xref: /openbmc/qemu/hw/usb/hcd-xhci.c (revision f1ae32a1)
1 /*
2  * USB xHCI controller emulation
3  *
4  * Copyright (c) 2011 Securiforest
5  * Date: 2011-05-11 ;  Author: Hector Martin <hector@marcansoft.com>
6  * Based on usb-ohci.c, emulates Renesas NEC USB 3.0
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 #include "hw/hw.h"
22 #include "qemu-timer.h"
23 #include "hw/usb.h"
24 #include "hw/pci.h"
25 #include "hw/qdev-addr.h"
26 #include "hw/msi.h"
27 
28 //#define DEBUG_XHCI
29 //#define DEBUG_DATA
30 
31 #ifdef DEBUG_XHCI
32 #define DPRINTF(...) fprintf(stderr, __VA_ARGS__)
33 #else
34 #define DPRINTF(...) do {} while (0)
35 #endif
36 #define FIXME() do { fprintf(stderr, "FIXME %s:%d\n", \
37                              __func__, __LINE__); abort(); } while (0)
38 
39 #define MAXSLOTS 8
40 #define MAXINTRS 1
41 
42 #define USB2_PORTS 4
43 #define USB3_PORTS 4
44 
45 #define MAXPORTS (USB2_PORTS+USB3_PORTS)
46 
47 #define TD_QUEUE 24
48 #define BG_XFERS 8
49 #define BG_PKTS 8
50 
51 /* Very pessimistic, let's hope it's enough for all cases */
52 #define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS)
53 /* Do not deliver ER Full events. NEC's driver does some things not bound
54  * to the specs when it gets them */
55 #define ER_FULL_HACK
56 
57 #define LEN_CAP         0x40
58 #define OFF_OPER        LEN_CAP
59 #define LEN_OPER        (0x400 + 0x10 * MAXPORTS)
60 #define OFF_RUNTIME     ((OFF_OPER + LEN_OPER + 0x20) & ~0x1f)
61 #define LEN_RUNTIME     (0x20 + MAXINTRS * 0x20)
62 #define OFF_DOORBELL    (OFF_RUNTIME + LEN_RUNTIME)
63 #define LEN_DOORBELL    ((MAXSLOTS + 1) * 0x20)
64 
65 /* must be power of 2 */
66 #define LEN_REGS        0x2000
67 
68 #if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS
69 # error Increase LEN_REGS
70 #endif
71 
72 #if MAXINTRS > 1
73 # error TODO: only one interrupter supported
74 #endif
75 
76 /* bit definitions */
77 #define USBCMD_RS       (1<<0)
78 #define USBCMD_HCRST    (1<<1)
79 #define USBCMD_INTE     (1<<2)
80 #define USBCMD_HSEE     (1<<3)
81 #define USBCMD_LHCRST   (1<<7)
82 #define USBCMD_CSS      (1<<8)
83 #define USBCMD_CRS      (1<<9)
84 #define USBCMD_EWE      (1<<10)
85 #define USBCMD_EU3S     (1<<11)
86 
87 #define USBSTS_HCH      (1<<0)
88 #define USBSTS_HSE      (1<<2)
89 #define USBSTS_EINT     (1<<3)
90 #define USBSTS_PCD      (1<<4)
91 #define USBSTS_SSS      (1<<8)
92 #define USBSTS_RSS      (1<<9)
93 #define USBSTS_SRE      (1<<10)
94 #define USBSTS_CNR      (1<<11)
95 #define USBSTS_HCE      (1<<12)
96 
97 
98 #define PORTSC_CCS          (1<<0)
99 #define PORTSC_PED          (1<<1)
100 #define PORTSC_OCA          (1<<3)
101 #define PORTSC_PR           (1<<4)
102 #define PORTSC_PLS_SHIFT        5
103 #define PORTSC_PLS_MASK     0xf
104 #define PORTSC_PP           (1<<9)
105 #define PORTSC_SPEED_SHIFT      10
106 #define PORTSC_SPEED_MASK   0xf
107 #define PORTSC_SPEED_FULL   (1<<10)
108 #define PORTSC_SPEED_LOW    (2<<10)
109 #define PORTSC_SPEED_HIGH   (3<<10)
110 #define PORTSC_SPEED_SUPER  (4<<10)
111 #define PORTSC_PIC_SHIFT        14
112 #define PORTSC_PIC_MASK     0x3
113 #define PORTSC_LWS          (1<<16)
114 #define PORTSC_CSC          (1<<17)
115 #define PORTSC_PEC          (1<<18)
116 #define PORTSC_WRC          (1<<19)
117 #define PORTSC_OCC          (1<<20)
118 #define PORTSC_PRC          (1<<21)
119 #define PORTSC_PLC          (1<<22)
120 #define PORTSC_CEC          (1<<23)
121 #define PORTSC_CAS          (1<<24)
122 #define PORTSC_WCE          (1<<25)
123 #define PORTSC_WDE          (1<<26)
124 #define PORTSC_WOE          (1<<27)
125 #define PORTSC_DR           (1<<30)
126 #define PORTSC_WPR          (1<<31)
127 
128 #define CRCR_RCS        (1<<0)
129 #define CRCR_CS         (1<<1)
130 #define CRCR_CA         (1<<2)
131 #define CRCR_CRR        (1<<3)
132 
133 #define IMAN_IP         (1<<0)
134 #define IMAN_IE         (1<<1)
135 
136 #define ERDP_EHB        (1<<3)
137 
138 #define TRB_SIZE 16
139 typedef struct XHCITRB {
140     uint64_t parameter;
141     uint32_t status;
142     uint32_t control;
143     target_phys_addr_t addr;
144     bool ccs;
145 } XHCITRB;
146 
147 
148 typedef enum TRBType {
149     TRB_RESERVED = 0,
150     TR_NORMAL,
151     TR_SETUP,
152     TR_DATA,
153     TR_STATUS,
154     TR_ISOCH,
155     TR_LINK,
156     TR_EVDATA,
157     TR_NOOP,
158     CR_ENABLE_SLOT,
159     CR_DISABLE_SLOT,
160     CR_ADDRESS_DEVICE,
161     CR_CONFIGURE_ENDPOINT,
162     CR_EVALUATE_CONTEXT,
163     CR_RESET_ENDPOINT,
164     CR_STOP_ENDPOINT,
165     CR_SET_TR_DEQUEUE,
166     CR_RESET_DEVICE,
167     CR_FORCE_EVENT,
168     CR_NEGOTIATE_BW,
169     CR_SET_LATENCY_TOLERANCE,
170     CR_GET_PORT_BANDWIDTH,
171     CR_FORCE_HEADER,
172     CR_NOOP,
173     ER_TRANSFER = 32,
174     ER_COMMAND_COMPLETE,
175     ER_PORT_STATUS_CHANGE,
176     ER_BANDWIDTH_REQUEST,
177     ER_DOORBELL,
178     ER_HOST_CONTROLLER,
179     ER_DEVICE_NOTIFICATION,
180     ER_MFINDEX_WRAP,
181     /* vendor specific bits */
182     CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48,
183     CR_VENDOR_NEC_FIRMWARE_REVISION  = 49,
184     CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50,
185 } TRBType;
186 
187 #define CR_LINK TR_LINK
188 
189 typedef enum TRBCCode {
190     CC_INVALID = 0,
191     CC_SUCCESS,
192     CC_DATA_BUFFER_ERROR,
193     CC_BABBLE_DETECTED,
194     CC_USB_TRANSACTION_ERROR,
195     CC_TRB_ERROR,
196     CC_STALL_ERROR,
197     CC_RESOURCE_ERROR,
198     CC_BANDWIDTH_ERROR,
199     CC_NO_SLOTS_ERROR,
200     CC_INVALID_STREAM_TYPE_ERROR,
201     CC_SLOT_NOT_ENABLED_ERROR,
202     CC_EP_NOT_ENABLED_ERROR,
203     CC_SHORT_PACKET,
204     CC_RING_UNDERRUN,
205     CC_RING_OVERRUN,
206     CC_VF_ER_FULL,
207     CC_PARAMETER_ERROR,
208     CC_BANDWIDTH_OVERRUN,
209     CC_CONTEXT_STATE_ERROR,
210     CC_NO_PING_RESPONSE_ERROR,
211     CC_EVENT_RING_FULL_ERROR,
212     CC_INCOMPATIBLE_DEVICE_ERROR,
213     CC_MISSED_SERVICE_ERROR,
214     CC_COMMAND_RING_STOPPED,
215     CC_COMMAND_ABORTED,
216     CC_STOPPED,
217     CC_STOPPED_LENGTH_INVALID,
218     CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29,
219     CC_ISOCH_BUFFER_OVERRUN = 31,
220     CC_EVENT_LOST_ERROR,
221     CC_UNDEFINED_ERROR,
222     CC_INVALID_STREAM_ID_ERROR,
223     CC_SECONDARY_BANDWIDTH_ERROR,
224     CC_SPLIT_TRANSACTION_ERROR
225 } TRBCCode;
226 
227 #define TRB_C               (1<<0)
228 #define TRB_TYPE_SHIFT          10
229 #define TRB_TYPE_MASK       0x3f
230 #define TRB_TYPE(t)         (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK)
231 
232 #define TRB_EV_ED           (1<<2)
233 
234 #define TRB_TR_ENT          (1<<1)
235 #define TRB_TR_ISP          (1<<2)
236 #define TRB_TR_NS           (1<<3)
237 #define TRB_TR_CH           (1<<4)
238 #define TRB_TR_IOC          (1<<5)
239 #define TRB_TR_IDT          (1<<6)
240 #define TRB_TR_TBC_SHIFT        7
241 #define TRB_TR_TBC_MASK     0x3
242 #define TRB_TR_BEI          (1<<9)
243 #define TRB_TR_TLBPC_SHIFT      16
244 #define TRB_TR_TLBPC_MASK   0xf
245 #define TRB_TR_FRAMEID_SHIFT    20
246 #define TRB_TR_FRAMEID_MASK 0x7ff
247 #define TRB_TR_SIA          (1<<31)
248 
249 #define TRB_TR_DIR          (1<<16)
250 
251 #define TRB_CR_SLOTID_SHIFT     24
252 #define TRB_CR_SLOTID_MASK  0xff
253 #define TRB_CR_EPID_SHIFT       16
254 #define TRB_CR_EPID_MASK    0x1f
255 
256 #define TRB_CR_BSR          (1<<9)
257 #define TRB_CR_DC           (1<<9)
258 
259 #define TRB_LK_TC           (1<<1)
260 
261 #define EP_TYPE_MASK        0x7
262 #define EP_TYPE_SHIFT           3
263 
264 #define EP_STATE_MASK       0x7
265 #define EP_DISABLED         (0<<0)
266 #define EP_RUNNING          (1<<0)
267 #define EP_HALTED           (2<<0)
268 #define EP_STOPPED          (3<<0)
269 #define EP_ERROR            (4<<0)
270 
271 #define SLOT_STATE_MASK     0x1f
272 #define SLOT_STATE_SHIFT        27
273 #define SLOT_STATE(s)       (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK)
274 #define SLOT_ENABLED        0
275 #define SLOT_DEFAULT        1
276 #define SLOT_ADDRESSED      2
277 #define SLOT_CONFIGURED     3
278 
279 #define SLOT_CONTEXT_ENTRIES_MASK 0x1f
280 #define SLOT_CONTEXT_ENTRIES_SHIFT 27
281 
282 typedef enum EPType {
283     ET_INVALID = 0,
284     ET_ISO_OUT,
285     ET_BULK_OUT,
286     ET_INTR_OUT,
287     ET_CONTROL,
288     ET_ISO_IN,
289     ET_BULK_IN,
290     ET_INTR_IN,
291 } EPType;
292 
293 typedef struct XHCIRing {
294     target_phys_addr_t base;
295     target_phys_addr_t dequeue;
296     bool ccs;
297 } XHCIRing;
298 
299 typedef struct XHCIPort {
300     USBPort port;
301     uint32_t portsc;
302 } XHCIPort;
303 
304 struct XHCIState;
305 typedef struct XHCIState XHCIState;
306 
307 typedef struct XHCITransfer {
308     XHCIState *xhci;
309     USBPacket packet;
310     bool running_async;
311     bool running_retry;
312     bool cancelled;
313     bool complete;
314     bool backgrounded;
315     unsigned int iso_pkts;
316     unsigned int slotid;
317     unsigned int epid;
318     bool in_xfer;
319     bool iso_xfer;
320     bool bg_xfer;
321 
322     unsigned int trb_count;
323     unsigned int trb_alloced;
324     XHCITRB *trbs;
325 
326     unsigned int data_length;
327     unsigned int data_alloced;
328     uint8_t *data;
329 
330     TRBCCode status;
331 
332     unsigned int pkts;
333     unsigned int pktsize;
334     unsigned int cur_pkt;
335 } XHCITransfer;
336 
337 typedef struct XHCIEPContext {
338     XHCIRing ring;
339     unsigned int next_xfer;
340     unsigned int comp_xfer;
341     XHCITransfer transfers[TD_QUEUE];
342     XHCITransfer *retry;
343     bool bg_running;
344     bool bg_updating;
345     unsigned int next_bg;
346     XHCITransfer bg_transfers[BG_XFERS];
347     EPType type;
348     target_phys_addr_t pctx;
349     unsigned int max_psize;
350     bool has_bg;
351     uint32_t state;
352 } XHCIEPContext;
353 
354 typedef struct XHCISlot {
355     bool enabled;
356     target_phys_addr_t ctx;
357     unsigned int port;
358     unsigned int devaddr;
359     XHCIEPContext * eps[31];
360 } XHCISlot;
361 
362 typedef struct XHCIEvent {
363     TRBType type;
364     TRBCCode ccode;
365     uint64_t ptr;
366     uint32_t length;
367     uint32_t flags;
368     uint8_t slotid;
369     uint8_t epid;
370 } XHCIEvent;
371 
372 struct XHCIState {
373     PCIDevice pci_dev;
374     USBBus bus;
375     qemu_irq irq;
376     MemoryRegion mem;
377     const char *name;
378     uint32_t msi;
379     unsigned int devaddr;
380 
381     /* Operational Registers */
382     uint32_t usbcmd;
383     uint32_t usbsts;
384     uint32_t dnctrl;
385     uint32_t crcr_low;
386     uint32_t crcr_high;
387     uint32_t dcbaap_low;
388     uint32_t dcbaap_high;
389     uint32_t config;
390 
391     XHCIPort ports[MAXPORTS];
392     XHCISlot slots[MAXSLOTS];
393 
394     /* Runtime Registers */
395     uint32_t mfindex;
396     /* note: we only support one interrupter */
397     uint32_t iman;
398     uint32_t imod;
399     uint32_t erstsz;
400     uint32_t erstba_low;
401     uint32_t erstba_high;
402     uint32_t erdp_low;
403     uint32_t erdp_high;
404 
405     target_phys_addr_t er_start;
406     uint32_t er_size;
407     bool er_pcs;
408     unsigned int er_ep_idx;
409     bool er_full;
410 
411     XHCIEvent ev_buffer[EV_QUEUE];
412     unsigned int ev_buffer_put;
413     unsigned int ev_buffer_get;
414 
415     XHCIRing cmd_ring;
416 };
417 
418 typedef struct XHCIEvRingSeg {
419     uint32_t addr_low;
420     uint32_t addr_high;
421     uint32_t size;
422     uint32_t rsvd;
423 } XHCIEvRingSeg;
424 
425 #ifdef DEBUG_XHCI
426 static const char *TRBType_names[] = {
427     [TRB_RESERVED]                     = "TRB_RESERVED",
428     [TR_NORMAL]                        = "TR_NORMAL",
429     [TR_SETUP]                         = "TR_SETUP",
430     [TR_DATA]                          = "TR_DATA",
431     [TR_STATUS]                        = "TR_STATUS",
432     [TR_ISOCH]                         = "TR_ISOCH",
433     [TR_LINK]                          = "TR_LINK",
434     [TR_EVDATA]                        = "TR_EVDATA",
435     [TR_NOOP]                          = "TR_NOOP",
436     [CR_ENABLE_SLOT]                   = "CR_ENABLE_SLOT",
437     [CR_DISABLE_SLOT]                  = "CR_DISABLE_SLOT",
438     [CR_ADDRESS_DEVICE]                = "CR_ADDRESS_DEVICE",
439     [CR_CONFIGURE_ENDPOINT]            = "CR_CONFIGURE_ENDPOINT",
