xref: /openbmc/qemu/hw/usb/hcd-xhci.c (revision 85e05d82)
1 /*
2  * USB xHCI controller emulation
3  *
4  * Copyright (c) 2011 Securiforest
5  * Date: 2011-05-11 ;  Author: Hector Martin <hector@marcansoft.com>
6  * Based on usb-ohci.c, emulates Renesas NEC USB 3.0
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 #include "hw/hw.h"
22 #include "qemu-timer.h"
23 #include "hw/usb.h"
24 #include "hw/pci.h"
25 #include "hw/msi.h"
26 #include "hw/msix.h"
27 #include "trace.h"
28 
29 //#define DEBUG_XHCI
30 //#define DEBUG_DATA
31 
32 #ifdef DEBUG_XHCI
33 #define DPRINTF(...) fprintf(stderr, __VA_ARGS__)
34 #else
35 #define DPRINTF(...) do {} while (0)
36 #endif
37 #define FIXME() do { fprintf(stderr, "FIXME %s:%d\n", \
38                              __func__, __LINE__); abort(); } while (0)
39 
40 #define MAXPORTS_2 15
41 #define MAXPORTS_3 15
42 
43 #define MAXPORTS (MAXPORTS_2+MAXPORTS_3)
44 #define MAXSLOTS 64
45 #define MAXINTRS 16
46 
47 #define TD_QUEUE 24
48 
49 /* Very pessimistic, let's hope it's enough for all cases */
50 #define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS)
51 /* Do not deliver ER Full events. NEC's driver does some things not bound
52  * to the specs when it gets them */
53 #define ER_FULL_HACK
54 
55 #define LEN_CAP         0x40
56 #define LEN_OPER        (0x400 + 0x10 * MAXPORTS)
57 #define LEN_RUNTIME     ((MAXINTRS + 1) * 0x20)
58 #define LEN_DOORBELL    ((MAXSLOTS + 1) * 0x20)
59 
60 #define OFF_OPER        LEN_CAP
61 #define OFF_RUNTIME     0x1000
62 #define OFF_DOORBELL    0x2000
63 #define OFF_MSIX_TABLE  0x3000
64 #define OFF_MSIX_PBA    0x3800
65 /* must be power of 2 */
66 #define LEN_REGS        0x4000
67 
68 #if (OFF_OPER + LEN_OPER) > OFF_RUNTIME
69 #error Increase OFF_RUNTIME
70 #endif
71 #if (OFF_RUNTIME + LEN_RUNTIME) > OFF_DOORBELL
72 #error Increase OFF_DOORBELL
73 #endif
74 #if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS
75 # error Increase LEN_REGS
76 #endif
77 
78 /* bit definitions */
79 #define USBCMD_RS       (1<<0)
80 #define USBCMD_HCRST    (1<<1)
81 #define USBCMD_INTE     (1<<2)
82 #define USBCMD_HSEE     (1<<3)
83 #define USBCMD_LHCRST   (1<<7)
84 #define USBCMD_CSS      (1<<8)
85 #define USBCMD_CRS      (1<<9)
86 #define USBCMD_EWE      (1<<10)
87 #define USBCMD_EU3S     (1<<11)
88 
89 #define USBSTS_HCH      (1<<0)
90 #define USBSTS_HSE      (1<<2)
91 #define USBSTS_EINT     (1<<3)
92 #define USBSTS_PCD      (1<<4)
93 #define USBSTS_SSS      (1<<8)
94 #define USBSTS_RSS      (1<<9)
95 #define USBSTS_SRE      (1<<10)
96 #define USBSTS_CNR      (1<<11)
97 #define USBSTS_HCE      (1<<12)
98 
99 
100 #define PORTSC_CCS          (1<<0)
101 #define PORTSC_PED          (1<<1)
102 #define PORTSC_OCA          (1<<3)
103 #define PORTSC_PR           (1<<4)
104 #define PORTSC_PLS_SHIFT        5
105 #define PORTSC_PLS_MASK     0xf
106 #define PORTSC_PP           (1<<9)
107 #define PORTSC_SPEED_SHIFT      10
108 #define PORTSC_SPEED_MASK   0xf
109 #define PORTSC_SPEED_FULL   (1<<10)
110 #define PORTSC_SPEED_LOW    (2<<10)
111 #define PORTSC_SPEED_HIGH   (3<<10)
112 #define PORTSC_SPEED_SUPER  (4<<10)
113 #define PORTSC_PIC_SHIFT        14
114 #define PORTSC_PIC_MASK     0x3
115 #define PORTSC_LWS          (1<<16)
116 #define PORTSC_CSC          (1<<17)
