1 /* 2 * generic functions used by VFIO devices 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 #ifdef CONFIG_KVM 24 #include <linux/kvm.h> 25 #endif 26 #include <linux/vfio.h> 27 28 #include "hw/vfio/vfio-common.h" 29 #include "hw/vfio/vfio.h" 30 #include "hw/vfio/pci.h" 31 #include "exec/address-spaces.h" 32 #include "exec/memory.h" 33 #include "exec/ram_addr.h" 34 #include "hw/hw.h" 35 #include "qemu/error-report.h" 36 #include "qemu/main-loop.h" 37 #include "qemu/range.h" 38 #include "sysemu/kvm.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "trace.h" 42 #include "qapi/error.h" 43 #include "migration/migration.h" 44 #include "migration/misc.h" 45 #include "migration/blocker.h" 46 #include "migration/qemu-file.h" 47 #include "sysemu/tpm.h" 48 49 VFIODeviceList vfio_device_list = 50 QLIST_HEAD_INITIALIZER(vfio_device_list); 51 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = 52 QLIST_HEAD_INITIALIZER(vfio_address_spaces); 53 54 #ifdef CONFIG_KVM 55 /* 56 * We have a single VFIO pseudo device per KVM VM. Once created it lives 57 * for the life of the VM. Closing the file descriptor only drops our 58 * reference to it and the device's reference to kvm. Therefore once 59 * initialized, this file descriptor is only released on QEMU exit and 60 * we'll re-use it should another vfio device be attached before then. 61 */ 62 int vfio_kvm_device_fd = -1; 63 #endif 64 65 /* 66 * Device state interfaces 67 */ 68 69 bool vfio_mig_active(void) 70 { 71 VFIODevice *vbasedev; 72 73 if (QLIST_EMPTY(&vfio_device_list)) { 74 return false; 75 } 76 77 QLIST_FOREACH(vbasedev, &vfio_device_list, next) { 78 if (vbasedev->migration_blocker) { 79 return false; 80 } 81 } 82 return true; 83 } 84 85 static Error *multiple_devices_migration_blocker; 86 87 /* 88 * Multiple devices migration is allowed only if all devices support P2P 89 * migration. Single device migration is allowed regardless of P2P migration 90 * support. 91 */ 92 static bool vfio_multiple_devices_migration_is_supported(void) 93 { 94 VFIODevice *vbasedev; 95 unsigned int device_num = 0; 96 bool all_support_p2p = true; 97 98 QLIST_FOREACH(vbasedev, &vfio_device_list, next) { 99 if (vbasedev->migration) { 100 device_num++; 101 102 if (!(vbasedev->migration->mig_flags & VFIO_MIGRATION_P2P)) { 103 all_support_p2p = false; 104 } 105 } 106 } 107 108 return all_support_p2p || device_num <= 1; 109 } 110 111 int vfio_block_multiple_devices_migration(VFIODevice *vbasedev, Error **errp) 112 { 113 int ret; 114 115 if (vfio_multiple_devices_migration_is_supported()) { 116 return 0; 117 } 118 119 if (vbasedev->enable_migration == ON_OFF_AUTO_ON) { 120 error_setg(errp, "Multiple VFIO devices migration is supported only if " 121 "all of them support P2P migration"); 122 return -EINVAL; 123 } 124 125 if (multiple_devices_migration_blocker) { 126 return 0; 127 } 128 129 error_setg(&multiple_devices_migration_blocker, 130 "Multiple VFIO devices migration is supported only if all of " 131 "them support P2P migration"); 132 ret = migrate_add_blocker(&multiple_devices_migration_blocker, errp); 133 134 return ret; 135 } 136 137 void vfio_unblock_multiple_devices_migration(void) 138 { 139 if (!multiple_devices_migration_blocker || 140 !vfio_multiple_devices_migration_is_supported()) { 141 return; 142 } 143 144 migrate_del_blocker(&multiple_devices_migration_blocker); 145 } 146 147 bool vfio_viommu_preset(VFIODevice *vbasedev) 148 { 149 return vbasedev->container->space->as != &address_space_memory; 150 } 151 152 static void vfio_set_migration_error(int err) 153 { 154 MigrationState *ms = migrate_get_current(); 155 156 if (migration_is_setup_or_active(ms->state)) { 157 WITH_QEMU_LOCK_GUARD(&ms->qemu_file_lock) { 158 if (ms->to_dst_file) { 159 qemu_file_set_error(ms->to_dst_file, err); 160 } 161 } 162 } 163 } 164 165 bool vfio_device_state_is_running(VFIODevice *vbasedev) 166 { 167 VFIOMigration *migration = vbasedev->migration; 168 169 return migration->device_state == VFIO_DEVICE_STATE_RUNNING || 170 migration->device_state == VFIO_DEVICE_STATE_RUNNING_P2P; 171 } 172 173 bool vfio_device_state_is_precopy(VFIODevice *vbasedev) 174 { 175 VFIOMigration *migration = vbasedev->migration; 176 177 return migration->device_state == VFIO_DEVICE_STATE_PRE_COPY || 178 migration->device_state == VFIO_DEVICE_STATE_PRE_COPY_P2P; 179 } 180 181 static bool vfio_devices_all_dirty_tracking(VFIOContainer *container) 182 { 183 VFIODevice *vbasedev; 184 MigrationState *ms = migrate_get_current(); 185 186 if (ms->state != MIGRATION_STATUS_ACTIVE && 187 ms->state != MIGRATION_STATUS_DEVICE) { 188 return false; 189 } 190 191 QLIST_FOREACH(vbasedev, &container->device_list, container_next) { 192 VFIOMigration *migration = vbasedev->migration; 193 194 if (!migration) { 195 return false; 196 } 197 198 if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF && 199 (vfio_device_state_is_running(vbasedev) || 200 vfio_device_state_is_precopy(vbasedev))) { 201 return false; 202 } 203 } 204 return true; 205 } 206 207 bool vfio_devices_all_device_dirty_tracking(VFIOContainer *container) 208 { 209 VFIODevice *vbasedev; 210 211 QLIST_FOREACH(vbasedev, &container->device_list, container_next) { 212 if (!vbasedev->dirty_pages_supported) { 213 return false; 214 } 215 } 216 217 return true; 218 } 219 220 /* 221 * Check if all VFIO devices are running and migration is active, which is 222 * essentially equivalent to the migration being in pre-copy phase. 