440     [CR_EVALUATE_CONTEXT]              = "CR_EVALUATE_CONTEXT",
441     [CR_RESET_ENDPOINT]                = "CR_RESET_ENDPOINT",
442     [CR_STOP_ENDPOINT]                 = "CR_STOP_ENDPOINT",
443     [CR_SET_TR_DEQUEUE]                = "CR_SET_TR_DEQUEUE",
444     [CR_RESET_DEVICE]                  = "CR_RESET_DEVICE",
445     [CR_FORCE_EVENT]                   = "CR_FORCE_EVENT",
446     [CR_NEGOTIATE_BW]                  = "CR_NEGOTIATE_BW",
447     [CR_SET_LATENCY_TOLERANCE]         = "CR_SET_LATENCY_TOLERANCE",
448     [CR_GET_PORT_BANDWIDTH]            = "CR_GET_PORT_BANDWIDTH",
449     [CR_FORCE_HEADER]                  = "CR_FORCE_HEADER",
450     [CR_NOOP]                          = "CR_NOOP",
451     [ER_TRANSFER]                      = "ER_TRANSFER",
452     [ER_COMMAND_COMPLETE]              = "ER_COMMAND_COMPLETE",
453     [ER_PORT_STATUS_CHANGE]            = "ER_PORT_STATUS_CHANGE",
454     [ER_BANDWIDTH_REQUEST]             = "ER_BANDWIDTH_REQUEST",
455     [ER_DOORBELL]                      = "ER_DOORBELL",
456     [ER_HOST_CONTROLLER]               = "ER_HOST_CONTROLLER",
457     [ER_DEVICE_NOTIFICATION]           = "ER_DEVICE_NOTIFICATION",
458     [ER_MFINDEX_WRAP]                  = "ER_MFINDEX_WRAP",
459     [CR_VENDOR_VIA_CHALLENGE_RESPONSE] = "CR_VENDOR_VIA_CHALLENGE_RESPONSE",
460     [CR_VENDOR_NEC_FIRMWARE_REVISION]  = "CR_VENDOR_NEC_FIRMWARE_REVISION",
461     [CR_VENDOR_NEC_CHALLENGE_RESPONSE] = "CR_VENDOR_NEC_CHALLENGE_RESPONSE",
462 };
463 
464 static const char *lookup_name(uint32_t index, const char **list, uint32_t llen)
465 {
466     if (index >= llen || list[index] == NULL) {
467         return "???";
468     }
469     return list[index];
470 }
471 
472 static const char *trb_name(XHCITRB *trb)
473 {
474     return lookup_name(TRB_TYPE(*trb), TRBType_names,
475                        ARRAY_SIZE(TRBType_names));
476 }
477 #endif
478 
479 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid,
480                          unsigned int epid);
481 
482 static inline target_phys_addr_t xhci_addr64(uint32_t low, uint32_t high)
483 {
484 #if TARGET_PHYS_ADDR_BITS > 32
485     return low | ((target_phys_addr_t)high << 32);
486 #else
487     return low;
488 #endif
489 }
490 
491 static inline target_phys_addr_t xhci_mask64(uint64_t addr)
492 {
493 #if TARGET_PHYS_ADDR_BITS > 32
494     return addr;
495 #else
496     return addr & 0xffffffff;
497 #endif
498 }
499 
500 static void xhci_irq_update(XHCIState *xhci)
501 {
502     int level = 0;
503 
504     if (xhci->iman & IMAN_IP && xhci->iman & IMAN_IE &&
505         xhci->usbcmd && USBCMD_INTE) {
506         level = 1;
507     }
508 
509     DPRINTF("xhci_irq_update(): %d\n", level);
510 
511     if (xhci->msi && msi_enabled(&xhci->pci_dev)) {
512         if (level) {
513             DPRINTF("xhci_irq_update(): MSI signal\n");
514             msi_notify(&xhci->pci_dev, 0);
515         }
516     } else {
517         qemu_set_irq(xhci->irq, level);
518     }
519 }
520 
521 static inline int xhci_running(XHCIState *xhci)
522 {
523     return !(xhci->usbsts & USBSTS_HCH) && !xhci->er_full;
524 }
525 
526 static void xhci_die(XHCIState *xhci)
527 {
528     xhci->usbsts |= USBSTS_HCE;
529     fprintf(stderr, "xhci: asserted controller error\n");
530 }
531 
532 static void xhci_write_event(XHCIState *xhci, XHCIEvent *event)
533 {
534     XHCITRB ev_trb;
535     target_phys_addr_t addr;
536 
537     ev_trb.parameter = cpu_to_le64(event->ptr);
538     ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24));
539     ev_trb.control = (event->slotid << 24) | (event->epid << 16) |
540                      event->flags | (event->type << TRB_TYPE_SHIFT);
541     if (xhci->er_pcs) {
542         ev_trb.control |= TRB_C;
543     }
544     ev_trb.control = cpu_to_le32(ev_trb.control);
545 
546     DPRINTF("xhci_write_event(): [%d] %016"PRIx64" %08x %08x %s\n",
547             xhci->er_ep_idx, ev_trb.parameter, ev_trb.status, ev_trb.control,
548             trb_name(&ev_trb));
549 
550     addr = xhci->er_start + TRB_SIZE*xhci->er_ep_idx;
551     cpu_physical_memory_write(addr, (uint8_t *) &ev_trb, TRB_SIZE);
552 
553     xhci->er_ep_idx++;
554     if (xhci->er_ep_idx >= xhci->er_size) {
555         xhci->er_ep_idx = 0;
556         xhci->er_pcs = !xhci->er_pcs;
557     }
558 }
559 
560 static void xhci_events_update(XHCIState *xhci)
561 {
562     target_phys_addr_t erdp;
563     unsigned int dp_idx;
564     bool do_irq = 0;
565 
566     if (xhci->usbsts & USBSTS_HCH) {
567         return;
568     }
569 
570     erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high);
571     if (erdp < xhci->er_start ||
572         erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) {
573         fprintf(stderr, "xhci: ERDP out of bounds: "TARGET_FMT_plx"\n", erdp);
574         fprintf(stderr, "xhci: ER at "TARGET_FMT_plx" len %d\n",
575                 xhci->er_start, xhci->er_size);
576         xhci_die(xhci);
577         return;
578     }
579     dp_idx = (erdp - xhci->er_start) / TRB_SIZE;
580     assert(dp_idx < xhci->er_size);
581 
582     /* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus
583      * deadlocks when the ER is full. Hack it by holding off events until
584      * the driver decides to free at least half of the ring */
585     if (xhci->er_full) {
586         int er_free = dp_idx - xhci->er_ep_idx;
587         if (er_free <= 0) {
588             er_free += xhci->er_size;
589         }
590         if (er_free < (xhci->er_size/2)) {
591             DPRINTF("xhci_events_update(): event ring still "
592                     "more than half full (hack)\n");
593             return;
594         }
595     }
596 
597     while (xhci->ev_buffer_put != xhci->ev_buffer_get) {
598         assert(xhci->er_full);
599         if (((xhci->er_ep_idx+1) % xhci->er_size) == dp_idx) {
600             DPRINTF("xhci_events_update(): event ring full again\n");
601 #ifndef ER_FULL_HACK
602             XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
603             xhci_write_event(xhci, &full);
604 #endif
605             do_irq = 1;
606             break;
607         }
608         XHCIEvent *event = &xhci->ev_buffer[xhci->ev_buffer_get];
609         xhci_write_event(xhci, event);
610         xhci->ev_buffer_get++;
611         do_irq = 1;
612         if (xhci->ev_buffer_get == EV_QUEUE) {
613             xhci->ev_buffer_get = 0;
614         }
615     }
616 
617     if (do_irq) {
618         xhci->erdp_low |= ERDP_EHB;
619         xhci->iman |= IMAN_IP;
620         xhci->usbsts |= USBSTS_EINT;
621         xhci_irq_update(xhci);
622     }
623 
624     if (xhci->er_full && xhci->ev_buffer_put == xhci->ev_buffer_get) {
625         DPRINTF("xhci_events_update(): event ring no longer full\n");
626         xhci->er_full = 0;
627     }
628     return;
629 }
630 
631 static void xhci_event(XHCIState *xhci, XHCIEvent *event)
632 {
633     target_phys_addr_t erdp;
634     unsigned int dp_idx;
635 
636     if (xhci->er_full) {
637         DPRINTF("xhci_event(): ER full, queueing\n");
638         if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) {
639             fprintf(stderr, "xhci: event queue full, dropping event!\n");
640             return;
641         }
642         xhci->ev_buffer[xhci->ev_buffer_put++] = *event;
643         if (xhci->ev_buffer_put == EV_QUEUE) {
644             xhci->ev_buffer_put = 0;
645         }
646         return;
647     }
648 
649     erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high);
650     if (erdp < xhci->er_start ||
651         erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) {
652         fprintf(stderr, "xhci: ERDP out of bounds: "TARGET_FMT_plx"\n", erdp);
653         fprintf(stderr, "xhci: ER at "TARGET_FMT_plx" len %d\n",
654                 xhci->er_start, xhci->er_size);
655         xhci_die(xhci);
656         return;
657     }
658 
659     dp_idx = (erdp - xhci->er_start) / TRB_SIZE;
660     assert(dp_idx < xhci->er_size);
661 
662     if ((xhci->er_ep_idx+1) % xhci->er_size == dp_idx) {
663         DPRINTF("xhci_event(): ER full, queueing\n");
664 #ifndef ER_FULL_HACK
665         XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
666         xhci_write_event(xhci, &full);
667 #endif
668         xhci->er_full = 1;
669         if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) {
670             fprintf(stderr, "xhci: event queue full, dropping event!\n");
671             return;
672         }
673         xhci->ev_buffer[xhci->ev_buffer_put++] = *event;
674         if (xhci->ev_buffer_put == EV_QUEUE) {
675             xhci->ev_buffer_put = 0;
676         }
677     } else {
678         xhci_write_event(xhci, event);
679     }
680 
681     xhci->erdp_low |= ERDP_EHB;
682     xhci->iman |= IMAN_IP;
683     xhci->usbsts |= USBSTS_EINT;
684 
685     xhci_irq_update(xhci);
686 }
687 
688 static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring,
689                            target_phys_addr_t base)
690 {
691     ring->base = base;
692     ring->dequeue = base;
693     ring->ccs = 1;
694 }
695 
696 static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb,
697                                target_phys_addr_t *addr)
698 {
699     while (1) {
700         TRBType type;
701         cpu_physical_memory_read(ring->dequeue, (uint8_t *) trb, TRB_SIZE);
702         trb->addr = ring->dequeue;
703         trb->ccs = ring->ccs;
704         le64_to_cpus(&trb->parameter);
705         le32_to_cpus(&trb->status);
706         le32_to_cpus(&trb->control);
707 
708         DPRINTF("xhci: TRB fetched [" TARGET_FMT_plx "]: "
709                 "%016" PRIx64 " %08x %08x %s\n",
710                 ring->dequeue, trb->parameter, trb->status, trb->control,
711                 trb_name(trb));
712 
713         if ((trb->control & TRB_C) != ring->ccs) {
714             return 0;
715         }
716 
717         type = TRB_TYPE(*trb);
718 
719         if (type != TR_LINK) {
720             if (addr) {
721                 *addr = ring->dequeue;
722             }
723             ring->dequeue += TRB_SIZE;
724             return type;
725         } else {
726             ring->dequeue = xhci_mask64(trb->parameter);
727             if (trb->control & TRB_LK_TC) {
728                 ring->ccs = !ring->ccs;
729             }
730         }
731     }
732 }
733 
734 static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring)
735 {
736     XHCITRB trb;
737     int length = 0;
738     target_phys_addr_t dequeue = ring->dequeue;
739     bool ccs = ring->ccs;
740     /* hack to bundle together the two/three TDs that make a setup transfer */
741     bool control_td_set = 0;
742 
743     while (1) {
744         TRBType type;
745         cpu_physical_memory_read(dequeue, (uint8_t *) &trb, TRB_SIZE);
746         le64_to_cpus(&trb.parameter);
747         le32_to_cpus(&trb.status);
748         le32_to_cpus(&trb.control);
749 
750         DPRINTF("xhci: TRB peeked [" TARGET_FMT_plx "]: "
751                 "%016" PRIx64 " %08x %08x\n",
752                 dequeue, trb.parameter, trb.status, trb.control);
753 
754         if ((trb.control & TRB_C) != ccs) {
755             return -length;
756         }
757 
758         type = TRB_TYPE(trb);
759 
760         if (type == TR_LINK) {
761             dequeue = xhci_mask64(trb.parameter);
762             if (trb.control & TRB_LK_TC) {
763                 ccs = !ccs;
764             }
765             continue;
766         }
767 
768         length += 1;
769         dequeue += TRB_SIZE;
770 
771         if (type == TR_SETUP) {
772             control_td_set = 1;
773         } else if (type == TR_STATUS) {
774             control_td_set = 0;
775         }
776 
777         if (!control_td_set && !(trb.control & TRB_TR_CH)) {
778             return length;
779         }
780     }
781 }
782 
783 static void xhci_er_reset(XHCIState *xhci)
784 {
785     XHCIEvRingSeg seg;
786 
787     /* cache the (sole) event ring segment location */
788     if (xhci->erstsz != 1) {
789         fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", xhci->erstsz);
790         xhci_die(xhci);
791         return;
792     }
793     target_phys_addr_t erstba = xhci_addr64(xhci->erstba_low, xhci->erstba_high);
794     cpu_physical_memory_read(erstba, (uint8_t *) &seg, sizeof(seg));
795     le32_to_cpus(&seg.addr_low);
796     le32_to_cpus(&seg.addr_high);
797     le32_to_cpus(&seg.size);