117 #define PORTSC_PEC          (1<<18)
118 #define PORTSC_WRC          (1<<19)
119 #define PORTSC_OCC          (1<<20)
120 #define PORTSC_PRC          (1<<21)
121 #define PORTSC_PLC          (1<<22)
122 #define PORTSC_CEC          (1<<23)
123 #define PORTSC_CAS          (1<<24)
124 #define PORTSC_WCE          (1<<25)
125 #define PORTSC_WDE          (1<<26)
126 #define PORTSC_WOE          (1<<27)
127 #define PORTSC_DR           (1<<30)
128 #define PORTSC_WPR          (1<<31)
129 
130 #define CRCR_RCS        (1<<0)
131 #define CRCR_CS         (1<<1)
132 #define CRCR_CA         (1<<2)
133 #define CRCR_CRR        (1<<3)
134 
135 #define IMAN_IP         (1<<0)
136 #define IMAN_IE         (1<<1)
137 
138 #define ERDP_EHB        (1<<3)
139 
140 #define TRB_SIZE 16
141 typedef struct XHCITRB {
142     uint64_t parameter;
143     uint32_t status;
144     uint32_t control;
145     dma_addr_t addr;
146     bool ccs;
147 } XHCITRB;
148 
149 enum {
150     PLS_U0              =  0,
151     PLS_U1              =  1,
152     PLS_U2              =  2,
153     PLS_U3              =  3,
154     PLS_DISABLED        =  4,
155     PLS_RX_DETECT       =  5,
156     PLS_INACTIVE        =  6,
157     PLS_POLLING         =  7,
158     PLS_RECOVERY        =  8,
159     PLS_HOT_RESET       =  9,
160     PLS_COMPILANCE_MODE = 10,
161     PLS_TEST_MODE       = 11,
162     PLS_RESUME          = 15,
163 };
164 
165 typedef enum TRBType {
166     TRB_RESERVED = 0,
167     TR_NORMAL,
168     TR_SETUP,
169     TR_DATA,
170     TR_STATUS,
171     TR_ISOCH,
172     TR_LINK,
173     TR_EVDATA,
174     TR_NOOP,
175     CR_ENABLE_SLOT,
176     CR_DISABLE_SLOT,
177     CR_ADDRESS_DEVICE,
178     CR_CONFIGURE_ENDPOINT,
179     CR_EVALUATE_CONTEXT,
180     CR_RESET_ENDPOINT,
181     CR_STOP_ENDPOINT,
182     CR_SET_TR_DEQUEUE,
183     CR_RESET_DEVICE,
184     CR_FORCE_EVENT,
185     CR_NEGOTIATE_BW,
186     CR_SET_LATENCY_TOLERANCE,
187     CR_GET_PORT_BANDWIDTH,
188     CR_FORCE_HEADER,
189     CR_NOOP,
190     ER_TRANSFER = 32,
191     ER_COMMAND_COMPLETE,
192     ER_PORT_STATUS_CHANGE,
193     ER_BANDWIDTH_REQUEST,
194     ER_DOORBELL,
195     ER_HOST_CONTROLLER,
196     ER_DEVICE_NOTIFICATION,
197     ER_MFINDEX_WRAP,
198     /* vendor specific bits */
199     CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48,
200     CR_VENDOR_NEC_FIRMWARE_REVISION  = 49,
201     CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50,
202 } TRBType;
203 
204 #define CR_LINK TR_LINK
205 
206 typedef enum TRBCCode {
207     CC_INVALID = 0,
208     CC_SUCCESS,
209     CC_DATA_BUFFER_ERROR,
210     CC_BABBLE_DETECTED,
211     CC_USB_TRANSACTION_ERROR,
212     CC_TRB_ERROR,
213     CC_STALL_ERROR,
214     CC_RESOURCE_ERROR,
215     CC_BANDWIDTH_ERROR,
216     CC_NO_SLOTS_ERROR,
217     CC_INVALID_STREAM_TYPE_ERROR,
218     CC_SLOT_NOT_ENABLED_ERROR,
219     CC_EP_NOT_ENABLED_ERROR,
220     CC_SHORT_PACKET,
221     CC_RING_UNDERRUN,
222     CC_RING_OVERRUN,
223     CC_VF_ER_FULL,
224     CC_PARAMETER_ERROR,
225     CC_BANDWIDTH_OVERRUN,
226     CC_CONTEXT_STATE_ERROR,
227     CC_NO_PING_RESPONSE_ERROR,
228     CC_EVENT_RING_FULL_ERROR,
229     CC_INCOMPATIBLE_DEVICE_ERROR,
230     CC_MISSED_SERVICE_ERROR,
231     CC_COMMAND_RING_STOPPED,
232     CC_COMMAND_ABORTED,