223 */ 224 bool vfio_devices_all_running_and_mig_active(VFIOContainer *container) 225 { 226 VFIODevice *vbasedev; 227 228 if (!migration_is_active(migrate_get_current())) { 229 return false; 230 } 231 232 QLIST_FOREACH(vbasedev, &container->device_list, container_next) { 233 VFIOMigration *migration = vbasedev->migration; 234 235 if (!migration) { 236 return false; 237 } 238 239 if (vfio_device_state_is_running(vbasedev) || 240 vfio_device_state_is_precopy(vbasedev)) { 241 continue; 242 } else { 243 return false; 244 } 245 } 246 return true; 247 } 248 249 void vfio_host_win_add(VFIOContainer *container, hwaddr min_iova, 250 hwaddr max_iova, uint64_t iova_pgsizes) 251 { 252 VFIOHostDMAWindow *hostwin; 253 254 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 255 if (ranges_overlap(hostwin->min_iova, 256 hostwin->max_iova - hostwin->min_iova + 1, 257 min_iova, 258 max_iova - min_iova + 1)) { 259 hw_error("%s: Overlapped IOMMU are not enabled", __func__); 260 } 261 } 262 263 hostwin = g_malloc0(sizeof(*hostwin)); 264 265 hostwin->min_iova = min_iova; 266 hostwin->max_iova = max_iova; 267 hostwin->iova_pgsizes = iova_pgsizes; 268 QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next); 269 } 270 271 int vfio_host_win_del(VFIOContainer *container, 272 hwaddr min_iova, hwaddr max_iova) 273 { 274 VFIOHostDMAWindow *hostwin; 275 276 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 277 if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) { 278 QLIST_REMOVE(hostwin, hostwin_next); 279 g_free(hostwin); 280 return 0; 281 } 282 } 283 284 return -1; 285 } 286 287 static bool vfio_listener_skipped_section(MemoryRegionSection *section) 288 { 289 return (!memory_region_is_ram(section->mr) && 290 !memory_region_is_iommu(section->mr)) || 291 memory_region_is_protected(section->mr) || 292 /* 293 * Sizing an enabled 64-bit BAR can cause spurious mappings to 294 * addresses in the upper part of the 64-bit address space. These 295 * are never accessed by the CPU and beyond the address width of 296 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. 297 */ 298 section->offset_within_address_space & (1ULL << 63); 299 } 300 301 /* Called with rcu_read_lock held. */ 302 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 303 ram_addr_t *ram_addr, bool *read_only) 304 { 305 bool ret, mr_has_discard_manager; 306 307 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only, 308 &mr_has_discard_manager); 309 if (ret && mr_has_discard_manager) { 310 /* 311 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The 312 * pages will remain pinned inside vfio until unmapped, resulting in a 313 * higher memory consumption than expected. If memory would get 314 * populated again later, there would be an inconsistency between pages 315 * pinned by vfio and pages seen by QEMU. This is the case until 316 * unmapped from the IOMMU (e.g., during device reset). 317 * 318 * With malicious guests, we really only care about pinning more memory 319 * than expected. RLIMIT_MEMLOCK set for the user/process can never be 320 * exceeded and can be used to mitigate this problem. 321 */ 322 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" 323 " RAM (e.g., virtio-mem) works, however, malicious" 324 " guests can trigger pinning of more memory than" 325 " intended via an IOMMU. It's possible to mitigate " 326 " by setting/adjusting RLIMIT_MEMLOCK."); 327 } 328 return ret; 329 } 330 331 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 332 { 333 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); 334 VFIOContainer *container = giommu->container; 335 hwaddr iova = iotlb->iova + giommu->iommu_offset; 336 void *vaddr; 337 int ret; 338 339 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", 340 iova, iova + iotlb->addr_mask); 341 342 if (iotlb->target_as != &address_space_memory) { 343 error_report("Wrong target AS \"%s\", only system memory is allowed", 344 iotlb->target_as->name ? iotlb->target_as->name : "none"); 345 vfio_set_migration_error(-EINVAL); 346 return; 347 } 348 349 rcu_read_lock(); 350 351 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { 352 bool read_only; 353 354 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) { 355 goto out; 356 } 357 /* 358 * vaddr is only valid until rcu_read_unlock(). But after 359 * vfio_dma_map has set up the mapping the pages will be 360 * pinned by the kernel. This makes sure that the RAM backend 361 * of vaddr will always be there, even if the memory object is 362 * destroyed and its backing memory munmap-ed. 363 */ 364 ret = vfio_dma_map(container, iova, 365 iotlb->addr_mask + 1, vaddr, 366 read_only); 367 if (ret) { 368 error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 369 "0x%"HWADDR_PRIx", %p) = %d (%s)", 370 container, iova, 371 iotlb->addr_mask + 1, vaddr, ret, strerror(-ret)); 372 } 373 } else { 374 ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb); 375 if (ret) { 376 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 377 "0x%"HWADDR_PRIx") = %d (%s)", 378 container, iova, 379 iotlb->addr_mask + 1, ret, strerror(-ret)); 380 vfio_set_migration_error(ret); 381 } 382 } 383 out: 384 rcu_read_unlock(); 385 } 386 387 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, 388 MemoryRegionSection *section) 389 { 390 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 391 listener); 392 const hwaddr size = int128_get64(section->size); 393 const hwaddr iova = section->offset_within_address_space; 394 int ret; 395 396 /* Unmap with a single call. */ 397 ret = vfio_dma_unmap(vrdl->container, iova, size , NULL); 398 if (ret) { 399 error_report("%s: vfio_dma_unmap() failed: %s", __func__, 400 strerror(-ret)); 401 } 402 } 403 404 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, 405 MemoryRegionSection *section) 406 { 407 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, 408 listener); 409 const hwaddr end = section->offset_within_region + 410 int128_get64(section->size); 411 hwaddr start, next, iova; 412 void *vaddr; 413 int ret; 414 415 /* 416 * Map in (aligned within memory region) minimum granularity, so we can 417 * unmap in minimum granularity later. 