798     if (seg.size < 16 || seg.size > 4096) {
799         fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size);
800         xhci_die(xhci);
801         return;
802     }
803     xhci->er_start = xhci_addr64(seg.addr_low, seg.addr_high);
804     xhci->er_size = seg.size;
805 
806     xhci->er_ep_idx = 0;
807     xhci->er_pcs = 1;
808     xhci->er_full = 0;
809 
810     DPRINTF("xhci: event ring:" TARGET_FMT_plx " [%d]\n",
811             xhci->er_start, xhci->er_size);
812 }
813 
814 static void xhci_run(XHCIState *xhci)
815 {
816     DPRINTF("xhci_run()\n");
817 
818     xhci->usbsts &= ~USBSTS_HCH;
819 }
820 
821 static void xhci_stop(XHCIState *xhci)
822 {
823     DPRINTF("xhci_stop()\n");
824     xhci->usbsts |= USBSTS_HCH;
825     xhci->crcr_low &= ~CRCR_CRR;
826 }
827 
828 static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx,
829                               uint32_t state)
830 {
831     uint32_t ctx[5];
832     if (epctx->state == state) {
833         return;
834     }
835 
836     cpu_physical_memory_read(epctx->pctx, (uint8_t *) ctx, sizeof(ctx));
837     ctx[0] &= ~EP_STATE_MASK;
838     ctx[0] |= state;
839     ctx[2] = epctx->ring.dequeue | epctx->ring.ccs;
840     ctx[3] = (epctx->ring.dequeue >> 16) >> 16;
841     DPRINTF("xhci: set epctx: " TARGET_FMT_plx " state=%d dequeue=%08x%08x\n",
842             epctx->pctx, state, ctx[3], ctx[2]);
843     cpu_physical_memory_write(epctx->pctx, (uint8_t *) ctx, sizeof(ctx));
844     epctx->state = state;
845 }
846 
847 static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid,
848                                unsigned int epid, target_phys_addr_t pctx,
849                                uint32_t *ctx)
850 {
851     XHCISlot *slot;
852     XHCIEPContext *epctx;
853     target_phys_addr_t dequeue;
854     int i;
855 
856     assert(slotid >= 1 && slotid <= MAXSLOTS);
857     assert(epid >= 1 && epid <= 31);
858 
859     DPRINTF("xhci_enable_ep(%d, %d)\n", slotid, epid);
860 
861     slot = &xhci->slots[slotid-1];
862     if (slot->eps[epid-1]) {
863         fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid);
864         return CC_TRB_ERROR;
865     }
866 
867     epctx = g_malloc(sizeof(XHCIEPContext));
868     memset(epctx, 0, sizeof(XHCIEPContext));
869 
870     slot->eps[epid-1] = epctx;
871 
872     dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]);
873     xhci_ring_init(xhci, &epctx->ring, dequeue);
874     epctx->ring.ccs = ctx[2] & 1;
875 
876     epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK;
877     DPRINTF("xhci: endpoint %d.%d type is %d\n", epid/2, epid%2, epctx->type);
878     epctx->pctx = pctx;
879     epctx->max_psize = ctx[1]>>16;
880     epctx->max_psize *= 1+((ctx[1]>>8)&0xff);
881     epctx->has_bg = false;
882     if (epctx->type == ET_ISO_IN) {
883         epctx->has_bg = true;
884     }
885     DPRINTF("xhci: endpoint %d.%d max transaction (burst) size is %d\n",
886             epid/2, epid%2, epctx->max_psize);
887     for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) {
888         usb_packet_init(&epctx->transfers[i].packet);
889     }
890 
891     epctx->state = EP_RUNNING;
892     ctx[0] &= ~EP_STATE_MASK;
893     ctx[0] |= EP_RUNNING;
894 
895     return CC_SUCCESS;
896 }
897 
898 static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid,
899                                unsigned int epid)
900 {
901     XHCISlot *slot;
902     XHCIEPContext *epctx;
903     int i, xferi, killed = 0;
904     assert(slotid >= 1 && slotid <= MAXSLOTS);
905     assert(epid >= 1 && epid <= 31);
906 
907     DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid);
908 
909     slot = &xhci->slots[slotid-1];
910 
911     if (!slot->eps[epid-1]) {
912         return 0;
913     }
914 
915     epctx = slot->eps[epid-1];
916 
917     xferi = epctx->next_xfer;
918     for (i = 0; i < TD_QUEUE; i++) {
919         XHCITransfer *t = &epctx->transfers[xferi];
920         if (t->running_async) {
921             usb_cancel_packet(&t->packet);
922             t->running_async = 0;
923             t->cancelled = 1;
924             DPRINTF("xhci: cancelling transfer %d, waiting for it to complete...\n", i);
925             killed++;
926         }
927         if (t->running_retry) {
928             t->running_retry = 0;
929             epctx->retry = NULL;
930         }
931         if (t->backgrounded) {
932             t->backgrounded = 0;
933         }
934         if (t->trbs) {
935             g_free(t->trbs);
936         }
937         if (t->data) {
938             g_free(t->data);
939         }
940 
941         t->trbs = NULL;
942         t->data = NULL;
943         t->trb_count = t->trb_alloced = 0;
944         t->data_length = t->data_alloced = 0;
945         xferi = (xferi + 1) % TD_QUEUE;
946     }
947     if (epctx->has_bg) {
948         xferi = epctx->next_bg;
949         for (i = 0; i < BG_XFERS; i++) {
950             XHCITransfer *t = &epctx->bg_transfers[xferi];
951             if (t->running_async) {
952                 usb_cancel_packet(&t->packet);
953                 t->running_async = 0;
954                 t->cancelled = 1;
955                 DPRINTF("xhci: cancelling bg transfer %d, waiting for it to complete...\n", i);
956                 killed++;
957             }
958             if (t->data) {
959                 g_free(t->data);
960             }
961 
962             t->data = NULL;
963             xferi = (xferi + 1) % BG_XFERS;
964         }
965     }
966     return killed;
967 }
968 
969 static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid,
970                                unsigned int epid)
971 {
972     XHCISlot *slot;
973     XHCIEPContext *epctx;
974 
975     assert(slotid >= 1 && slotid <= MAXSLOTS);
976     assert(epid >= 1 && epid <= 31);
977 
978     DPRINTF("xhci_disable_ep(%d, %d)\n", slotid, epid);
979 
980     slot = &xhci->slots[slotid-1];
981 
982     if (!slot->eps[epid-1]) {
983         DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid);
984         return CC_SUCCESS;
985     }
986 
987     xhci_ep_nuke_xfers(xhci, slotid, epid);
988 
989     epctx = slot->eps[epid-1];
990 
991     xhci_set_ep_state(xhci, epctx, EP_DISABLED);
992 
993     g_free(epctx);
994     slot->eps[epid-1] = NULL;
995 
996     return CC_SUCCESS;
997 }
998 
999 static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid,
1000                              unsigned int epid)
1001 {
1002     XHCISlot *slot;
1003     XHCIEPContext *epctx;
1004 
1005     DPRINTF("xhci_stop_ep(%d, %d)\n", slotid, epid);
1006 
1007     assert(slotid >= 1 && slotid <= MAXSLOTS);
1008 
1009     if (epid < 1 || epid > 31) {
1010         fprintf(stderr, "xhci: bad ep %d\n", epid);
1011         return CC_TRB_ERROR;
1012     }
1013 
1014     slot = &xhci->slots[slotid-1];
1015 
1016     if (!slot->eps[epid-1]) {
1017         DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1018         return CC_EP_NOT_ENABLED_ERROR;
1019     }
1020 
1021     if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1022         fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, "
1023                 "data might be lost\n");
1024     }
1025 
1026     epctx = slot->eps[epid-1];
1027 
1028     xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1029 
1030     return CC_SUCCESS;
1031 }
1032 
1033 static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid,
1034                               unsigned int epid)
1035 {
1036     XHCISlot *slot;
1037     XHCIEPContext *epctx;
1038     USBDevice *dev;
1039 
1040     assert(slotid >= 1 && slotid <= MAXSLOTS);
1041 
1042     DPRINTF("xhci_reset_ep(%d, %d)\n", slotid, epid);
1043 
1044     if (epid < 1 || epid > 31) {
1045         fprintf(stderr, "xhci: bad ep %d\n", epid);
1046         return CC_TRB_ERROR;
1047     }
1048 
1049     slot = &xhci->slots[slotid-1];
1050 
1051     if (!slot->eps[epid-1]) {
1052         DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1053         return CC_EP_NOT_ENABLED_ERROR;
1054     }
1055 
1056     epctx = slot->eps[epid-1];
1057 
1058     if (epctx->state != EP_HALTED) {
1059         fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n",
1060                 epid, epctx->state);
1061         return CC_CONTEXT_STATE_ERROR;
1062     }
1063 
1064     if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1065         fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, "
1066                 "data might be lost\n");
1067     }
1068 
1069     uint8_t ep = epid>>1;
1070 
1071     if (epid & 1) {
1072         ep |= 0x80;
1073     }
1074 
1075     dev = xhci->ports[xhci->slots[slotid-1].port-1].port.dev;
1076     if (!dev) {
1077         return CC_USB_TRANSACTION_ERROR;
1078     }
1079 
1080     xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1081 
1082     return CC_SUCCESS;
1083 }
1084 
1085 static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid,
1086                                     unsigned int epid, uint64_t pdequeue)
1087 {
1088     XHCISlot *slot;
1089     XHCIEPContext *epctx;
1090     target_phys_addr_t dequeue;
1091 
1092     assert(slotid >= 1 && slotid <= MAXSLOTS);
1093 
1094     if (epid < 1 || epid > 31) {
1095         fprintf(stderr, "xhci: bad ep %d\n", epid);
1096         return CC_TRB_ERROR;
1097     }
1098 
1099     DPRINTF("xhci_set_ep_dequeue(%d, %d, %016"PRIx64")\n", slotid, epid, pdequeue);
1100     dequeue = xhci_mask64(pdequeue);
1101 
1102     slot = &xhci->slots[slotid-1];
1103 
1104     if (!slot->eps[epid-1]) {
1105         DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1106         return CC_EP_NOT_ENABLED_ERROR;
1107     }
1108 
1109     epctx = slot->eps[epid-1];
1110 
1111 
1112     if (epctx->state != EP_STOPPED) {
1113         fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid);
1114         return CC_CONTEXT_STATE_ERROR;
1115     }
1116 
1117     xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF);
1118     epctx->ring.ccs = dequeue & 1;
1119 
1120     xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1121 
1122     return CC_SUCCESS;
1123 }
1124 
1125 static int xhci_xfer_data(XHCITransfer *xfer, uint8_t *data,
1126                           unsigned int length, bool in_xfer, bool out_xfer,
1127                           bool report)
1128 {
1129     int i;
1130     uint32_t edtla = 0;
1131     unsigned int transferred = 0;
1132     unsigned int left = length;
1133     bool reported = 0;
1134     bool shortpkt = 0;
1135     XHCIEvent event = {ER_TRANSFER, CC_SUCCESS};
1136     XHCIState *xhci = xfer->xhci;
1137 
1138     DPRINTF("xhci_xfer_data(len=%d, in_xfer=%d, out_xfer=%d, report=%d)\n",
1139             length, in_xfer, out_xfer, report);
1140 
1141     assert(!(in_xfer && out_xfer));
1142 
1143     for (i = 0; i < xfer->trb_count; i++) {
1144         XHCITRB *trb = &xfer->trbs[i];
1145         target_phys_addr_t addr;
1146         unsigned int chunk = 0;
1147 
1148         switch (TRB_TYPE(*trb)) {
1149         case TR_DATA:
1150             if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) {
1151                 fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n");
1152                 xhci_die(xhci);
1153                 return transferred;
1154             }
1155             /* fallthrough */
1156         case TR_NORMAL:
1157         case TR_ISOCH:
1158             addr = xhci_mask64(trb->parameter);
1159             chunk = trb->status & 0x1ffff;
1160             if (chunk > left) {
1161                 chunk = left;
1162                 shortpkt = 1;
1163             }
1164             if (in_xfer || out_xfer) {
1165                 if (trb->control & TRB_TR_IDT) {
1166                     uint64_t idata;
1167                     if (chunk > 8 || in_xfer) {
1168                         fprintf(stderr, "xhci: invalid immediate data TRB\n");
1169                         xhci_die(xhci);
1170                         return transferred;
1171                     }
1172                     idata = le64_to_cpu(trb->parameter);
1173                     memcpy(data, &idata, chunk);
1174                 } else {
1175                     DPRINTF("xhci_xfer_data: r/w(%d) %d bytes at "
1176                             TARGET_FMT_plx "\n", in_xfer, chunk, addr);
1177                     if (in_xfer) {
1178                         cpu_physical_memory_write(addr, data, chunk);
1179                     } else {
