is done consistently for a group (for instance 1664 * if the device is an mdev device where it is known that the host vendor 1665 * driver will never pin pages outside of the working set of the guest 1666 * driver, which would thus not be discarding candidates). 1667 * 1668 * The first opportunity to induce pinning occurs here where we attempt to 1669 * attach the group to existing containers within the AddressSpace. If any 1670 * pages are already zapped from the virtual address space, such as from 1671 * previous discards, new pinning will cause valid mappings to be 1672 * re-established. Likewise, when the overall MemoryListener for a new 1673 * container is registered, a replay of mappings within the AddressSpace 1674 * will occur, re-establishing any previously zapped pages as well. 1675 * 1676 * Especially virtio-balloon is currently only prevented from discarding 1677 * new memory, it will not yet set ram_block_discard_set_required() and 1678 * therefore, neither stops us here or deals with the sudden memory 1679 * consumption of inflated memory. 1680 */ 1681 ret = ram_block_discard_disable(true); 1682 if (ret) { 1683 error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken"); 1684 return ret; 1685 } 1686 1687 QLIST_FOREACH(container, &space->containers, next) { 1688 if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) { 1689 group->container = container; 1690 QLIST_INSERT_HEAD(&container->group_list, group, container_next); 1691 vfio_kvm_device_add_group(group); 1692 return 0; 1693 } 1694 } 1695 1696 fd = qemu_open_old("/dev/vfio/vfio", O_RDWR); 1697 if (fd < 0) { 1698 error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio"); 1699 ret = -errno; 1700 goto put_space_exit; 1701 } 1702 1703 ret = ioctl(fd, VFIO_GET_API_VERSION); 1704 if (ret != VFIO_API_VERSION) { 1705 error_setg(errp, "supported vfio version: %d, " 1706 "reported version: %d", VFIO_API_VERSION, ret); 1707 ret = -EINVAL; 1708 goto close_fd_exit; 1709 } 1710 1711 container = g_malloc0(sizeof(*container)); 1712 container->space = space; 1713 container->fd = fd; 1714 container->error = NULL; 1715 container->dirty_pages_supported = false; 1716 QLIST_INIT(&container->giommu_list); 1717 QLIST_INIT(&container->hostwin_list); 1718 1719 ret = vfio_init_container(container, group->fd, errp); 1720 if (ret) { 1721 goto free_container_exit; 1722 } 1723 1724 switch (container->iommu_type) { 1725 case VFIO_TYPE1v2_IOMMU: 1726 case VFIO_TYPE1_IOMMU: 1727 { 1728 struct vfio_iommu_type1_info *info; 1729 1730 /* 1731 * FIXME: This assumes that a Type1 IOMMU can map any 64-bit 1732 * IOVA whatsoever. That's not actually true, but the current 1733 * kernel interface doesn't tell us what it can map, and the 1734 * existing Type1 IOMMUs generally support any IOVA we're 1735 * going to actually try in practice. 1736 */ 1737 ret = vfio_get_iommu_info(container, &info); 1738 1739 if (ret || !(info->flags & VFIO_IOMMU_INFO_PGSIZES)) { 1740 /* Assume 4k IOVA page size */ 1741 info->iova_pgsizes = 4096; 1742 } 1743 vfio_host_win_add(container, 0, (hwaddr)-1, info->iova_pgsizes); 1744 container->pgsizes = info->iova_pgsizes; 1745 1746 if (!ret) { 1747 vfio_get_iommu_info_migration(container, info); 1748 } 1749 g_free(info); 1750 break; 1751 } 1752 case VFIO_SPAPR_TCE_v2_IOMMU: 1753 case VFIO_SPAPR_TCE_IOMMU: 1754 { 1755 struct vfio_iommu_spapr_tce_info info; 1756 bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU; 1757 1758 /* 1759 * The host kernel code implementing VFIO_IOMMU_DISABLE is called 1760 * when container fd is closed so we do not call it explicitly 1761 * in this file. 1762 */ 1763 if (!v2) { 1764 ret = ioctl(fd, VFIO_IOMMU_ENABLE); 1765 if (ret) { 1766 error_setg_errno(errp, errno, "failed to enable container"); 1767 ret = -errno; 1768 goto free_container_exit; 1769 } 1770 } else { 1771 container->prereg_listener = vfio_prereg_listener; 1772 1773 memory_listener_register(&container->prereg_listener, 1774 &address_space_memory); 1775 if (container->error) { 1776 memory_listener_unregister(&container->prereg_listener); 1777 ret = -1; 1778 error_propagate_prepend(errp, container->error, 1779 "RAM memory listener initialization failed: "); 1780 goto free_container_exit; 1781 } 1782 } 1783 1784 info.argsz = sizeof(info); 1785 ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info); 1786 if (ret) { 1787 error_setg_errno(errp, errno, 1788 "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed"); 1789 ret = -errno; 1790 if (v2) { 1791 memory_listener_unregister(&container->prereg_listener); 1792 } 1793 goto free_container_exit; 1794 } 1795 1796 if (v2) { 1797 container->pgsizes = info.ddw.pgsizes; 1798 /* 1799 * There is a default window in just created container. 