233     CC_STOPPED,
234     CC_STOPPED_LENGTH_INVALID,
235     CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29,
236     CC_ISOCH_BUFFER_OVERRUN = 31,
237     CC_EVENT_LOST_ERROR,
238     CC_UNDEFINED_ERROR,
239     CC_INVALID_STREAM_ID_ERROR,
240     CC_SECONDARY_BANDWIDTH_ERROR,
241     CC_SPLIT_TRANSACTION_ERROR
242 } TRBCCode;
243 
244 #define TRB_C               (1<<0)
245 #define TRB_TYPE_SHIFT          10
246 #define TRB_TYPE_MASK       0x3f
247 #define TRB_TYPE(t)         (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK)
248 
249 #define TRB_EV_ED           (1<<2)
250 
251 #define TRB_TR_ENT          (1<<1)
252 #define TRB_TR_ISP          (1<<2)
253 #define TRB_TR_NS           (1<<3)
254 #define TRB_TR_CH           (1<<4)
255 #define TRB_TR_IOC          (1<<5)
256 #define TRB_TR_IDT          (1<<6)
257 #define TRB_TR_TBC_SHIFT        7
258 #define TRB_TR_TBC_MASK     0x3
259 #define TRB_TR_BEI          (1<<9)
260 #define TRB_TR_TLBPC_SHIFT      16
261 #define TRB_TR_TLBPC_MASK   0xf
262 #define TRB_TR_FRAMEID_SHIFT    20
263 #define TRB_TR_FRAMEID_MASK 0x7ff
264 #define TRB_TR_SIA          (1<<31)
265 
266 #define TRB_TR_DIR          (1<<16)
267 
268 #define TRB_CR_SLOTID_SHIFT     24
269 #define TRB_CR_SLOTID_MASK  0xff
270 #define TRB_CR_EPID_SHIFT       16
271 #define TRB_CR_EPID_MASK    0x1f
272 
273 #define TRB_CR_BSR          (1<<9)
274 #define TRB_CR_DC           (1<<9)
275 
276 #define TRB_LK_TC           (1<<1)
277 
278 #define TRB_INTR_SHIFT          22
279 #define TRB_INTR_MASK       0x3ff
280 #define TRB_INTR(t)         (((t).status >> TRB_INTR_SHIFT) & TRB_INTR_MASK)
281 
282 #define EP_TYPE_MASK        0x7
283 #define EP_TYPE_SHIFT           3
284 
285 #define EP_STATE_MASK       0x7
286 #define EP_DISABLED         (0<<0)
287 #define EP_RUNNING          (1<<0)
288 #define EP_HALTED           (2<<0)
289 #define EP_STOPPED          (3<<0)
290 #define EP_ERROR            (4<<0)
291 
292 #define SLOT_STATE_MASK     0x1f
293 #define SLOT_STATE_SHIFT        27
294 #define SLOT_STATE(s)       (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK)
295 #define SLOT_ENABLED        0
296 #define SLOT_DEFAULT        1
297 #define SLOT_ADDRESSED      2
298 #define SLOT_CONFIGURED     3
299 
300 #define SLOT_CONTEXT_ENTRIES_MASK 0x1f
301 #define SLOT_CONTEXT_ENTRIES_SHIFT 27
302 
303 typedef struct XHCIState XHCIState;
304 
305 #define get_field(data, field)                  \
306     (((data) >> field##_SHIFT) & field##_MASK)
307 
308 #define set_field(data, newval, field) do {                     \
309         uint32_t val = *data;                                   \
310         val &= ~(field##_MASK << field##_SHIFT);                \
311         val |= ((newval) & field##_MASK) << field##_SHIFT;      \
312         *data = val;                                            \
313     } while (0)
314 
315 typedef enum EPType {
316     ET_INVALID = 0,
317     ET_ISO_OUT,
318     ET_BULK_OUT,
319     ET_INTR_OUT,
320     ET_CONTROL,
321     ET_ISO_IN,
322     ET_BULK_IN,
323     ET_INTR_IN,
324 } EPType;
325 
326 typedef struct XHCIRing {
327     dma_addr_t base;
328     dma_addr_t dequeue;
329     bool ccs;
330 } XHCIRing;
331 
332 typedef struct XHCIPort {
333     XHCIState *xhci;
334     uint32_t portsc;