1180                         cpu_physical_memory_read(addr, data, chunk);
1181                     }
1182 #ifdef DEBUG_DATA
1183                     unsigned int count = chunk;
1184                     int i;
1185                     if (count > 16) {
1186                         count = 16;
1187                     }
1188                     DPRINTF(" ::");
1189                     for (i = 0; i < count; i++) {
1190                         DPRINTF(" %02x", data[i]);
1191                     }
1192                     DPRINTF("\n");
1193 #endif
1194                 }
1195             }
1196             left -= chunk;
1197             data += chunk;
1198             edtla += chunk;
1199             transferred += chunk;
1200             break;
1201         case TR_STATUS:
1202             reported = 0;
1203             shortpkt = 0;
1204             break;
1205         }
1206 
1207         if (report && !reported && (trb->control & TRB_TR_IOC ||
1208             (shortpkt && (trb->control & TRB_TR_ISP)))) {
1209             event.slotid = xfer->slotid;
1210             event.epid = xfer->epid;
1211             event.length = (trb->status & 0x1ffff) - chunk;
1212             event.flags = 0;
1213             event.ptr = trb->addr;
1214             if (xfer->status == CC_SUCCESS) {
1215                 event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS;
1216             } else {
1217                 event.ccode = xfer->status;
1218             }
1219             if (TRB_TYPE(*trb) == TR_EVDATA) {
1220                 event.ptr = trb->parameter;
1221                 event.flags |= TRB_EV_ED;
1222                 event.length = edtla & 0xffffff;
1223                 DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length);
1224                 edtla = 0;
1225             }
1226             xhci_event(xhci, &event);
1227             reported = 1;
1228         }
1229     }
1230     return transferred;
1231 }
1232 
1233 static void xhci_stall_ep(XHCITransfer *xfer)
1234 {
1235     XHCIState *xhci = xfer->xhci;
1236     XHCISlot *slot = &xhci->slots[xfer->slotid-1];
1237     XHCIEPContext *epctx = slot->eps[xfer->epid-1];
1238 
1239     epctx->ring.dequeue = xfer->trbs[0].addr;
1240     epctx->ring.ccs = xfer->trbs[0].ccs;
1241     xhci_set_ep_state(xhci, epctx, EP_HALTED);
1242     DPRINTF("xhci: stalled slot %d ep %d\n", xfer->slotid, xfer->epid);
1243     DPRINTF("xhci: will continue at "TARGET_FMT_plx"\n", epctx->ring.dequeue);
1244 }
1245 
1246 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer,
1247                        XHCIEPContext *epctx);
1248 
1249 static void xhci_bg_update(XHCIState *xhci, XHCIEPContext *epctx)
1250 {
1251     if (epctx->bg_updating) {
1252         return;
1253     }
1254     DPRINTF("xhci_bg_update(%p, %p)\n", xhci, epctx);
1255     assert(epctx->has_bg);
1256     DPRINTF("xhci: fg=%d bg=%d\n", epctx->comp_xfer, epctx->next_bg);
1257     epctx->bg_updating = 1;
1258     while (epctx->transfers[epctx->comp_xfer].backgrounded &&
1259            epctx->bg_transfers[epctx->next_bg].complete) {
1260         XHCITransfer *fg = &epctx->transfers[epctx->comp_xfer];
1261         XHCITransfer *bg = &epctx->bg_transfers[epctx->next_bg];
1262 #if 0
1263         DPRINTF("xhci: completing fg %d from bg %d.%d (stat: %d)\n",
1264                 epctx->comp_xfer, epctx->next_bg, bg->cur_pkt,
1265                 bg->usbxfer->iso_packet_desc[bg->cur_pkt].status
1266                );
1267 #endif
1268         assert(epctx->type == ET_ISO_IN);
1269         assert(bg->iso_xfer);
1270         assert(bg->in_xfer);
1271         uint8_t *p = bg->data + bg->cur_pkt * bg->pktsize;
1272 #if 0
1273         int len = bg->usbxfer->iso_packet_desc[bg->cur_pkt].actual_length;
1274         fg->status = libusb_to_ccode(bg->usbxfer->iso_packet_desc[bg->cur_pkt].status);
1275 #else
1276         int len = 0;
1277         FIXME();
1278 #endif
1279         fg->complete = 1;
1280         fg->backgrounded = 0;
1281 
1282         if (fg->status == CC_STALL_ERROR) {
1283             xhci_stall_ep(fg);
1284         }
1285 
1286         xhci_xfer_data(fg, p, len, 1, 0, 1);
1287 
1288         epctx->comp_xfer++;
1289         if (epctx->comp_xfer == TD_QUEUE) {
1290             epctx->comp_xfer = 0;
1291         }
1292         DPRINTF("next fg xfer: %d\n", epctx->comp_xfer);
1293         bg->cur_pkt++;
1294         if (bg->cur_pkt == bg->pkts) {
1295             bg->complete = 0;
1296             if (xhci_submit(xhci, bg, epctx) < 0) {
1297                 fprintf(stderr, "xhci: bg resubmit failed\n");
1298             }
1299             epctx->next_bg++;
1300             if (epctx->next_bg == BG_XFERS) {
1301                 epctx->next_bg = 0;
1302             }
1303             DPRINTF("next bg xfer: %d\n", epctx->next_bg);
1304 
1305         xhci_kick_ep(xhci, fg->slotid, fg->epid);
1306         }
1307     }
1308     epctx->bg_updating = 0;
1309 }
1310 
1311 #if 0
1312 static void xhci_xfer_cb(struct libusb_transfer *transfer)
1313 {
1314     XHCIState *xhci;
1315     XHCITransfer *xfer;
1316 
1317     xfer = (XHCITransfer *)transfer->user_data;
1318     xhci = xfer->xhci;
1319 
1320     DPRINTF("xhci_xfer_cb(slot=%d, ep=%d, status=%d)\n", xfer->slotid,
1321             xfer->epid, transfer->status);
1322 
1323     assert(xfer->slotid >= 1 && xfer->slotid <= MAXSLOTS);
1324     assert(xfer->epid >= 1 && xfer->epid <= 31);
1325 
1326     if (xfer->cancelled) {
1327         DPRINTF("xhci: transfer cancelled, not reporting anything\n");
1328         xfer->running = 0;
1329         return;
1330     }
1331 
1332     XHCIEPContext *epctx;
1333     XHCISlot *slot;
1334     slot = &xhci->slots[xfer->slotid-1];
1335     assert(slot->eps[xfer->epid-1]);
1336     epctx = slot->eps[xfer->epid-1];
1337 
1338     if (xfer->bg_xfer) {
1339         DPRINTF("xhci: background transfer, updating\n");
1340         xfer->complete = 1;
1341         xfer->running = 0;
1342         xhci_bg_update(xhci, epctx);
1343         return;
1344     }
1345 
1346     if (xfer->iso_xfer) {
1347         transfer->status = transfer->iso_packet_desc[0].status;
1348         transfer->actual_length = transfer->iso_packet_desc[0].actual_length;
1349     }
1350 
1351     xfer->status = libusb_to_ccode(transfer->status);
1352 
1353     xfer->complete = 1;
1354     xfer->running = 0;
1355 
1356     if (transfer->status == LIBUSB_TRANSFER_STALL)
1357         xhci_stall_ep(xhci, epctx, xfer);
1358 
1359     DPRINTF("xhci: transfer actual length = %d\n", transfer->actual_length);
1360 
1361     if (xfer->in_xfer) {
1362         if (xfer->epid == 1) {
1363             xhci_xfer_data(xhci, xfer, xfer->data + 8,
1364                            transfer->actual_length, 1, 0, 1);
1365         } else {
1366             xhci_xfer_data(xhci, xfer, xfer->data,
1367                            transfer->actual_length, 1, 0, 1);
1368         }
1369     } else {
1370         xhci_xfer_data(xhci, xfer, NULL, transfer->actual_length, 0, 0, 1);
1371     }
1372 
1373     xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1374 }
1375 
1376 static int xhci_hle_control(XHCIState *xhci, XHCITransfer *xfer,
1377                             uint8_t bmRequestType, uint8_t bRequest,
1378                             uint16_t wValue, uint16_t wIndex, uint16_t wLength)
1379 {
1380     uint16_t type_req = (bmRequestType << 8) | bRequest;
1381 
1382     switch (type_req) {
1383         case 0x0000 | USB_REQ_SET_CONFIGURATION:
1384             DPRINTF("xhci: HLE switch configuration\n");
1385             return xhci_switch_config(xhci, xfer->slotid, wValue) == 0;
1386         case 0x0100 | USB_REQ_SET_INTERFACE:
1387             DPRINTF("xhci: HLE set interface altsetting\n");
1388             return xhci_set_iface_alt(xhci, xfer->slotid, wIndex, wValue) == 0;
1389         case 0x0200 | USB_REQ_CLEAR_FEATURE:
1390             if (wValue == 0) { // endpoint halt
1391                 DPRINTF("xhci: HLE clear halt\n");
1392                 return xhci_clear_halt(xhci, xfer->slotid, wIndex);
1393             }
1394         case 0x0000 | USB_REQ_SET_ADDRESS:
1395             fprintf(stderr, "xhci: warn: illegal SET_ADDRESS request\n");
1396             return 0;
1397         default:
1398             return 0;
1399     }
1400 }
1401 #endif
1402 
1403 static int xhci_setup_packet(XHCITransfer *xfer, USBDevice *dev)
1404 {
1405     USBEndpoint *ep;
1406     int dir;
1407 
1408     dir = xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT;
1409     ep = usb_ep_get(dev, dir, xfer->epid >> 1);
1410     usb_packet_setup(&xfer->packet, dir, ep);
1411     usb_packet_addbuf(&xfer->packet, xfer->data, xfer->data_length);
1412     DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n",
1413             xfer->packet.pid, dev->addr, ep->nr);
1414     return 0;
1415 }
1416 
1417 static int xhci_complete_packet(XHCITransfer *xfer, int ret)
1418 {
1419     if (ret == USB_RET_ASYNC) {
1420         xfer->running_async = 1;
1421         xfer->running_retry = 0;
1422         xfer->complete = 0;
1423         xfer->cancelled = 0;
1424         return 0;
1425     } else if (ret == USB_RET_NAK) {
1426         xfer->running_async = 0;
1427         xfer->running_retry = 1;
1428         xfer->complete = 0;
1429         xfer->cancelled = 0;
1430         return 0;
1431     } else {
1432         xfer->running_async = 0;
1433         xfer->running_retry = 0;
1434         xfer->complete = 1;
1435     }
1436 
1437     if (ret >= 0) {
1438         xfer->status = CC_SUCCESS;
1439         xhci_xfer_data(xfer, xfer->data, ret, xfer->in_xfer, 0, 1);
1440         return 0;
1441     }
1442 
1443     /* error */
1444     switch (ret) {
1445     case USB_RET_NODEV:
1446         xfer->status = CC_USB_TRANSACTION_ERROR;
1447         xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1);
1448         xhci_stall_ep(xfer);
1449         break;
1450     case USB_RET_STALL:
1451         xfer->status = CC_STALL_ERROR;
1452         xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1);
1453         xhci_stall_ep(xfer);
1454         break;
1455     default:
1456         fprintf(stderr, "%s: FIXME: ret = %d\n", __FUNCTION__, ret);
1457         FIXME();
1458     }
1459     return 0;
1460 }
1461 
1462 static USBDevice *xhci_find_device(XHCIPort *port, uint8_t addr)
1463 {
1464     if (!(port->portsc & PORTSC_PED)) {
1465         return NULL;
1466     }
1467     return usb_find_device(&port->port, addr);
1468 }
1469 
1470 static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer)
1471 {
1472     XHCITRB *trb_setup, *trb_status;
1473     uint8_t bmRequestType;
1474     uint16_t wLength;
1475     XHCIPort *port;
1476     USBDevice *dev;
1477     int ret;
1478 
1479     DPRINTF("xhci_fire_ctl_transfer(slot=%d)\n", xfer->slotid);
1480 
1481     trb_setup = &xfer->trbs[0];
1482     trb_status = &xfer->trbs[xfer->trb_count-1];
1483 
1484     /* at most one Event Data TRB allowed after STATUS */
1485     if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) {
1486         trb_status--;
1487     }
1488 
1489     /* do some sanity checks */
1490     if (TRB_TYPE(*trb_setup) != TR_SETUP) {
1491         fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n",
1492                 TRB_TYPE(*trb_setup));
1493         return -1;
1494     }
1495     if (TRB_TYPE(*trb_status) != TR_STATUS) {
1496         fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n",
1497                 TRB_TYPE(*trb_status));
1498         return -1;
1499     }
1500     if (!(trb_setup->control & TRB_TR_IDT)) {
1501         fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n");
1502         return -1;
1503     }
1504     if ((trb_setup->status & 0x1ffff) != 8) {
1505         fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n",
1506                 (trb_setup->status & 0x1ffff));
1507         return -1;
1508     }
1509 
1510     bmRequestType = trb_setup->parameter;
1511     wLength = trb_setup->parameter >> 48;
1512 
1513     if (xfer->data && xfer->data_alloced < wLength) {
1514         xfer->data_alloced = 0;
1515         g_free(xfer->data);
1516         xfer->data = NULL;
1517     }
1518     if (!xfer->data) {
1519         DPRINTF("xhci: alloc %d bytes data\n", wLength);
1520         xfer->data = g_malloc(wLength+1);
1521         xfer->data_alloced = wLength;
1522     }
1523     xfer->data_length = wLength;
1524 
1525     port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1];