1800 * To make region_add/del simpler, we better remove this 1801 * window now and let those iommu_listener callbacks 1802 * create/remove them when needed. 1803 */ 1804 ret = vfio_spapr_remove_window(container, info.dma32_window_start); 1805 if (ret) { 1806 error_setg_errno(errp, -ret, 1807 "failed to remove existing window"); 1808 goto free_container_exit; 1809 } 1810 } else { 1811 /* The default table uses 4K pages */ 1812 container->pgsizes = 0x1000; 1813 vfio_host_win_add(container, info.dma32_window_start, 1814 info.dma32_window_start + 1815 info.dma32_window_size - 1, 1816 0x1000); 1817 } 1818 } 1819 } 1820 1821 vfio_kvm_device_add_group(group); 1822 1823 QLIST_INIT(&container->group_list); 1824 QLIST_INSERT_HEAD(&space->containers, container, next); 1825 1826 group->container = container; 1827 QLIST_INSERT_HEAD(&container->group_list, group, container_next); 1828 1829 container->listener = vfio_memory_listener; 1830 1831 memory_listener_register(&container->listener, container->space->as); 1832 1833 if (container->error) { 1834 ret = -1; 1835 error_propagate_prepend(errp, container->error, 1836 "memory listener initialization failed: "); 1837 goto listener_release_exit; 1838 } 1839 1840 container->initialized = true; 1841 1842 return 0; 1843 listener_release_exit: 1844 QLIST_REMOVE(group, container_next); 1845 QLIST_REMOVE(container, next); 1846 vfio_kvm_device_del_group(group); 1847 vfio_listener_release(container); 1848 1849 free_container_exit: 1850 g_free(container); 1851 1852 close_fd_exit: 1853 close(fd); 1854 1855 put_space_exit: 1856 ram_block_discard_disable(false); 1857 vfio_put_address_space(space); 1858 1859 return ret; 1860 } 1861 1862 static void vfio_disconnect_container(VFIOGroup *group) 1863 { 1864 VFIOContainer *container = group->container; 1865 1866 QLIST_REMOVE(group, container_next); 1867 group->container = NULL; 1868 1869 /* 1870 * Explicitly release the listener first before unset container, 1871 * since unset may destroy the backend container if it's the last 1872 * group. 1873 */ 1874 if (QLIST_EMPTY(&container->group_list)) { 1875 vfio_listener_release(container); 1876 } 1877 1878 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) { 1879 error_report("vfio: error disconnecting group %d from container", 1880 group->groupid); 1881 } 1882 1883 if (QLIST_EMPTY(&container->group_list)) { 1884 VFIOAddressSpace *space = container->space; 1885 VFIOGuestIOMMU *giommu, *tmp; 1886 1887 QLIST_REMOVE(container, next); 1888 1889 QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) { 1890 memory_region_unregister_iommu_notifier( 1891 MEMORY_REGION(giommu->iommu), &giommu->n); 1892 QLIST_REMOVE(giommu, giommu_next); 1893 g_free(giommu); 1894 } 1895 1896 trace_vfio_disconnect_container(container->fd); 1897 close(container->fd); 1898 g_free(container); 1899 1900 vfio_put_address_space(space); 1901 } 1902 } 1903 1904 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp) 1905 { 1906 VFIOGroup *group; 1907 char path[32]; 1908 struct vfio_group_status status = { .argsz = sizeof(status) }; 1909 1910 QLIST_FOREACH(group, &vfio_group_list, next) { 1911 if (group->groupid == groupid) { 1912 /* Found it. Now is it already in the right context? */ 1913 if (group->container->space->as == as) { 1914 return group; 1915 } else { 1916 error_setg(errp, "group %d used in multiple address spaces", 1917 group->groupid); 1918 return NULL; 1919 } 1920 } 1921 } 1922 1923 group = g_malloc0(sizeof(*group)); 1924 1925 snprintf(path, sizeof(path), "/dev/vfio/%d", groupid); 1926 group->fd = qemu_open_old(path, O_RDWR); 1927 if (group->fd < 0) { 1928 error_setg_errno(errp, errno, "failed to open %s", path); 1929 goto free_group_exit; 1930 } 1931 1932 if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) { 1933 error_setg_errno(errp, errno, "failed to get group %d status", groupid); 1934 goto close_fd_exit; 1935 } 1936 1937 if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) { 1938 error_setg(errp, "group %d is not viable", groupid); 1939 error_append_hint(errp, 1940 "Please ensure all devices within the iommu_group " 1941 "are bound to their vfio bus driver.