418 */ 419 for (start = section->offset_within_region; start < end; start = next) { 420 next = ROUND_UP(start + 1, vrdl->granularity); 421 next = MIN(next, end); 422 423 iova = start - section->offset_within_region + 424 section->offset_within_address_space; 425 vaddr = memory_region_get_ram_ptr(section->mr) + start; 426 427 ret = vfio_dma_map(vrdl->container, iova, next - start, 428 vaddr, section->readonly); 429 if (ret) { 430 /* Rollback */ 431 vfio_ram_discard_notify_discard(rdl, section); 432 return ret; 433 } 434 } 435 return 0; 436 } 437 438 static void vfio_register_ram_discard_listener(VFIOContainer *container, 439 MemoryRegionSection *section) 440 { 441 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 442 VFIORamDiscardListener *vrdl; 443 444 /* Ignore some corner cases not relevant in practice. */ 445 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); 446 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, 447 TARGET_PAGE_SIZE)); 448 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); 449 450 vrdl = g_new0(VFIORamDiscardListener, 1); 451 vrdl->container = container; 452 vrdl->mr = section->mr; 453 vrdl->offset_within_address_space = section->offset_within_address_space; 454 vrdl->size = int128_get64(section->size); 455 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, 456 section->mr); 457 458 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); 459 g_assert(container->pgsizes && 460 vrdl->granularity >= 1ULL << ctz64(container->pgsizes)); 461 462 ram_discard_listener_init(&vrdl->listener, 463 vfio_ram_discard_notify_populate, 464 vfio_ram_discard_notify_discard, true); 465 ram_discard_manager_register_listener(rdm, &vrdl->listener, section); 466 QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next); 467 468 /* 469 * Sanity-check if we have a theoretically problematic setup where we could 470 * exceed the maximum number of possible DMA mappings over time. We assume 471 * that each mapped section in the same address space as a RamDiscardManager 472 * section consumes exactly one DMA mapping, with the exception of 473 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections 474 * in the same address space as RamDiscardManager sections. 475 * 476 * We assume that each section in the address space consumes one memslot. 477 * We take the number of KVM memory slots as a best guess for the maximum 478 * number of sections in the address space we could have over time, 479 * also consuming DMA mappings. 480 */ 481 if (container->dma_max_mappings) { 482 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; 483 484 #ifdef CONFIG_KVM 485 if (kvm_enabled()) { 486 max_memslots = kvm_get_max_memslots(); 487 } 488 #endif 489 490 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 491 hwaddr start, end; 492 493 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, 494 vrdl->granularity); 495 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, 496 vrdl->granularity); 497 vrdl_mappings += (end - start) / vrdl->granularity; 498 vrdl_count++; 499 } 500 501 if (vrdl_mappings + max_memslots - vrdl_count > 502 container->dma_max_mappings) { 503 warn_report("%s: possibly running out of DMA mappings. E.g., try" 504 " increasing the 'block-size' of virtio-mem devies." 505 " Maximum possible DMA mappings: %d, Maximum possible" 506 " memslots: %d", __func__, container->dma_max_mappings, 507 max_memslots); 508 } 509 } 510 } 511 512 static void vfio_unregister_ram_discard_listener(VFIOContainer *container, 513 MemoryRegionSection *section) 514 { 515 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 516 VFIORamDiscardListener *vrdl = NULL; 517 518 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 519 if (vrdl->mr == section->mr && 520 vrdl->offset_within_address_space == 521 section->offset_within_address_space) { 522 break; 523 } 524 } 525 526 if (!vrdl) { 527 hw_error("vfio: Trying to unregister missing RAM discard listener"); 528 } 529 530 ram_discard_manager_unregister_listener(rdm, &vrdl->listener); 531 QLIST_REMOVE(vrdl, next); 532 g_free(vrdl); 533 } 534 535 static VFIOHostDMAWindow *vfio_find_hostwin(VFIOContainer *container, 536 hwaddr iova, hwaddr end) 537 { 538 VFIOHostDMAWindow *hostwin; 539 bool hostwin_found = false; 540 541 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { 542 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { 543 hostwin_found = true; 544 break; 545 } 546 } 547 548 return hostwin_found ? hostwin : NULL; 549 } 550 551 static bool vfio_known_safe_misalignment(MemoryRegionSection *section) 552 { 553 MemoryRegion *mr = section->mr; 554 555 if (!TPM_IS_CRB(mr->owner)) { 556 return false; 557 } 558 559 /* this is a known safe misaligned region, just trace for debug purpose */ 560 trace_vfio_known_safe_misalignment(memory_region_name(mr), 561 section->offset_within_address_space, 562 section->offset_within_region, 563 qemu_real_host_page_size()); 564 return true; 565 } 566 567 static bool vfio_listener_valid_section(MemoryRegionSection *section, 568 const char *name) 569 { 570 if (vfio_listener_skipped_section(section)) { 571 trace_vfio_listener_region_skip(name, 572 section->offset_within_address_space, 573 section->offset_within_address_space + 574 int128_get64(int128_sub(section->size, int128_one()))); 575 return false; 576 } 577 578 if (unlikely((section->offset_within_address_space & 579 ~qemu_real_host_page_mask()) != 580 (section->offset_within_region & ~qemu_real_host_page_mask()))) { 581 if (!vfio_known_safe_misalignment(section)) { 582 error_report("%s received unaligned region %s iova=0x%"PRIx64 583 " offset_within_region=0x%"PRIx64 584 " qemu_real_host_page_size=0x%"PRIxPTR, 585 __func__, memory_region_name(section->mr), 586 section->offset_within_address_space, 587 section->offset_within_region, 588 qemu_real_host_page_size()); 589 } 590 return false; 591 } 592 593 return true; 594 } 595 596 static bool vfio_get_section_iova_range(VFIOContainer *container, 597 MemoryRegionSection *section, 598 hwaddr *out_iova, hwaddr *out_end, 599 Int128 *out_llend) 600 { 601 Int128 llend; 602 hwaddr iova; 603 604 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); 605 llend = int128_make64(section->offset_within_address_space); 606 llend = int128_add(llend, section->size); 607 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); 608 609 if (int128_ge(int128_make64(iova), llend)) { 610 return false; 611 } 612 613 *out_iova = iova; 614 *out_end = int128_get64(int128_sub(llend, int128_one())); 615 if (out_llend) { 616 *out_llend = llend; 617 } 618 return true; 619 } 620 621 static void vfio_listener_region_add(MemoryListener *listener, 622 MemoryRegionSection *section) 623 { 624 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 625 hwaddr iova, end; 626 Int128 llend, llsize; 627 void *vaddr; 628 int ret; 629 VFIOHostDMAWindow *hostwin; 630 Error *err = NULL; 631 632 if (!vfio_listener_valid_section(section, "region_add")) { 633 return; 634 } 635 636 if (!vfio_get_section_iova_range(container, section, &iova, &end, &llend)) { 637 if (memory_region_is_ram_device(section->mr)) { 638 trace_vfio_listener_region_add_no_dma_map( 639 memory_region_name(section->mr), 640 section->offset_within_address_space, 641 int128_getlo(section->size), 642 qemu_real_host_page_size()); 643 } 644 return; 645 } 646 647 if (vfio_container_add_section_window(container, section, &err)) { 648 goto fail; 649 } 650 651 hostwin = vfio_find_hostwin(container, iova, end); 652 if (!hostwin) { 653 error_setg(&err, "Container %p can't map guest IOVA region" 654 " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end); 655 goto fail; 656 } 657 658 memory_region_ref(section->mr); 659 660 if (memory_region_is_iommu(section->mr)) { 661 VFIOGuestIOMMU *giommu; 662 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); 663 int iommu_idx; 664 665 trace_vfio_listener_region_add_iommu(iova, end); 666 /* 667 * FIXME: For VFIO iommu types which have KVM acceleration to 668 * avoid bouncing all map/unmaps through qemu this way, this 669 * would be the right place to wire that up (tell the KVM 670 * device emulation the VFIO iommu handles to use). 671 */ 672 giommu = g_malloc0(sizeof(*giommu)); 673 giommu->iommu_mr = iommu_mr; 674 giommu->iommu_offset = section->offset_within_address_space - 675 section->offset_within_region; 676 giommu->container = container; 677 llend = int128_add(int128_make64(section->offset_within_region), 678 section->size); 679 llend = int128_sub(llend, int128_one()); 680 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 681 MEMTXATTRS_UNSPECIFIED); 682 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, 683 IOMMU_NOTIFIER_IOTLB_EVENTS, 684 section->offset_within_region, 685 int128_get64(llend), 686 iommu_idx); 687 688 ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr, 689 container->pgsizes, 690 &err); 691 if (ret) { 692 g_free(giommu); 693 goto fail; 694 } 695 696 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, 697 &err); 698 if (ret) { 699 g_free(giommu); 700 goto fail; 701 } 702 QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next); 703 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n); 704 705 return; 706 } 707 708 /* Here we assume that memory_region_is_ram(section->mr)==true */ 709 710 /* 711 * For RAM memory regions with a RamDiscardManager, we only want to map the 712 * actually populated parts - and update the mapping whenever we're notified 713 * about changes. 714 */ 715 if (memory_region_has_ram_discard_manager(section->mr)) { 716 vfio_register_ram_discard_listener(container, section); 717 return; 718 } 719 720 vaddr = memory_region_get_ram_ptr(section->mr) + 721 section->offset_within_region + 722 (iova - section->offset_within_address_space); 723 724 trace_vfio_listener_region_add_ram(iova, end, vaddr); 725 726 llsize = int128_sub(llend, int128_make64(iova)); 727 728 if (memory_region_is_ram_device(section->mr)) { 729 hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 730 731 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { 732 trace_vfio_listener_region_add_no_dma_map( 733 memory_region_name(section->mr), 734 section->offset_within_address_space, 735 int128_getlo(section->size), 736 pgmask + 1); 737 return; 738 } 739 } 740 741 ret = vfio_dma_map(container, iova, int128_get64(llsize), 742 vaddr, section->readonly); 743 if (ret) { 744 error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", " 745 "0x%"HWADDR_PRIx", %p) = %d (%s)", 746 container, iova, int128_get64(llsize), vaddr, ret, 747 strerror(-ret)); 748 if (memory_region_is_ram_device(section->mr)) { 749 /* Allow unexpected mappings not to be fatal for RAM devices */ 750 error_report_err(err); 751 return; 752 } 753 goto fail; 754 } 755 756 return; 757 758 fail: 759 if (memory_region_is_ram_device(section->mr)) { 760 error_reportf_err(err, "PCI p2p may not work: "); 761 return; 762 } 763 /* 764 * On the initfn path, store the first error in the container so we 765 * can gracefully fail. Runtime, there's not much we can do other 766 * than throw a hardware error. 