1526     dev = xhci_find_device(port, xhci->slots[xfer->slotid-1].devaddr);
1527     if (!dev) {
1528         fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid,
1529                 xhci->slots[xfer->slotid-1].port);
1530         return -1;
1531     }
1532 
1533     xfer->in_xfer = bmRequestType & USB_DIR_IN;
1534     xfer->iso_xfer = false;
1535 
1536     xhci_setup_packet(xfer, dev);
1537     xfer->packet.parameter = trb_setup->parameter;
1538     if (!xfer->in_xfer) {
1539         xhci_xfer_data(xfer, xfer->data, wLength, 0, 1, 0);
1540     }
1541 
1542     ret = usb_handle_packet(dev, &xfer->packet);
1543 
1544     xhci_complete_packet(xfer, ret);
1545     if (!xfer->running_async && !xfer->running_retry) {
1546         xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1547     }
1548     return 0;
1549 }
1550 
1551 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1552 {
1553     XHCIPort *port;
1554     USBDevice *dev;
1555     int ret;
1556 
1557     DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
1558 
1559     xfer->in_xfer = epctx->type>>2;
1560 
1561     if (xfer->data && xfer->data_alloced < xfer->data_length) {
1562         xfer->data_alloced = 0;
1563         g_free(xfer->data);
1564         xfer->data = NULL;
1565     }
1566     if (!xfer->data && xfer->data_length) {
1567         DPRINTF("xhci: alloc %d bytes data\n", xfer->data_length);
1568         xfer->data = g_malloc(xfer->data_length);
1569         xfer->data_alloced = xfer->data_length;
1570     }
1571     if (epctx->type == ET_ISO_IN || epctx->type == ET_ISO_OUT) {
1572         if (!xfer->bg_xfer) {
1573             xfer->pkts = 1;
1574         }
1575     } else {
1576         xfer->pkts = 0;
1577     }
1578 
1579     port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1];
1580     dev = xhci_find_device(port, xhci->slots[xfer->slotid-1].devaddr);
1581     if (!dev) {
1582         fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid,
1583                 xhci->slots[xfer->slotid-1].port);
1584         return -1;
1585     }
1586 
1587     xhci_setup_packet(xfer, dev);
1588 
1589     switch(epctx->type) {
1590     case ET_INTR_OUT:
1591     case ET_INTR_IN:
1592     case ET_BULK_OUT:
1593     case ET_BULK_IN:
1594         break;
1595     case ET_ISO_OUT:
1596     case ET_ISO_IN:
1597         FIXME();
1598         break;
1599     default:
1600         fprintf(stderr, "xhci: unknown or unhandled EP "
1601                 "(type %d, in %d, ep %02x)\n",
1602                 epctx->type, xfer->in_xfer, xfer->epid);
1603         return -1;
1604     }
1605 
1606     if (!xfer->in_xfer) {
1607         xhci_xfer_data(xfer, xfer->data, xfer->data_length, 0, 1, 0);
1608     }
1609     ret = usb_handle_packet(dev, &xfer->packet);
1610 
1611     xhci_complete_packet(xfer, ret);
1612     if (!xfer->running_async && !xfer->running_retry) {
1613         xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1614     }
1615     return 0;
1616 }
1617 
1618 static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1619 {
1620     int i;
1621     unsigned int length = 0;
1622     XHCITRB *trb;
1623 
1624     DPRINTF("xhci_fire_transfer(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
1625 
1626     for (i = 0; i < xfer->trb_count; i++) {
1627         trb = &xfer->trbs[i];
1628         if (TRB_TYPE(*trb) == TR_NORMAL || TRB_TYPE(*trb) == TR_ISOCH) {
1629             length += trb->status & 0x1ffff;
1630         }
1631     }
1632     DPRINTF("xhci: total TD length=%d\n", length);
1633 
1634     if (!epctx->has_bg) {
1635         xfer->data_length = length;
1636         xfer->backgrounded = 0;
1637         return xhci_submit(xhci, xfer, epctx);
1638     } else {
1639         if (!epctx->bg_running) {
1640             for (i = 0; i < BG_XFERS; i++) {
1641                 XHCITransfer *t = &epctx->bg_transfers[i];
1642                 t->xhci = xhci;
1643                 t->epid = xfer->epid;
1644                 t->slotid = xfer->slotid;
1645                 t->pkts = BG_PKTS;
1646                 t->pktsize = epctx->max_psize;
1647                 t->data_length = t->pkts * t->pktsize;
1648                 t->bg_xfer = 1;
1649                 if (xhci_submit(xhci, t, epctx) < 0) {
1650                     fprintf(stderr, "xhci: bg submit failed\n");
1651                     return -1;
1652                 }
1653             }
1654             epctx->bg_running = 1;
1655         }
1656         xfer->backgrounded = 1;
1657         xhci_bg_update(xhci, epctx);
1658         return 0;
1659     }
1660 }
1661 
1662 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid)
1663 {
1664     XHCIEPContext *epctx;
1665     int length;
1666     int i;
1667 
1668     assert(slotid >= 1 && slotid <= MAXSLOTS);
1669     assert(epid >= 1 && epid <= 31);
1670     DPRINTF("xhci_kick_ep(%d, %d)\n", slotid, epid);
1671 
1672     if (!xhci->slots[slotid-1].enabled) {
1673         fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid);
1674         return;
1675     }
1676     epctx = xhci->slots[slotid-1].eps[epid-1];
1677     if (!epctx) {
1678         fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n",
1679                 epid, slotid);
1680         return;
1681     }
1682 
1683     if (epctx->retry) {
1684         /* retry nak'ed transfer */
1685         XHCITransfer *xfer = epctx->retry;
1686         int result;
1687 
1688         DPRINTF("xhci: retry nack'ed transfer ...\n");
1689         assert(xfer->running_retry);
1690         xhci_setup_packet(xfer, xfer->packet.ep->dev);
1691         result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1692         if (result == USB_RET_NAK) {
1693             DPRINTF("xhci: ... xfer still nacked\n");
1694             return;
1695         }
1696         DPRINTF("xhci: ... result %d\n", result);
1697         xhci_complete_packet(xfer, result);
1698         assert(!xfer->running_retry);
1699         epctx->retry = NULL;
1700     }
1701 
1702     if (epctx->state == EP_HALTED) {
1703         DPRINTF("xhci: ep halted, not running schedule\n");
1704         return;
1705     }
1706 
1707     xhci_set_ep_state(xhci, epctx, EP_RUNNING);
1708 
1709     while (1) {
1710         XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer];
1711         if (xfer->running_async || xfer->running_retry || xfer->backgrounded) {
1712             DPRINTF("xhci: ep is busy (#%d,%d,%d,%d)\n",
1713                     epctx->next_xfer, xfer->running_async,
1714                     xfer->running_retry, xfer->backgrounded);
1715             break;
1716         } else {
1717             DPRINTF("xhci: ep: using #%d\n", epctx->next_xfer);
1718         }
1719         length = xhci_ring_chain_length(xhci, &epctx->ring);
1720         if (length < 0) {
1721             DPRINTF("xhci: incomplete TD (%d TRBs)\n", -length);
1722             break;
1723         } else if (length == 0) {
1724             break;
1725         }
1726         DPRINTF("xhci: fetching %d-TRB TD\n", length);
1727         if (xfer->trbs && xfer->trb_alloced < length) {
1728             xfer->trb_count = 0;
1729             xfer->trb_alloced = 0;
1730             g_free(xfer->trbs);
1731             xfer->trbs = NULL;
1732         }
1733         if (!xfer->trbs) {
1734             xfer->trbs = g_malloc(sizeof(XHCITRB) * length);
1735             xfer->trb_alloced = length;
1736         }
1737         xfer->trb_count = length;
1738 
1739         for (i = 0; i < length; i++) {
1740             assert(xhci_ring_fetch(xhci, &epctx->ring, &xfer->trbs[i], NULL));
1741         }
1742         xfer->xhci = xhci;
1743         xfer->epid = epid;
1744         xfer->slotid = slotid;
1745 
1746         if (epid == 1) {
1747             if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) {
1748                 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1749             } else {
1750                 fprintf(stderr, "xhci: error firing CTL transfer\n");
1751             }
1752         } else {
1753             if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) {
1754                 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1755             } else {
1756                 fprintf(stderr, "xhci: error firing data transfer\n");
1757             }
1758         }
1759 
1760         if (epctx->state == EP_HALTED) {
1761             DPRINTF("xhci: ep halted, stopping schedule\n");
1762             break;
1763         }
1764         if (xfer->running_retry) {
1765             DPRINTF("xhci: xfer nacked, stopping schedule\n");
1766             epctx->retry = xfer;
1767             break;
1768         }
1769     }
1770 }
1771 
1772 static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid)
1773 {
1774     assert(slotid >= 1 && slotid <= MAXSLOTS);
1775     DPRINTF("xhci_enable_slot(%d)\n", slotid);
1776     xhci->slots[slotid-1].enabled = 1;
1777     xhci->slots[slotid-1].port = 0;
1778     memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31);
1779 
1780     return CC_SUCCESS;
1781 }
1782 
1783 static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid)
1784 {
1785     int i;
1786 
1787     assert(slotid >= 1 && slotid <= MAXSLOTS);
1788     DPRINTF("xhci_disable_slot(%d)\n", slotid);
1789 
1790     for (i = 1; i <= 31; i++) {
1791         if (xhci->slots[slotid-1].eps[i-1]) {
1792             xhci_disable_ep(xhci, slotid, i);
1793         }
1794     }
1795 
1796     xhci->slots[slotid-1].enabled = 0;
1797     return CC_SUCCESS;
1798 }
1799 
1800 static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid,
1801                                   uint64_t pictx, bool bsr)
1802 {
1803     XHCISlot *slot;
1804     USBDevice *dev;
1805     target_phys_addr_t ictx, octx, dcbaap;
1806     uint64_t poctx;
1807     uint32_t ictl_ctx[2];
1808     uint32_t slot_ctx[4];
1809     uint32_t ep0_ctx[5];
1810     unsigned int port;
1811     int i;
1812     TRBCCode res;
1813 
1814     assert(slotid >= 1 && slotid <= MAXSLOTS);
1815     DPRINTF("xhci_address_slot(%d)\n", slotid);
1816 
1817     dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high);
1818     cpu_physical_memory_read(dcbaap + 8*slotid,
1819                              (uint8_t *) &poctx, sizeof(poctx));
1820     ictx = xhci_mask64(pictx);
1821     octx = xhci_mask64(le64_to_cpu(poctx));
1822 
1823     DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx);
1824     DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
1825 
1826     cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx));
1827 
1828     if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) {
1829         fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1830                 ictl_ctx[0], ictl_ctx[1]);
1831         return CC_TRB_ERROR;
1832     }
1833 
1834     cpu_physical_memory_read(ictx+32, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1835     cpu_physical_memory_read(ictx+64, (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
1836 
1837     DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
1838             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1839 
1840     DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
1841             ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1842 
1843     port = (slot_ctx[1]>>16) & 0xFF;
1844     dev = xhci->ports[port-1].port.dev;
1845 
1846     if (port < 1 || port > MAXPORTS) {
1847         fprintf(stderr, "xhci: bad port %d\n", port);
1848         return CC_TRB_ERROR;
1849     } else if (!dev) {
1850         fprintf(stderr, "xhci: port %d not connected\n", port);
1851         return CC_USB_TRANSACTION_ERROR;
1852     }
1853 
1854     for (i = 0; i < MAXSLOTS; i++) {
1855         if (xhci->slots[i].port == port) {
1856             fprintf(stderr, "xhci: port %d already assigned to slot %d\n",
1857                     port, i+1);
1858             return CC_TRB_ERROR;
1859         }
1860     }
1861 
1862     slot = &xhci->slots[slotid-1];
1863     slot->port = port;
1864     slot->ctx = octx;
1865 
1866     if (bsr) {
1867         slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT;
1868     } else {
1869         slot->devaddr = xhci->devaddr++;
1870         slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slot->devaddr;
1871         DPRINTF("xhci: device address is %d\n", slot->devaddr);
1872         usb_device_handle_control(dev, NULL,
1873                                   DeviceOutRequest | USB_REQ_SET_ADDRESS,