\n"); 1942 goto close_fd_exit; 1943 } 1944 1945 group->groupid = groupid; 1946 QLIST_INIT(&group->device_list); 1947 1948 if (vfio_connect_container(group, as, errp)) { 1949 error_prepend(errp, "failed to setup container for group %d: ", 1950 groupid); 1951 goto close_fd_exit; 1952 } 1953 1954 if (QLIST_EMPTY(&vfio_group_list)) { 1955 qemu_register_reset(vfio_reset_handler, NULL); 1956 } 1957 1958 QLIST_INSERT_HEAD(&vfio_group_list, group, next); 1959 1960 return group; 1961 1962 close_fd_exit: 1963 close(group->fd); 1964 1965 free_group_exit: 1966 g_free(group); 1967 1968 return NULL; 1969 } 1970 1971 void vfio_put_group(VFIOGroup *group) 1972 { 1973 if (!group || !QLIST_EMPTY(&group->device_list)) { 1974 return; 1975 } 1976 1977 if (!group->ram_block_discard_allowed) { 1978 ram_block_discard_disable(false); 1979 } 1980 vfio_kvm_device_del_group(group); 1981 vfio_disconnect_container(group); 1982 QLIST_REMOVE(group, next); 1983 trace_vfio_put_group(group->fd); 1984 close(group->fd); 1985 g_free(group); 1986 1987 if (QLIST_EMPTY(&vfio_group_list)) { 1988 qemu_unregister_reset(vfio_reset_handler, NULL); 1989 } 1990 } 1991 1992 int vfio_get_device(VFIOGroup *group, const char *name, 1993 VFIODevice *vbasedev, Error **errp) 1994 { 1995 struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) }; 1996 int ret, fd; 1997 1998 fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name); 1999 if (fd < 0) { 2000 error_setg_errno(errp, errno, "error getting device from group %d", 2001 group->groupid); 2002 error_append_hint(errp, 2003 "Verify all devices in group %d are bound to vfio-<bus> " 2004 "or pci-stub and not already in use\n", group->groupid); 2005 return fd; 2006 } 2007 2008 ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info); 2009 if (ret) { 2010 error_setg_errno(errp, errno, "error getting device info"); 2011 close(fd); 2012 return ret; 2013 } 2014 2015 /* 2016 * Set discarding of RAM as not broken for this group if the driver knows 2017 * the device operates compatibly with discarding. Setting must be 2018 * consistent per group, but since compatibility is really only possible 2019 * with mdev currently, we expect singleton groups. 2020 */ 2021 if (vbasedev->ram_block_discard_allowed != 2022 group->ram_block_discard_allowed) { 2023 if (!QLIST_EMPTY(&group->device_list)) { 2024 error_setg(errp, "Inconsistent setting of support for discarding " 2025 "RAM (e.g., balloon) within group"); 2026 close(fd); 2027 return -1; 2028 } 2029 2030 if (!group->ram_block_discard_allowed) { 2031 group->ram_block_discard_allowed = true; 2032 ram_block_discard_disable(false); 2033 } 2034 } 2035 2036 vbasedev->fd = fd; 2037 vbasedev->group = group; 2038 QLIST_INSERT_HEAD(&group->device_list, vbasedev, next); 2039 2040 vbasedev->num_irqs = dev_info.num_irqs; 2041 vbasedev->num_regions = dev_info.num_regions; 2042 vbasedev->flags = dev_info.flags; 2043 2044 trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions, 2045 dev_info.num_irqs); 2046 2047 vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET); 2048 return 0; 2049 } 2050 2051 void vfio_put_base_device(VFIODevice *vbasedev) 2052 { 2053 if (!vbasedev->group) { 2054 return; 2055 } 2056 QLIST_REMOVE(vbasedev, next); 2057 vbasedev->group = NULL; 2058 trace_vfio_put_base_device(vbasedev->fd); 2059 close(vbasedev->fd); 2060 } 2061 2062 int vfio_get_region_info(VFIODevice *vbasedev, int index, 2063 struct vfio_region_info **info) 2064 { 2065 size_t argsz = sizeof(struct vfio_region_info); 2066 2067 *info = g_malloc0(argsz); 2068 