767 */ 768 if (!container->initialized) { 769 if (!container->error) { 770 error_propagate_prepend(&container->error, err, 771 "Region %s: ", 772 memory_region_name(section->mr)); 773 } else { 774 error_free(err); 775 } 776 } else { 777 error_report_err(err); 778 hw_error("vfio: DMA mapping failed, unable to continue"); 779 } 780 } 781 782 static void vfio_listener_region_del(MemoryListener *listener, 783 MemoryRegionSection *section) 784 { 785 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 786 hwaddr iova, end; 787 Int128 llend, llsize; 788 int ret; 789 bool try_unmap = true; 790 791 if (!vfio_listener_valid_section(section, "region_del")) { 792 return; 793 } 794 795 if (memory_region_is_iommu(section->mr)) { 796 VFIOGuestIOMMU *giommu; 797 798 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 799 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 800 giommu->n.start == section->offset_within_region) { 801 memory_region_unregister_iommu_notifier(section->mr, 802 &giommu->n); 803 QLIST_REMOVE(giommu, giommu_next); 804 g_free(giommu); 805 break; 806 } 807 } 808 809 /* 810 * FIXME: We assume the one big unmap below is adequate to 811 * remove any individual page mappings in the IOMMU which 812 * might have been copied into VFIO. This works for a page table 813 * based IOMMU where a big unmap flattens a large range of IO-PTEs. 814 * That may not be true for all IOMMU types. 815 */ 816 } 817 818 if (!vfio_get_section_iova_range(container, section, &iova, &end, &llend)) { 819 return; 820 } 821 822 llsize = int128_sub(llend, int128_make64(iova)); 823 824 trace_vfio_listener_region_del(iova, end); 825 826 if (memory_region_is_ram_device(section->mr)) { 827 hwaddr pgmask; 828 VFIOHostDMAWindow *hostwin; 829 830 hostwin = vfio_find_hostwin(container, iova, end); 831 assert(hostwin); /* or region_add() would have failed */ 832 833 pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; 834 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); 835 } else if (memory_region_has_ram_discard_manager(section->mr)) { 836 vfio_unregister_ram_discard_listener(container, section); 837 /* Unregistering will trigger an unmap. */ 838 try_unmap = false; 839 } 840 841 if (try_unmap) { 842 if (int128_eq(llsize, int128_2_64())) { 843 /* The unmap ioctl doesn't accept a full 64-bit span. */ 844 llsize = int128_rshift(llsize, 1); 845 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); 846 if (ret) { 847 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 848 "0x%"HWADDR_PRIx") = %d (%s)", 849 container, iova, int128_get64(llsize), ret, 850 strerror(-ret)); 851 } 852 iova += int128_get64(llsize); 853 } 854 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); 855 if (ret) { 856 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " 857 "0x%"HWADDR_PRIx") = %d (%s)", 858 container, iova, int128_get64(llsize), ret, 859 strerror(-ret)); 860 } 861 } 862 863 memory_region_unref(section->mr); 864 865 vfio_container_del_section_window(container, section); 866 } 867 868 typedef struct VFIODirtyRanges { 869 hwaddr min32; 870 hwaddr max32; 871 hwaddr min64; 872 hwaddr max64; 873 hwaddr minpci64; 874 hwaddr maxpci64; 875 } VFIODirtyRanges; 876 877 typedef struct VFIODirtyRangesListener { 878 VFIOContainer *container; 879 VFIODirtyRanges ranges; 880 MemoryListener listener; 881 } VFIODirtyRangesListener; 882 883 static bool vfio_section_is_vfio_pci(MemoryRegionSection *section, 884 VFIOContainer *container) 885 { 886 VFIOPCIDevice *pcidev; 887 VFIODevice *vbasedev; 888 Object *owner; 889 890 owner = memory_region_owner(section->mr); 891 892 QLIST_FOREACH(vbasedev, &container->device_list, container_next) { 893 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { 894 continue; 895 } 896 pcidev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 897 if (OBJECT(pcidev) == owner) { 898 return true; 899 } 900 } 901 902 return false; 903 } 904 905 static void vfio_dirty_tracking_update(MemoryListener *listener, 906 MemoryRegionSection *section) 907 { 908 VFIODirtyRangesListener *dirty = container_of(listener, 909 VFIODirtyRangesListener, 910 listener); 911 VFIODirtyRanges *range = &dirty->ranges; 912 hwaddr iova, end, *min, *max; 913 914 if (!vfio_listener_valid_section(section, "tracking_update") || 915 !vfio_get_section_iova_range(dirty->container, section, 916 &iova, &end, NULL)) { 917 return; 918 } 919 920 /* 921 * The address space passed to the dirty tracker is reduced to three ranges: 922 * one for 32-bit DMA ranges, one for 64-bit DMA ranges and one for the 923 * PCI 64-bit hole. 924 * 925 * The underlying reports of dirty will query a sub-interval of each of 926 * these ranges. 927 * 928 * The purpose of the three range handling is to handle known cases of big 929 * holes in the address space, like the x86 AMD 1T hole, and firmware (like 930 * OVMF) which may relocate the pci-hole64 to the end of the address space. 931 * The latter would otherwise generate large ranges for tracking, stressing 932 * the limits of supported hardware. The pci-hole32 will always be below 4G 933 * (overlapping or not) so it doesn't need special handling and is part of 934 * the 32-bit range. 935 * 936 * The alternative would be an IOVATree but that has a much bigger runtime 937 * overhead and unnecessary complexity. 