1874                                   slot->devaddr, 0, 0, NULL);
1875     }
1876 
1877     res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx);
1878 
1879     DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1880             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1881     DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
1882             ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1883 
1884     cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1885     cpu_physical_memory_write(octx+32, (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
1886 
1887     return res;
1888 }
1889 
1890 
1891 static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid,
1892                                   uint64_t pictx, bool dc)
1893 {
1894     target_phys_addr_t ictx, octx;
1895     uint32_t ictl_ctx[2];
1896     uint32_t slot_ctx[4];
1897     uint32_t islot_ctx[4];
1898     uint32_t ep_ctx[5];
1899     int i;
1900     TRBCCode res;
1901 
1902     assert(slotid >= 1 && slotid <= MAXSLOTS);
1903     DPRINTF("xhci_configure_slot(%d)\n", slotid);
1904 
1905     ictx = xhci_mask64(pictx);
1906     octx = xhci->slots[slotid-1].ctx;
1907 
1908     DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx);
1909     DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
1910 
1911     if (dc) {
1912         for (i = 2; i <= 31; i++) {
1913             if (xhci->slots[slotid-1].eps[i-1]) {
1914                 xhci_disable_ep(xhci, slotid, i);
1915             }
1916         }
1917 
1918         cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1919         slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
1920         slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT;
1921         DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1922                 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1923         cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1924 
1925         return CC_SUCCESS;
1926     }
1927 
1928     cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx));
1929 
1930     if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) {
1931         fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1932                 ictl_ctx[0], ictl_ctx[1]);
1933         return CC_TRB_ERROR;
1934     }
1935 
1936     cpu_physical_memory_read(ictx+32, (uint8_t *) islot_ctx, sizeof(islot_ctx));
1937     cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1938 
1939     if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) {
1940         fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]);
1941         return CC_CONTEXT_STATE_ERROR;
1942     }
1943 
1944     for (i = 2; i <= 31; i++) {
1945         if (ictl_ctx[0] & (1<<i)) {
1946             xhci_disable_ep(xhci, slotid, i);
1947         }
1948         if (ictl_ctx[1] & (1<<i)) {
1949             cpu_physical_memory_read(ictx+32+(32*i),
1950                                      (uint8_t *) ep_ctx, sizeof(ep_ctx));
1951             DPRINTF("xhci: input ep%d.%d context: %08x %08x %08x %08x %08x\n",
1952                     i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
1953                     ep_ctx[3], ep_ctx[4]);
1954             xhci_disable_ep(xhci, slotid, i);
1955             res = xhci_enable_ep(xhci, slotid, i, octx+(32*i), ep_ctx);
1956             if (res != CC_SUCCESS) {
1957                 return res;
1958             }
1959             DPRINTF("xhci: output ep%d.%d context: %08x %08x %08x %08x %08x\n",
1960                     i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
1961                     ep_ctx[3], ep_ctx[4]);
1962             cpu_physical_memory_write(octx+(32*i),
1963                                       (uint8_t *) ep_ctx, sizeof(ep_ctx));
1964         }
1965     }
1966 
1967     slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
1968     slot_ctx[3] |= SLOT_CONFIGURED << SLOT_STATE_SHIFT;
1969     slot_ctx[0] &= ~(SLOT_CONTEXT_ENTRIES_MASK << SLOT_CONTEXT_ENTRIES_SHIFT);
1970     slot_ctx[0] |= islot_ctx[0] & (SLOT_CONTEXT_ENTRIES_MASK <<
1971                                    SLOT_CONTEXT_ENTRIES_SHIFT);
1972     DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1973             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1974 
1975     cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
1976 
1977     return CC_SUCCESS;
1978 }
1979 
1980 
1981 static TRBCCode xhci_evaluate_slot(XHCIState *xhci, unsigned int slotid,
1982                                    uint64_t pictx)
1983 {
1984     target_phys_addr_t ictx, octx;
1985     uint32_t ictl_ctx[2];
1986     uint32_t iep0_ctx[5];
1987     uint32_t ep0_ctx[5];
1988     uint32_t islot_ctx[4];
1989     uint32_t slot_ctx[4];
1990 
1991     assert(slotid >= 1 && slotid <= MAXSLOTS);
1992     DPRINTF("xhci_evaluate_slot(%d)\n", slotid);
1993 
1994     ictx = xhci_mask64(pictx);
1995     octx = xhci->slots[slotid-1].ctx;
1996 
1997     DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx);
1998     DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
1999 
2000     cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx));
2001 
2002     if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) {
2003         fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
2004                 ictl_ctx[0], ictl_ctx[1]);
2005         return CC_TRB_ERROR;
2006     }
2007 
2008     if (ictl_ctx[1] & 0x1) {
2009         cpu_physical_memory_read(ictx+32,
2010                                  (uint8_t *) islot_ctx, sizeof(islot_ctx));
2011 
2012         DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
2013                 islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]);
2014 
2015         cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
2016 
2017         slot_ctx[1] &= ~0xFFFF; /* max exit latency */
2018         slot_ctx[1] |= islot_ctx[1] & 0xFFFF;
2019         slot_ctx[2] &= ~0xFF00000; /* interrupter target */
2020         slot_ctx[2] |= islot_ctx[2] & 0xFF000000;
2021 
2022         DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2023                 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2024 
2025         cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
2026     }
2027 
2028     if (ictl_ctx[1] & 0x2) {
2029         cpu_physical_memory_read(ictx+64,
2030                                  (uint8_t *) iep0_ctx, sizeof(iep0_ctx));
2031 
2032         DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
2033                 iep0_ctx[0], iep0_ctx[1], iep0_ctx[2],
2034                 iep0_ctx[3], iep0_ctx[4]);
2035 
2036         cpu_physical_memory_read(octx+32, (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
2037 
2038         ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/
2039         ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000;
2040 
2041         DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
2042                 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
2043 
2044         cpu_physical_memory_write(octx+32,
2045                                   (uint8_t *) ep0_ctx, sizeof(ep0_ctx));
2046     }
2047 
2048     return CC_SUCCESS;
2049 }
2050 
2051 static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid)
2052 {
2053     uint32_t slot_ctx[4];
2054     target_phys_addr_t octx;
2055     int i;
2056 
2057     assert(slotid >= 1 && slotid <= MAXSLOTS);
2058     DPRINTF("xhci_reset_slot(%d)\n", slotid);
2059 
2060     octx = xhci->slots[slotid-1].ctx;
2061 
2062     DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx);
2063 
2064     for (i = 2; i <= 31; i++) {
2065         if (xhci->slots[slotid-1].eps[i-1]) {
2066             xhci_disable_ep(xhci, slotid, i);
2067         }
2068     }
2069 
2070     cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
2071     slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
2072     slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT;
2073     DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2074             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2075     cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx));
2076 
2077     return CC_SUCCESS;
2078 }
2079 
2080 static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb)
2081 {
2082     unsigned int slotid;
2083     slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK;
2084     if (slotid < 1 || slotid > MAXSLOTS) {
2085         fprintf(stderr, "xhci: bad slot id %d\n", slotid);
2086         event->ccode = CC_TRB_ERROR;
2087         return 0;
2088     } else if (!xhci->slots[slotid-1].enabled) {
2089         fprintf(stderr, "xhci: slot id %d not enabled\n", slotid);
2090         event->ccode = CC_SLOT_NOT_ENABLED_ERROR;
2091         return 0;
2092     }
2093     return slotid;
2094 }
2095 
2096 static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx)
2097 {
2098     target_phys_addr_t ctx;
2099     uint8_t bw_ctx[MAXPORTS+1];
2100 
2101     DPRINTF("xhci_get_port_bandwidth()\n");
2102 
2103     ctx = xhci_mask64(pctx);
2104 
2105     DPRINTF("xhci: bandwidth context at "TARGET_FMT_plx"\n", ctx);
2106 
2107     /* TODO: actually implement real values here */
2108     bw_ctx[0] = 0;
2109     memset(&bw_ctx[1], 80, MAXPORTS); /* 80% */
2110     cpu_physical_memory_write(ctx, bw_ctx, sizeof(bw_ctx));
2111 
2112     return CC_SUCCESS;
2113 }
2114 
2115 static uint32_t rotl(uint32_t v, unsigned count)
2116 {
2117     count &= 31;
2118     return (v << count) | (v >> (32 - count));
2119 }
2120 
2121 
2122 static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo)
2123 {
2124     uint32_t val;
2125     val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F));
2126     val += rotl(lo + 0x49434878, hi & 0x1F);
2127     val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F);
2128     return ~val;
2129 }
2130 
2131 static void xhci_via_challenge(uint64_t addr)
2132 {
2133     uint32_t buf[8];
2134     uint32_t obuf[8];
2135     target_phys_addr_t paddr = xhci_mask64(addr);
2136 
2137     cpu_physical_memory_read(paddr, (uint8_t *) &buf, 32);
2138 
2139     memcpy(obuf, buf, sizeof(obuf));
2140 
2141     if ((buf[0] & 0xff) == 2) {
2142         obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3];
2143         obuf[0] |=  (buf[2] * buf[3]) & 0xff;
2144         obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3];
2145         obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3];
2146         obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3];
2147         obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3];
2148         obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3];
2149         obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956;
2150         obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593;
2151     }
2152 
2153     cpu_physical_memory_write(paddr, (uint8_t *) &obuf, 32);
2154 }
2155 
2156 static void xhci_process_commands(XHCIState *xhci)
2157 {
2158     XHCITRB trb;
2159     TRBType type;
2160     XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS};
2161     target_phys_addr_t addr;
2162     unsigned int i, slotid = 0;
2163 
2164     DPRINTF("xhci_process_commands()\n");
2165     if (!xhci_running(xhci)) {
2166         DPRINTF("xhci_process_commands() called while xHC stopped or paused\n");
2167         return;
2168     }
2169 
2170     xhci->crcr_low |= CRCR_CRR;
2171 
2172     while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) {
2173         event.ptr = addr;
2174         switch (type) {
2175         case CR_ENABLE_SLOT:
2176             for (i = 0; i < MAXSLOTS; i++) {
2177                 if (!xhci->slots[i].enabled) {
2178                     break;
2179                 }
2180             }
2181             if (i >= MAXSLOTS) {
2182                 fprintf(stderr, "xhci: no device slots available\n");
2183                 event.ccode = CC_NO_SLOTS_ERROR;
2184             } else {
2185                 slotid = i+1;
2186                 event.ccode = xhci_enable_slot(xhci, slotid);
2187             }
2188             break;
2189         case CR_DISABLE_SLOT:
2190             slotid = xhci_get_slot(xhci, &event, &trb);
2191             if (slotid) {
2192                 event.ccode = xhci_disable_slot(xhci, slotid);
2193             }
2194             break;
2195         case CR_ADDRESS_DEVICE:
2196             slotid = xhci_get_slot(xhci, &event, &trb);
2197             if (slotid) {