2069 (*info)->index = index; 2070 retry: 2071 (*info)->argsz = argsz; 2072 2073 if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) { 2074 g_free(*info); 2075 *info = NULL; 2076 return -errno; 2077 } 2078 2079 if ((*info)->argsz > argsz) { 2080 argsz = (*info)->argsz; 2081 *info = g_realloc(*info, argsz); 2082 2083 goto retry; 2084 } 2085 2086 return 0; 2087 } 2088 2089 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type, 2090 uint32_t subtype, struct vfio_region_info **info) 2091 { 2092 int i; 2093 2094 for (i = 0; i < vbasedev->num_regions; i++) { 2095 struct vfio_info_cap_header *hdr; 2096 struct vfio_region_info_cap_type *cap_type; 2097 2098 if (vfio_get_region_info(vbasedev, i, info)) { 2099 continue; 2100 } 2101 2102 hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE); 2103 if (!hdr) { 2104 g_free(*info); 2105 continue; 2106 } 2107 2108 cap_type = container_of(hdr, struct vfio_region_info_cap_type, header); 2109 2110 trace_vfio_get_dev_region(vbasedev->name, i, 2111 cap_type->type, cap_type->subtype); 2112 2113 if (cap_type->type == type && cap_type->subtype == subtype) { 2114 return 0; 2115 } 2116 2117 g_free(*info); 2118 } 2119 2120 *info = NULL; 2121 return -ENODEV; 2122 } 2123 2124 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type) 2125 { 2126 struct vfio_region_info *info = NULL; 2127 bool ret = false; 2128 2129 if (!vfio_get_region_info(vbasedev, region, &info)) { 2130 if (vfio_get_region_info_cap(info, cap_type)) { 2131 ret = true; 2132 } 2133 g_free(info); 2134 } 2135 2136 return ret; 2137 } 2138 2139 /* 2140 * Interfaces for IBM EEH (Enhanced Error Handling) 2141 */ 2142 static bool vfio_eeh_container_ok(VFIOContainer *container) 2143 { 2144 /* 2145 * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO 2146 * implementation is broken if there are multiple groups in a 2147 * container. The hardware works in units of Partitionable 2148 * Endpoints (== IOMMU groups) and the EEH operations naively 2149 * iterate across all groups in the container, without any logic 2150 * to make sure the groups have their state synchronized. For 2151 * certain operations (ENABLE) that might be ok, until an error 2152 * occurs, but for others (GET_STATE) it's clearly broken. 2153 */ 2154 2155 /* 2156 * XXX Once fixed kernels exist, test for them here 2157 */ 2158 2159 if (QLIST_EMPTY(&container->group_list)) { 2160 return false; 2161 } 2162 2163 if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) { 2164 return false; 2165 } 2166 2167 return true; 2168 } 2169 2170 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op) 2171 { 2172 struct vfio_eeh_pe_op pe_op = { 2173 .argsz = sizeof(pe_op), 2174 .op = op, 2175 }; 2176 int ret; 2177 2178 if (!vfio_eeh_container_ok(container)) { 2179 error_report("vfio/eeh: EEH_PE_OP 0x%x: " 2180 "kernel requires a container with exactly one group", op); 2181 return -EPERM; 2182 } 2183 2184 ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op); 2185 if (ret < 0) { 2186 error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op); 2187 return -errno; 2188 } 2189 2190 return ret; 2191 } 2192 2193 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as) 2194 { 2195 VFIOAddressSpace *space = vfio_get_address_space(as); 2196 VFIOContainer *container = NULL; 2197 2198 if (QLIST_EMPTY(&space->containers)) { 2199 /* No containers to act on */ 2200 goto out; 2201 } 2202 2203 container = QLIST_FIRST(&space->containers); 2204 2205 if (QLIST_NEXT(container, next)) { 2206 /* We don't yet have logic to synchronize EEH state across 2207 * multiple containers */ 2208 container = NULL; 2209 goto out; 2210 } 2211 2212 out: 2213 vfio_put_address_space(space); 2214 return container; 2215 } 2216 2217 bool vfio_eeh_as_ok(AddressSpace *as) 2218 { 2219 VFIOContainer *container = vfio_eeh_as_container(as); 2220 2221 return (container != NULL) && vfio_eeh_container_ok(container); 2222 } 2223 2224 int vfio_eeh_as_op(AddressSpace *as, uint32_t op) 2225 { 2226 VFIOContainer *container = vfio_eeh_as_container(as); 2227 2228 if (!container) { 2229 return -ENODEV; 2230 } 2231 return vfio_eeh_container_op(container, op); 2232 } 2233