938 */ 939 if (vfio_section_is_vfio_pci(section, dirty->container) && 940 iova >= UINT32_MAX) { 941 min = &range->minpci64; 942 max = &range->maxpci64; 943 } else { 944 min = (end <= UINT32_MAX) ? &range->min32 : &range->min64; 945 max = (end <= UINT32_MAX) ? &range->max32 : &range->max64; 946 } 947 if (*min > iova) { 948 *min = iova; 949 } 950 if (*max < end) { 951 *max = end; 952 } 953 954 trace_vfio_device_dirty_tracking_update(iova, end, *min, *max); 955 return; 956 } 957 958 static const MemoryListener vfio_dirty_tracking_listener = { 959 .name = "vfio-tracking", 960 .region_add = vfio_dirty_tracking_update, 961 }; 962 963 static void vfio_dirty_tracking_init(VFIOContainer *container, 964 VFIODirtyRanges *ranges) 965 { 966 VFIODirtyRangesListener dirty; 967 968 memset(&dirty, 0, sizeof(dirty)); 969 dirty.ranges.min32 = UINT32_MAX; 970 dirty.ranges.min64 = UINT64_MAX; 971 dirty.ranges.minpci64 = UINT64_MAX; 972 dirty.listener = vfio_dirty_tracking_listener; 973 dirty.container = container; 974 975 memory_listener_register(&dirty.listener, 976 container->space->as); 977 978 *ranges = dirty.ranges; 979 980 /* 981 * The memory listener is synchronous, and used to calculate the range 982 * to dirty tracking. Unregister it after we are done as we are not 983 * interested in any follow-up updates. 984 */ 985 memory_listener_unregister(&dirty.listener); 986 } 987 988 static void vfio_devices_dma_logging_stop(VFIOContainer *container) 989 { 990 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature), 991 sizeof(uint64_t))] = {}; 992 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 993 VFIODevice *vbasedev; 994 995 feature->argsz = sizeof(buf); 996 feature->flags = VFIO_DEVICE_FEATURE_SET | 997 VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP; 998 999 QLIST_FOREACH(vbasedev, &container->device_list, container_next) { 1000 if (!vbasedev->dirty_tracking) { 1001 continue; 1002 } 1003 1004 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 1005 warn_report("%s: Failed to stop DMA logging, err %d (%s)", 1006 vbasedev->name, -errno, strerror(errno)); 1007 } 1008 vbasedev->dirty_tracking = false; 1009 } 1010 } 1011 1012 static struct vfio_device_feature * 1013 vfio_device_feature_dma_logging_start_create(VFIOContainer *container, 1014 VFIODirtyRanges *tracking) 1015 { 1016 struct vfio_device_feature *feature; 1017 size_t feature_size; 1018 struct vfio_device_feature_dma_logging_control *control; 1019 struct vfio_device_feature_dma_logging_range *ranges; 1020 1021 feature_size = sizeof(struct vfio_device_feature) + 1022 sizeof(struct vfio_device_feature_dma_logging_control); 1023 feature = g_try_malloc0(feature_size); 1024 if (!feature) { 1025 errno = ENOMEM; 1026 return NULL; 1027 } 1028 feature->argsz = feature_size; 1029 feature->flags = VFIO_DEVICE_FEATURE_SET | 1030 VFIO_DEVICE_FEATURE_DMA_LOGGING_START; 1031 1032 control = (struct vfio_device_feature_dma_logging_control *)feature->data; 1033 control->page_size = qemu_real_host_page_size(); 1034 1035 /* 1036 * DMA logging uAPI guarantees to support at least a number of ranges that 1037 * fits into a single host kernel base page. 1038 */ 1039 control->num_ranges = !!tracking->max32 + !!tracking->max64 + 1040 !!tracking->maxpci64; 1041 ranges = g_try_new0(struct vfio_device_feature_dma_logging_range, 1042 control->num_ranges); 1043 if (!ranges) { 1044 g_free(feature); 1045 errno = ENOMEM; 1046 1047 return NULL; 1048 } 1049 1050 control->ranges = (__u64)(uintptr_t)ranges; 1051 if (tracking->max32) { 1052 ranges->iova = tracking->min32; 1053 ranges->length = (tracking->max32 - tracking->min32) + 1; 1054 ranges++; 1055 } 1056 if (tracking->max64) { 1057 ranges->iova = tracking->min64; 1058 ranges->length = (tracking->max64 - tracking->min64) + 1; 1059 ranges++; 1060 } 1061 if (tracking->maxpci64) { 1062 ranges->iova = tracking->minpci64; 1063 ranges->length = (tracking->maxpci64 - tracking->minpci64) + 1; 1064 } 1065 1066 trace_vfio_device_dirty_tracking_start(control->num_ranges, 1067 tracking->min32, tracking->max32, 1068 tracking->min64, tracking->max64, 1069 tracking->minpci64, tracking->maxpci64); 1070 1071 return feature; 1072 } 1073 1074 static void vfio_device_feature_dma_logging_start_destroy( 1075 struct vfio_device_feature *feature) 1076 { 1077 struct vfio_device_feature_dma_logging_control *control = 1078 (struct vfio_device_feature_dma_logging_control *)feature->data; 1079 struct vfio_device_feature_dma_logging_range *ranges = 1080 (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges; 1081 1082 g_free(ranges); 1083 g_free(feature); 1084 } 1085 1086 static int vfio_devices_dma_logging_start(VFIOContainer *container) 1087 { 1088 struct vfio_device_feature *feature; 1089 VFIODirtyRanges ranges; 1090 VFIODevice *vbasedev; 1091 int ret = 0; 1092 1093 vfio_dirty_tracking_init(container, &ranges); 1094 feature = vfio_device_feature_dma_logging_start_create(container, 1095 &ranges); 1096 if (!feature) { 1097 return -errno; 1098 } 1099 1100 QLIST_FOREACH(vbasedev, &container->device_list, container_next) { 1101 if (vbasedev->dirty_tracking) { 1102 continue; 1103 } 1104 1105 ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature); 1106 if (ret) { 1107 ret = -errno; 1108 error_report("%s: Failed to start DMA logging, err %d (%s)", 1109 vbasedev->name, ret, strerror(errno)); 1110 goto out; 1111 } 1112 vbasedev->dirty_tracking = true; 1113 } 1114 1115 out: 1116 if (ret) { 1117 vfio_devices_dma_logging_stop(container); 1118 } 1119 1120 vfio_device_feature_dma_logging_start_destroy(feature); 1121 1122 return ret; 1123 } 1124 1125 static void vfio_listener_log_global_start(MemoryListener *listener) 1126 { 1127 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1128 int ret; 1129 1130 if (vfio_devices_all_device_dirty_tracking(container)) { 1131 ret = vfio_devices_dma_logging_start(container); 1132 } else { 1133 ret = vfio_set_dirty_page_tracking(container, true); 1134 } 1135 1136 if (ret) { 1137 error_report("vfio: Could not start dirty page tracking, err: %d (%s)", 1138 ret, strerror(-ret)); 1139 