2198                 event.ccode = xhci_address_slot(xhci, slotid, trb.parameter,
2199                                                 trb.control & TRB_CR_BSR);
2200             }
2201             break;
2202         case CR_CONFIGURE_ENDPOINT:
2203             slotid = xhci_get_slot(xhci, &event, &trb);
2204             if (slotid) {
2205                 event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter,
2206                                                   trb.control & TRB_CR_DC);
2207             }
2208             break;
2209         case CR_EVALUATE_CONTEXT:
2210             slotid = xhci_get_slot(xhci, &event, &trb);
2211             if (slotid) {
2212                 event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter);
2213             }
2214             break;
2215         case CR_STOP_ENDPOINT:
2216             slotid = xhci_get_slot(xhci, &event, &trb);
2217             if (slotid) {
2218                 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2219                     & TRB_CR_EPID_MASK;
2220                 event.ccode = xhci_stop_ep(xhci, slotid, epid);
2221             }
2222             break;
2223         case CR_RESET_ENDPOINT:
2224             slotid = xhci_get_slot(xhci, &event, &trb);
2225             if (slotid) {
2226                 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2227                     & TRB_CR_EPID_MASK;
2228                 event.ccode = xhci_reset_ep(xhci, slotid, epid);
2229             }
2230             break;
2231         case CR_SET_TR_DEQUEUE:
2232             slotid = xhci_get_slot(xhci, &event, &trb);
2233             if (slotid) {
2234                 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2235                     & TRB_CR_EPID_MASK;
2236                 event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid,
2237                                                   trb.parameter);
2238             }
2239             break;
2240         case CR_RESET_DEVICE:
2241             slotid = xhci_get_slot(xhci, &event, &trb);
2242             if (slotid) {
2243                 event.ccode = xhci_reset_slot(xhci, slotid);
2244             }
2245             break;
2246         case CR_GET_PORT_BANDWIDTH:
2247             event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter);
2248             break;
2249         case CR_VENDOR_VIA_CHALLENGE_RESPONSE:
2250             xhci_via_challenge(trb.parameter);
2251             break;
2252         case CR_VENDOR_NEC_FIRMWARE_REVISION:
2253             event.type = 48; /* NEC reply */
2254             event.length = 0x3025;
2255             break;
2256         case CR_VENDOR_NEC_CHALLENGE_RESPONSE:
2257         {
2258             uint32_t chi = trb.parameter >> 32;
2259             uint32_t clo = trb.parameter;
2260             uint32_t val = xhci_nec_challenge(chi, clo);
2261             event.length = val & 0xFFFF;
2262             event.epid = val >> 16;
2263             slotid = val >> 24;
2264             event.type = 48; /* NEC reply */
2265         }
2266         break;
2267         default:
2268             fprintf(stderr, "xhci: unimplemented command %d\n", type);
2269             event.ccode = CC_TRB_ERROR;
2270             break;
2271         }
2272         event.slotid = slotid;
2273         xhci_event(xhci, &event);
2274     }
2275 }
2276 
2277 static void xhci_update_port(XHCIState *xhci, XHCIPort *port, int is_detach)
2278 {
2279     int nr = port->port.index + 1;
2280 
2281     port->portsc = PORTSC_PP;
2282     if (port->port.dev && port->port.dev->attached && !is_detach) {
2283         port->portsc |= PORTSC_CCS;
2284         switch (port->port.dev->speed) {
2285         case USB_SPEED_LOW:
2286             port->portsc |= PORTSC_SPEED_LOW;
2287             break;
2288         case USB_SPEED_FULL:
2289             port->portsc |= PORTSC_SPEED_FULL;
2290             break;
2291         case USB_SPEED_HIGH:
2292             port->portsc |= PORTSC_SPEED_HIGH;
2293             break;
2294         }
2295     }
2296 
2297     if (xhci_running(xhci)) {
2298         port->portsc |= PORTSC_CSC;
2299         XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, nr << 24};
2300         xhci_event(xhci, &ev);
2301         DPRINTF("xhci: port change event for port %d\n", nr);
2302     }
2303 }
2304 
2305 static void xhci_reset(void *opaque)
2306 {
2307     XHCIState *xhci = opaque;
2308     int i;
2309 
2310     DPRINTF("xhci: full reset\n");
2311     if (!(xhci->usbsts & USBSTS_HCH)) {
2312         fprintf(stderr, "xhci: reset while running!\n");
2313     }
2314 
2315     xhci->usbcmd = 0;
2316     xhci->usbsts = USBSTS_HCH;
2317     xhci->dnctrl = 0;
2318     xhci->crcr_low = 0;
2319     xhci->crcr_high = 0;
2320     xhci->dcbaap_low = 0;
2321     xhci->dcbaap_high = 0;
2322     xhci->config = 0;
2323     xhci->devaddr = 2;
2324 
2325     for (i = 0; i < MAXSLOTS; i++) {
2326         xhci_disable_slot(xhci, i+1);
2327     }
2328 
2329     for (i = 0; i < MAXPORTS; i++) {
2330         xhci_update_port(xhci, xhci->ports + i, 0);
2331     }
2332 
2333     xhci->mfindex = 0;
2334     xhci->iman = 0;
2335     xhci->imod = 0;
2336     xhci->erstsz = 0;
2337     xhci->erstba_low = 0;
2338     xhci->erstba_high = 0;
2339     xhci->erdp_low = 0;
2340     xhci->erdp_high = 0;
2341 
2342     xhci->er_ep_idx = 0;
2343     xhci->er_pcs = 1;
2344     xhci->er_full = 0;
2345     xhci->ev_buffer_put = 0;
2346     xhci->ev_buffer_get = 0;
2347 }
2348 
2349 static uint32_t xhci_cap_read(XHCIState *xhci, uint32_t reg)
2350 {
2351     DPRINTF("xhci_cap_read(0x%x)\n", reg);
2352 
2353     switch (reg) {
2354     case 0x00: /* HCIVERSION, CAPLENGTH */
2355         return 0x01000000 | LEN_CAP;
2356     case 0x04: /* HCSPARAMS 1 */
2357         return (MAXPORTS<<24) | (MAXINTRS<<8) | MAXSLOTS;
2358     case 0x08: /* HCSPARAMS 2 */
2359         return 0x0000000f;
2360     case 0x0c: /* HCSPARAMS 3 */
2361         return 0x00000000;
2362     case 0x10: /* HCCPARAMS */
2363 #if TARGET_PHYS_ADDR_BITS > 32
2364         return 0x00081001;
2365 #else
2366         return 0x00081000;
2367 #endif
2368     case 0x14: /* DBOFF */
2369         return OFF_DOORBELL;
2370     case 0x18: /* RTSOFF */
2371         return OFF_RUNTIME;
2372 
2373     /* extended capabilities */
2374     case 0x20: /* Supported Protocol:00 */
2375 #if USB3_PORTS > 0
2376         return 0x02000402; /* USB 2.0 */
2377 #else
2378         return 0x02000002; /* USB 2.0 */
2379 #endif
2380     case 0x24: /* Supported Protocol:04 */
2381         return 0x20425455; /* "USB " */
2382     case 0x28: /* Supported Protocol:08 */
2383         return 0x00000001 | (USB2_PORTS<<8);
2384     case 0x2c: /* Supported Protocol:0c */
2385         return 0x00000000; /* reserved */
2386 #if USB3_PORTS > 0
2387     case 0x30: /* Supported Protocol:00 */
2388         return 0x03000002; /* USB 3.0 */
2389     case 0x34: /* Supported Protocol:04 */
2390         return 0x20425455; /* "USB " */
2391     case 0x38: /* Supported Protocol:08 */
2392         return 0x00000000 | (USB2_PORTS+1) | (USB3_PORTS<<8);
2393     case 0x3c: /* Supported Protocol:0c */
2394         return 0x00000000; /* reserved */
2395 #endif
2396     default:
2397         fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", reg);
2398     }
2399     return 0;
2400 }
2401 
2402 static uint32_t xhci_port_read(XHCIState *xhci, uint32_t reg)
2403 {
2404     uint32_t port = reg >> 4;
2405     if (port >= MAXPORTS) {
2406         fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
2407         return 0;
2408     }
2409 
2410     switch (reg & 0xf) {
2411     case 0x00: /* PORTSC */
2412         return xhci->ports[port].portsc;
2413     case 0x04: /* PORTPMSC */
2414     case 0x08: /* PORTLI */
2415         return 0;
2416     case 0x0c: /* reserved */
2417     default:
2418         fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n",
2419                 port, reg);
2420         return 0;
2421     }
2422 }
2423 
2424 static void xhci_port_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2425 {
2426     uint32_t port = reg >> 4;
2427     uint32_t portsc;
2428 
2429     if (port >= MAXPORTS) {
2430         fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
2431         return;
2432     }
2433 
2434     switch (reg & 0xf) {
2435     case 0x00: /* PORTSC */
2436         portsc = xhci->ports[port].portsc;
2437         /* write-1-to-clear bits*/
2438         portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC|
2439                            PORTSC_PRC|PORTSC_PLC|PORTSC_CEC));
2440         if (val & PORTSC_LWS) {
2441             /* overwrite PLS only when LWS=1 */
2442             portsc &= ~(PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
2443             portsc |= val & (PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
2444         }
2445         /* read/write bits */
2446         portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE);
2447         portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE));
2448         /* write-1-to-start bits */
2449         if (val & PORTSC_PR) {
2450             DPRINTF("xhci: port %d reset\n", port);
2451             usb_device_reset(xhci->ports[port].port.dev);
2452             portsc |= PORTSC_PRC | PORTSC_PED;
2453         }
2454         xhci->ports[port].portsc = portsc;
2455         break;
2456     case 0x04: /* PORTPMSC */
2457     case 0x08: /* PORTLI */
2458     default:
2459         fprintf(stderr, "xhci_port_write (port %d): reg 0x%x unimplemented\n",
2460                 port, reg);
2461     }
2462 }
2463 
2464 static uint32_t xhci_oper_read(XHCIState *xhci, uint32_t reg)
2465 {
2466     DPRINTF("xhci_oper_read(0x%x)\n", reg);
2467 
2468     if (reg >= 0x400) {
2469         return xhci_port_read(xhci, reg - 0x400);
2470     }
2471 
2472     switch (reg) {
2473     case 0x00: /* USBCMD */
2474         return xhci->usbcmd;
2475     case 0x04: /* USBSTS */
2476         return xhci->usbsts;
2477     case 0x08: /* PAGESIZE */
2478         return 1; /* 4KiB */
2479     case 0x14: /* DNCTRL */
2480         return xhci->dnctrl;
2481     case 0x18: /* CRCR low */
2482         return xhci->crcr_low & ~0xe;
2483     case 0x1c: /* CRCR high */
2484         return xhci->crcr_high;
2485     case 0x30: /* DCBAAP low */
2486         return xhci->dcbaap_low;
2487     case 0x34: /* DCBAAP high */
2488         return xhci->dcbaap_high;
2489     case 0x38: /* CONFIG */
2490         return xhci->config;
2491     default:
2492         fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", reg);
2493     }
2494     return 0;
2495 }
2496 
2497 static void xhci_oper_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2498 {
2499     DPRINTF("xhci_oper_write(0x%x, 0x%08x)\n", reg, val);
2500 
2501     if (reg >= 0x400) {
2502         xhci_port_write(xhci, reg - 0x400, val);
2503         return;
2504     }
2505 
2506     switch (reg) {
2507     case 0x00: /* USBCMD */
2508         if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) {
2509             xhci_run(xhci);
2510         } else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) {
2511             xhci_stop(xhci);
2512         }
2513         xhci->usbcmd = val & 0xc0f;
2514         if (val & USBCMD_HCRST) {
2515             xhci_reset(xhci);
2516         }
2517         xhci_irq_update(xhci);
2518         break;
2519 
2520     case 0x04: /* USBSTS */
2521         /* these bits are write-1-to-clear */
2522         xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE));
2523         xhci_irq_update(xhci);
2524         break;
2525 
2526     case 0x14: /* DNCTRL */
2527         xhci->dnctrl = val & 0xffff;
2528         break;
2529     case 0x18: /* CRCR low */
2530         xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR);
2531         break;
2532     case 0x1c: /* CRCR high */
2533         xhci->crcr_high = val;
2534         if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) {
2535             XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED};
2536             xhci->crcr_low &= ~CRCR_CRR;
2537             xhci_event(xhci, &event);
2538             DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low);
2539         } else {
2540             target_phys_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val);
2541             xhci_ring_init(xhci, &xhci->cmd_ring, base);
2542         }