vfio_set_migration_error(ret); 1140 } 1141 } 1142 1143 static void vfio_listener_log_global_stop(MemoryListener *listener) 1144 { 1145 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1146 int ret = 0; 1147 1148 if (vfio_devices_all_device_dirty_tracking(container)) { 1149 vfio_devices_dma_logging_stop(container); 1150 } else { 1151 ret = vfio_set_dirty_page_tracking(container, false); 1152 } 1153 1154 if (ret) { 1155 error_report("vfio: Could not stop dirty page tracking, err: %d (%s)", 1156 ret, strerror(-ret)); 1157 vfio_set_migration_error(ret); 1158 } 1159 } 1160 1161 static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova, 1162 hwaddr size, void *bitmap) 1163 { 1164 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) + 1165 sizeof(struct vfio_device_feature_dma_logging_report), 1166 sizeof(__u64))] = {}; 1167 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf; 1168 struct vfio_device_feature_dma_logging_report *report = 1169 (struct vfio_device_feature_dma_logging_report *)feature->data; 1170 1171 report->iova = iova; 1172 report->length = size; 1173 report->page_size = qemu_real_host_page_size(); 1174 report->bitmap = (__u64)(uintptr_t)bitmap; 1175 1176 feature->argsz = sizeof(buf); 1177 feature->flags = VFIO_DEVICE_FEATURE_GET | 1178 VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT; 1179 1180 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) { 1181 return -errno; 1182 } 1183 1184 return 0; 1185 } 1186 1187 int vfio_devices_query_dirty_bitmap(VFIOContainer *container, 1188 VFIOBitmap *vbmap, hwaddr iova, 1189 hwaddr size) 1190 { 1191 VFIODevice *vbasedev; 1192 int ret; 1193 1194 QLIST_FOREACH(vbasedev, &container->device_list, container_next) { 1195 ret = vfio_device_dma_logging_report(vbasedev, iova, size, 1196 vbmap->bitmap); 1197 if (ret) { 1198 error_report("%s: Failed to get DMA logging report, iova: " 1199 "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx 1200 ", err: %d (%s)", 1201 vbasedev->name, iova, size, ret, strerror(-ret)); 1202 1203 return ret; 1204 } 1205 } 1206 1207 return 0; 1208 } 1209 1210 int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova, 1211 uint64_t size, ram_addr_t ram_addr) 1212 { 1213 bool all_device_dirty_tracking = 1214 vfio_devices_all_device_dirty_tracking(container); 1215 uint64_t dirty_pages; 1216 VFIOBitmap vbmap; 1217 int ret; 1218 1219 if (!container->dirty_pages_supported && !all_device_dirty_tracking) { 1220 cpu_physical_memory_set_dirty_range(ram_addr, size, 1221 tcg_enabled() ? DIRTY_CLIENTS_ALL : 1222 DIRTY_CLIENTS_NOCODE); 1223 return 0; 1224 } 1225 1226 ret = vfio_bitmap_alloc(&vbmap, size); 1227 if (ret) { 1228 return ret; 1229 } 1230 1231 if (all_device_dirty_tracking) { 1232 ret = vfio_devices_query_dirty_bitmap(container, &vbmap, iova, size); 1233 } else { 1234 ret = vfio_query_dirty_bitmap(container, &vbmap, iova, size); 1235 } 1236 1237 if (ret) { 1238 goto out; 1239 } 1240 1241 dirty_pages = cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr, 1242 vbmap.pages); 1243 1244 trace_vfio_get_dirty_bitmap(container->fd, iova, size, vbmap.size, 1245 ram_addr, dirty_pages); 1246 out: 1247 g_free(vbmap.bitmap); 1248 1249 return ret; 1250 } 1251 1252 typedef struct { 1253 IOMMUNotifier n; 1254 VFIOGuestIOMMU *giommu; 1255 } vfio_giommu_dirty_notifier; 1256 1257 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 1258 { 1259 vfio_giommu_dirty_notifier *gdn = container_of(n, 1260 vfio_giommu_dirty_notifier, n); 1261 VFIOGuestIOMMU *giommu = gdn->giommu; 1262 VFIOContainer *container = giommu->container; 1263 hwaddr iova = iotlb->iova + giommu->iommu_offset; 1264 ram_addr_t translated_addr; 1265 int ret = -EINVAL; 1266 1267 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); 1268 1269 if (iotlb->target_as != &address_space_memory) { 1270 error_report("Wrong target AS \"%s\", only system memory is allowed", 1271 iotlb->target_as->name ? iotlb->target_as->name : "none"); 1272 goto out; 1273 } 1274 1275 rcu_read_lock(); 1276 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) { 1277 ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1, 1278 translated_addr); 1279 if (ret) { 1280 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " 1281 "0x%"HWADDR_PRIx") = %d (%s)", 1282 container, iova, iotlb->addr_mask + 1, ret, 1283 strerror(-ret)); 1284 } 1285 } 1286 rcu_read_unlock(); 1287 1288 out: 1289 if (ret) { 1290 vfio_set_migration_error(ret); 1291 } 1292 } 1293 1294 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, 1295 void *opaque) 1296 { 1297 const hwaddr size = int128_get64(section->size); 1298 const hwaddr iova = section->offset_within_address_space; 1299 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + 1300 section->offset_within_region; 1301 VFIORamDiscardListener *vrdl = opaque; 1302 1303 /* 1304 * Sync the whole mapped region (spanning multiple individual mappings) 1305 * in one go. 1306 */ 1307 return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr); 1308 } 1309 1310 static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container, 1311 MemoryRegionSection *section) 1312 { 1313 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); 1314 VFIORamDiscardListener *vrdl = NULL; 1315 1316 QLIST_FOREACH(vrdl, &container->vrdl_list, next) { 1317 if (vrdl->mr == section->mr && 1318 vrdl->offset_within_address_space == 1319 section->offset_within_address_space) { 1320 break; 1321 } 1322 } 1323 1324 if (!vrdl) { 1325 hw_error("vfio: Trying to sync missing RAM discard listener"); 1326 } 1327 1328 /* 1329 * We only want/can synchronize the bitmap for actually mapped parts - 1330 * which correspond to populated parts. Replay all populated parts. 1331 */ 1332 return ram_discard_manager_replay_populated(rdm, section, 1333 vfio_ram_discard_get_dirty_bitmap, 1334 &vrdl); 1335 } 1336 1337 static int vfio_sync_dirty_bitmap(VFIOContainer *container, 1338 MemoryRegionSection *section) 1339 { 1340 ram_addr_t ram_addr; 1341 1342 if (memory_region_is_iommu(section->mr)) { 1343 VFIOGuestIOMMU *giommu; 1344 1345 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { 1346 if (MEMORY_REGION(giommu->iommu_mr) == section->mr && 1347 giommu->n.start == section->offset_within_region) { 1348 Int128 llend; 1349 vfio_giommu_dirty_notifier gdn = { .giommu = giommu }; 1350 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr, 1351 MEMTXATTRS_UNSPECIFIED); 1352 1353 llend = int128_add(int128_make64(section->offset_within_region), 1354 section->size); 1355 llend = int128_sub(llend, int128_one()); 1356 1357 iommu_notifier_init(&gdn.n, 1358 vfio_iommu_map_dirty_notify, 1359 IOMMU_NOTIFIER_MAP, 1360 section->offset_within_region, 1361 int128_get64(llend), 1362 idx); 1363 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n); 1364 break; 1365 } 1366 } 1367 return 0; 1368 } else if (memory_region_has_ram_discard_manager(section->mr)) { 1369 return vfio_sync_ram_discard_listener_dirty_bitmap(container, section); 1370 } 1371 1372 ram_addr = memory_region_get_ram_addr(section->mr) + 1373 section->offset_within_region; 1374 1375 return vfio_get_dirty_bitmap(container, 1376 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), 1377 int128_get64(section->size), ram_addr); 1378 } 1379 1380 static void vfio_listener_log_sync(MemoryListener *listener, 1381 MemoryRegionSection *section) 1382 { 1383 VFIOContainer *container = container_of(listener, VFIOContainer, listener); 1384 int ret; 1385 1386 if (vfio_listener_skipped_section(section)) { 1387 return; 1388 } 1389 1390 if (vfio_devices_all_dirty_tracking(container)) { 1391 ret = vfio_sync_dirty_bitmap(container, section); 1392 if (ret) { 1393 error_report("vfio: Failed to sync dirty bitmap, err: %d (%s)", ret, 1394 strerror(-ret)); 1395 vfio_set_migration_error(ret); 1396 } 1397 } 1398 } 1399 1400 const MemoryListener vfio_memory_listener = { 1401 .name = "vfio", 1402 .region_add = vfio_listener_region_add, 1403 .region_del = vfio_listener_region_del, 1404 .log_global_start = vfio_listener_log_global_start, 1405 .log_global_stop = vfio_listener_log_global_stop, 1406 .log_sync = vfio_listener_log_sync, 1407 }; 1408 1409 void vfio_reset_handler(void *opaque) 1410 { 1411 VFIODevice *vbasedev; 1412 1413 QLIST_FOREACH(vbasedev, &vfio_device_list, next) { 1414 if (vbasedev->dev->realized) { 1415 vbasedev->ops->vfio_compute_needs_reset(vbasedev); 1416 } 1417 } 1418 1419 QLIST_FOREACH(vbasedev, &vfio_device_list, next) { 1420 if (vbasedev->dev->realized && vbasedev->needs_reset) { 1421 vbasedev->ops->vfio_hot_reset_multi(vbasedev); 1422 } 1423 } 1424 } 1425 1426 int vfio_kvm_device_add_fd(int fd, Error **errp) 1427 { 1428 #ifdef CONFIG_KVM 1429 struct kvm_device_attr attr = { 1430 .group = KVM_DEV_VFIO_FILE, 1431 .attr = KVM_DEV_VFIO_FILE_ADD, 1432 .addr = (uint64_t)(unsigned long)&fd, 1433 }; 1434 1435 if (!kvm_enabled()) { 1436 return 0; 1437 } 1438 1439 if (vfio_kvm_device_fd < 0) { 1440 struct kvm_create_device cd = { 1441 .type = KVM_DEV_TYPE_VFIO, 1442 }; 1443 1444 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { 1445 error_setg_errno(errp, errno, "Failed to create KVM VFIO device"); 1446 return -errno; 1447 } 1448 1449 vfio_kvm_device_fd = cd.fd; 1450 } 1451 1452 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1453 error_setg_errno(errp, errno, "Failed to add fd %d to KVM VFIO device", 1454 fd); 1455 return -errno; 1456 } 1457 #endif 1458 return 0; 1459 } 1460 1461 int vfio_kvm_device_del_fd(int fd, Error **errp) 1462 { 1463 #ifdef CONFIG_KVM 1464 struct kvm_device_attr attr = { 1465 .group = KVM_DEV_VFIO_FILE, 1466 .attr = KVM_DEV_VFIO_FILE_DEL, 1467 .addr = (uint64_t)(unsigned long)&fd, 1468 }; 1469 1470 if (vfio_kvm_device_fd < 0) { 1471 error_setg(errp, "KVM VFIO device isn't created yet"); 1472 return -EINVAL; 1473 } 1474 1475 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { 1476 error_setg_errno(errp, errno, 1477 "Failed to remove fd %d from KVM VFIO device", fd); 1478 return -errno; 1479 } 1480 #endif 1481 return 0; 1482 } 1483 1484 VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) 1485 { 1486 VFIOAddressSpace *space; 1487 1488 QLIST_FOREACH(space, &vfio_address_spaces, list) { 1489 if (space->as == as) { 1490 return space; 1491 } 1492 } 1493 1494 /* No suitable VFIOAddressSpace, create a new one */ 1495 space = g_malloc0(sizeof(*space)); 1496 space->as = as; 1497 QLIST_INIT(&space->containers); 1498 1499 if (QLIST_EMPTY(&vfio_address_spaces)) { 1500 qemu_register_reset(vfio_reset_handler, NULL); 1501 } 1502 1503 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); 1504 1505 return space; 1506 } 1507 1508 void vfio_put_address_space(VFIOAddressSpace *space) 1509 { 1510 if (QLIST_EMPTY(&space->containers)) { 1511 QLIST_REMOVE(space, list); 1512 g_free(space); 1513 } 1514 if (QLIST_EMPTY(&vfio_address_spaces)) { 1515 qemu_unregister_reset(vfio_reset_handler, NULL); 1516 } 1517 } 1518 1519 struct vfio_device_info *vfio_get_device_info(int fd) 1520 { 1521 struct vfio_device_info *info; 1522 uint32_t argsz = sizeof(*info); 1523 1524 info = g_malloc0(argsz); 1525 1526 retry: 1527 info->argsz = argsz; 1528 1529 if (ioctl(fd, VFIO_DEVICE_GET_INFO, info)) { 1530 g_free(info); 1531 return NULL; 1532 } 1533 1534 if (info->argsz > argsz) { 1535 argsz = info->argsz; 1536 info = g_realloc(info, argsz); 1537 goto retry; 1538 } 1539 1540 return info; 1541 } 1542