2543         xhci->crcr_low &= ~(CRCR_CA | CRCR_CS);
2544         break;
2545     case 0x30: /* DCBAAP low */
2546         xhci->dcbaap_low = val & 0xffffffc0;
2547         break;
2548     case 0x34: /* DCBAAP high */
2549         xhci->dcbaap_high = val;
2550         break;
2551     case 0x38: /* CONFIG */
2552         xhci->config = val & 0xff;
2553         break;
2554     default:
2555         fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
2556     }
2557 }
2558 
2559 static uint32_t xhci_runtime_read(XHCIState *xhci, uint32_t reg)
2560 {
2561     DPRINTF("xhci_runtime_read(0x%x)\n", reg);
2562 
2563     switch (reg) {
2564     case 0x00: /* MFINDEX */
2565         fprintf(stderr, "xhci_runtime_read: MFINDEX not yet implemented\n");
2566         return xhci->mfindex;
2567     case 0x20: /* IMAN */
2568         return xhci->iman;
2569     case 0x24: /* IMOD */
2570         return xhci->imod;
2571     case 0x28: /* ERSTSZ */
2572         return xhci->erstsz;
2573     case 0x30: /* ERSTBA low */
2574         return xhci->erstba_low;
2575     case 0x34: /* ERSTBA high */
2576         return xhci->erstba_high;
2577     case 0x38: /* ERDP low */
2578         return xhci->erdp_low;
2579     case 0x3c: /* ERDP high */
2580         return xhci->erdp_high;
2581     default:
2582         fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n", reg);
2583     }
2584     return 0;
2585 }
2586 
2587 static void xhci_runtime_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2588 {
2589     DPRINTF("xhci_runtime_write(0x%x, 0x%08x)\n", reg, val);
2590 
2591     switch (reg) {
2592     case 0x20: /* IMAN */
2593         if (val & IMAN_IP) {
2594             xhci->iman &= ~IMAN_IP;
2595         }
2596         xhci->iman &= ~IMAN_IE;
2597         xhci->iman |= val & IMAN_IE;
2598         xhci_irq_update(xhci);
2599         break;
2600     case 0x24: /* IMOD */
2601         xhci->imod = val;
2602         break;
2603     case 0x28: /* ERSTSZ */
2604         xhci->erstsz = val & 0xffff;
2605         break;
2606     case 0x30: /* ERSTBA low */
2607         /* XXX NEC driver bug: it doesn't align this to 64 bytes
2608         xhci->erstba_low = val & 0xffffffc0; */
2609         xhci->erstba_low = val & 0xfffffff0;
2610         break;
2611     case 0x34: /* ERSTBA high */
2612         xhci->erstba_high = val;
2613         xhci_er_reset(xhci);
2614         break;
2615     case 0x38: /* ERDP low */
2616         if (val & ERDP_EHB) {
2617             xhci->erdp_low &= ~ERDP_EHB;
2618         }
2619         xhci->erdp_low = (val & ~ERDP_EHB) | (xhci->erdp_low & ERDP_EHB);
2620         break;
2621     case 0x3c: /* ERDP high */
2622         xhci->erdp_high = val;
2623         xhci_events_update(xhci);
2624         break;
2625     default:
2626         fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
2627     }
2628 }
2629 
2630 static uint32_t xhci_doorbell_read(XHCIState *xhci, uint32_t reg)
2631 {
2632     DPRINTF("xhci_doorbell_read(0x%x)\n", reg);
2633     /* doorbells always read as 0 */
2634     return 0;
2635 }
2636 
2637 static void xhci_doorbell_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2638 {
2639     DPRINTF("xhci_doorbell_write(0x%x, 0x%08x)\n", reg, val);
2640 
2641     if (!xhci_running(xhci)) {
2642         fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n");
2643         return;
2644     }
2645 
2646     reg >>= 2;
2647 
2648     if (reg == 0) {
2649         if (val == 0) {
2650             xhci_process_commands(xhci);
2651         } else {
2652             fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n", val);
2653         }
2654     } else {
2655         if (reg > MAXSLOTS) {
2656             fprintf(stderr, "xhci: bad doorbell %d\n", reg);
2657         } else if (val > 31) {
2658             fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n", reg, val);
2659         } else {
2660             xhci_kick_ep(xhci, reg, val);
2661         }
2662     }
2663 }
2664 
2665 static uint64_t xhci_mem_read(void *ptr, target_phys_addr_t addr,
2666                               unsigned size)
2667 {
2668     XHCIState *xhci = ptr;
2669 
2670     /* Only aligned reads are allowed on xHCI */
2671     if (addr & 3) {
2672         fprintf(stderr, "xhci_mem_read: Mis-aligned read\n");
2673         return 0;
2674     }
2675 
2676     if (addr < LEN_CAP) {
2677         return xhci_cap_read(xhci, addr);
2678     } else if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
2679         return xhci_oper_read(xhci, addr - OFF_OPER);
2680     } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
2681         return xhci_runtime_read(xhci, addr - OFF_RUNTIME);
2682     } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
2683         return xhci_doorbell_read(xhci, addr - OFF_DOORBELL);
2684     } else {
2685         fprintf(stderr, "xhci_mem_read: Bad offset %x\n", (int)addr);
2686         return 0;
2687     }
2688 }
2689 
2690 static void xhci_mem_write(void *ptr, target_phys_addr_t addr,
2691                            uint64_t val, unsigned size)
2692 {
2693     XHCIState *xhci = ptr;
2694 
2695     /* Only aligned writes are allowed on xHCI */
2696     if (addr & 3) {
2697         fprintf(stderr, "xhci_mem_write: Mis-aligned write\n");
2698         return;
2699     }
2700 
2701     if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
2702         xhci_oper_write(xhci, addr - OFF_OPER, val);
2703     } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
2704         xhci_runtime_write(xhci, addr - OFF_RUNTIME, val);
2705     } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
2706         xhci_doorbell_write(xhci, addr - OFF_DOORBELL, val);
2707     } else {
2708         fprintf(stderr, "xhci_mem_write: Bad offset %x\n", (int)addr);
2709     }
2710 }
2711 
2712 static const MemoryRegionOps xhci_mem_ops = {
2713     .read = xhci_mem_read,
2714     .write = xhci_mem_write,
2715     .valid.min_access_size = 4,
2716     .valid.max_access_size = 4,
2717     .endianness = DEVICE_LITTLE_ENDIAN,
2718 };
2719 
2720 static void xhci_attach(USBPort *usbport)
2721 {
2722     XHCIState *xhci = usbport->opaque;
2723     XHCIPort *port = &xhci->ports[usbport->index];
2724 
2725     xhci_update_port(xhci, port, 0);
2726 }
2727 
2728 static void xhci_detach(USBPort *usbport)
2729 {
2730     XHCIState *xhci = usbport->opaque;
2731     XHCIPort *port = &xhci->ports[usbport->index];
2732 
2733     xhci_update_port(xhci, port, 1);
2734 }
2735 
2736 static void xhci_wakeup(USBPort *usbport)
2737 {
2738     XHCIState *xhci = usbport->opaque;
2739     XHCIPort *port = &xhci->ports[usbport->index];
2740     int nr = port->port.index + 1;
2741     XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, nr << 24};
2742     uint32_t pls;
2743 
2744     pls = (port->portsc >> PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK;
2745     if (pls != 3) {
2746         return;
2747     }
2748     port->portsc |= 0xf << PORTSC_PLS_SHIFT;
2749     if (port->portsc & PORTSC_PLC) {
2750         return;
2751     }
2752     port->portsc |= PORTSC_PLC;
2753     xhci_event(xhci, &ev);
2754 }
2755 
2756 static void xhci_complete(USBPort *port, USBPacket *packet)
2757 {
2758     XHCITransfer *xfer = container_of(packet, XHCITransfer, packet);
2759 
2760     xhci_complete_packet(xfer, packet->result);
2761     xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid);
2762 }
2763 
2764 static void xhci_child_detach(USBPort *port, USBDevice *child)
2765 {
2766     FIXME();
2767 }
2768 
2769 static USBPortOps xhci_port_ops = {
2770     .attach   = xhci_attach,
2771     .detach   = xhci_detach,
2772     .wakeup   = xhci_wakeup,
2773     .complete = xhci_complete,
2774     .child_detach = xhci_child_detach,
2775 };
2776 
2777 static int xhci_find_slotid(XHCIState *xhci, USBDevice *dev)
2778 {
2779     XHCISlot *slot;
2780     int slotid;
2781 
2782     for (slotid = 1; slotid <= MAXSLOTS; slotid++) {
2783         slot = &xhci->slots[slotid-1];
2784         if (slot->devaddr == dev->addr) {
2785             return slotid;
2786         }
2787     }
2788     return 0;
2789 }
2790 
2791 static int xhci_find_epid(USBEndpoint *ep)
2792 {
2793     if (ep->nr == 0) {
2794         return 1;
2795     }
2796     if (ep->pid == USB_TOKEN_IN) {
2797         return ep->nr * 2 + 1;
2798     } else {
2799         return ep->nr * 2;
2800     }
2801 }
2802 
2803 static void xhci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep)
2804 {
2805     XHCIState *xhci = container_of(bus, XHCIState, bus);
2806     int slotid;
2807 
2808     DPRINTF("%s\n", __func__);
2809     slotid = xhci_find_slotid(xhci, ep->dev);
2810     if (slotid == 0 || !xhci->slots[slotid-1].enabled) {
2811         DPRINTF("%s: oops, no slot for dev %d\n", __func__, ep->dev->addr);
2812         return;
2813     }
2814     xhci_kick_ep(xhci, slotid, xhci_find_epid(ep));
2815 }
2816 
2817 static USBBusOps xhci_bus_ops = {
2818     .wakeup_endpoint = xhci_wakeup_endpoint,
2819 };
2820 
2821 static void usb_xhci_init(XHCIState *xhci, DeviceState *dev)
2822 {
2823     int i;
2824 
2825     xhci->usbsts = USBSTS_HCH;
2826 
2827     usb_bus_new(&xhci->bus, &xhci_bus_ops, &xhci->pci_dev.qdev);
2828 
2829     for (i = 0; i < MAXPORTS; i++) {
2830         memset(&xhci->ports[i], 0, sizeof(xhci->ports[i]));
2831         usb_register_port(&xhci->bus, &xhci->ports[i].port, xhci, i,
2832                           &xhci_port_ops,
2833                           USB_SPEED_MASK_LOW  |
2834                           USB_SPEED_MASK_FULL |
2835                           USB_SPEED_MASK_HIGH);
2836     }
2837     for (i = 0; i < MAXSLOTS; i++) {
2838         xhci->slots[i].enabled = 0;
2839     }
2840 
2841     qemu_register_reset(xhci_reset, xhci);
2842 }
2843 
2844 static int usb_xhci_initfn(struct PCIDevice *dev)
2845 {
2846     int ret;
2847 
2848     XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
2849 
2850     xhci->pci_dev.config[PCI_CLASS_PROG] = 0x30;    /* xHCI */
2851     xhci->pci_dev.config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */
2852     xhci->pci_dev.config[PCI_CACHE_LINE_SIZE] = 0x10;
2853     xhci->pci_dev.config[0x60] = 0x30; /* release number */
2854 
2855     usb_xhci_init(xhci, &dev->qdev);
2856 
2857     xhci->irq = xhci->pci_dev.irq[0];
2858 
2859     memory_region_init_io(&xhci->mem, &xhci_mem_ops, xhci,
2860                           "xhci", LEN_REGS);
2861     pci_register_bar(&xhci->pci_dev, 0,
2862                      PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64,
2863                      &xhci->mem);
2864 
2865     ret = pcie_cap_init(&xhci->pci_dev, 0xa0, PCI_EXP_TYPE_ENDPOINT, 0);
2866     assert(ret >= 0);
2867 
2868     if (xhci->msi) {
2869         ret = msi_init(&xhci->pci_dev, 0x70, 1, true, false);
2870         assert(ret >= 0);
2871     }
2872 
2873     return 0;
2874 }
2875 
2876 static void xhci_write_config(PCIDevice *dev, uint32_t addr, uint32_t val,
2877                               int len)
2878 {
2879     XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
2880 
2881     pci_default_write_config(dev, addr, val, len);
2882     if (xhci->msi) {
2883         msi_write_config(dev, addr, val, len);
2884     }
2885 }
2886 
2887 static const VMStateDescription vmstate_xhci = {
2888     .name = "xhci",
2889     .unmigratable = 1,
2890 };
2891 
2892 static Property xhci_properties[] = {
2893     DEFINE_PROP_UINT32("msi", XHCIState, msi, 0),
2894     DEFINE_PROP_END_OF_LIST(),
2895 };
2896 
2897 static void xhci_class_init(ObjectClass *klass, void *data)
2898 {
2899     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2900     DeviceClass *dc = DEVICE_CLASS(klass);
2901 
2902     dc->vmsd    = &vmstate_xhci;
2903     dc->props   = xhci_properties;
2904     k->init         = usb_xhci_initfn;
2905     k->vendor_id    = PCI_VENDOR_ID_NEC;
2906     k->device_id    = PCI_DEVICE_ID_NEC_UPD720200;
2907     k->class_id     = PCI_CLASS_SERIAL_USB;
2908     k->revision     = 0x03;
2909     k->is_express   = 1;
2910     k->config_write = xhci_write_config;
2911 }
2912 
2913 static TypeInfo xhci_info = {
2914     .name          = "nec-usb-xhci",
2915     .parent        = TYPE_PCI_DEVICE,
2916     .instance_size = sizeof(XHCIState),
2917     .class_init    = xhci_class_init,
2918 };
2919 
2920 static void xhci_register_types(void)
2921 {
2922     type_register_static(&xhci_info);
2923 }
2924 
2925 type_init(xhci_register_types)
2926