335     uint32_t portnr;
336     USBPort  *uport;
337     uint32_t speedmask;
338     char name[16];
339     MemoryRegion mem;
340 } XHCIPort;
341 
342 typedef struct XHCITransfer {
343     XHCIState *xhci;
344     USBPacket packet;
345     QEMUSGList sgl;
346     bool running_async;
347     bool running_retry;
348     bool cancelled;
349     bool complete;
350     bool int_req;
351     unsigned int iso_pkts;
352     unsigned int slotid;
353     unsigned int epid;
354     bool in_xfer;
355     bool iso_xfer;
356 
357     unsigned int trb_count;
358     unsigned int trb_alloced;
359     XHCITRB *trbs;
360 
361     TRBCCode status;
362 
363     unsigned int pkts;
364     unsigned int pktsize;
365     unsigned int cur_pkt;
366 
367     uint64_t mfindex_kick;
368 } XHCITransfer;
369 
370 typedef struct XHCIEPContext {
371     XHCIState *xhci;
372     unsigned int slotid;
373     unsigned int epid;
374 
375     XHCIRing ring;
376     unsigned int next_xfer;
377     unsigned int comp_xfer;
378     XHCITransfer transfers[TD_QUEUE];
379     XHCITransfer *retry;
380     EPType type;
381     dma_addr_t pctx;
382     unsigned int max_psize;
383     uint32_t state;
384 
385     /* iso xfer scheduling */
386     unsigned int interval;
387     int64_t mfindex_last;
388     QEMUTimer *kick_timer;
389 } XHCIEPContext;
390 
391 typedef struct XHCISlot {
392     bool enabled;
393     dma_addr_t ctx;
394     USBPort *uport;
395     unsigned int devaddr;
396     XHCIEPContext * eps[31];
397 } XHCISlot;
398 
399 typedef struct XHCIEvent {
400     TRBType type;
401     TRBCCode ccode;
402     uint64_t ptr;
403     uint32_t length;
404     uint32_t flags;
405     uint8_t slotid;
406     uint8_t epid;
407 } XHCIEvent;
408 
409 typedef struct XHCIInterrupter {
410     uint32_t iman;
411     uint32_t imod;
412     uint32_t erstsz;
413     uint32_t erstba_low;
414     uint32_t erstba_high;
415     uint32_t erdp_low;
416     uint32_t erdp_high;
417 
418     bool msix_used, er_pcs, er_full;
419 
420     dma_addr_t er_start;
421     uint32_t er_size;
422     unsigned int er_ep_idx;
423 
424     XHCIEvent ev_buffer[EV_QUEUE];
425     unsigned int ev_buffer_put;
426     unsigned int ev_buffer_get;
427 
428 } XHCIInterrupter;
429 
430 struct XHCIState {
431     PCIDevice pci_dev;
432     USBBus bus;
433     qemu_irq irq;
434     MemoryRegion mem;
435     MemoryRegion mem_cap;
436     MemoryRegion mem_oper;
437     MemoryRegion mem_runtime;
438     MemoryRegion mem_doorbell;
439     const char *name;
440     unsigned int devaddr;
441 
442     /* properties */
443     uint32_t numports_2;
444     uint32_t numports_3;
445     uint32_t numintrs;
446     uint32_t numslots;
447     uint32_t flags;
448 
449     /* Operational Registers */
450     uint32_t usbcmd;
451     uint32_t usbsts;
452     uint32_t dnctrl;
453     uint32_t crcr_low;
454     uint32_t crcr_high;
455     uint32_t dcbaap_low;
456     uint32_t dcbaap_high;
457     uint32_t config;
458 
459     USBPort  uports[MAX(MAXPORTS_2, MAXPORTS_3)];
460     XHCIPort ports[MAXPORTS];
461     XHCISlot slots[MAXSLOTS];
462     uint32_t numports;
463 
464     /* Runtime Registers */
465     int64_t mfindex_start;
466     QEMUTimer *mfwrap_timer;
467     XHCIInterrupter intr[MAXINTRS];
468 
469     XHCIRing cmd_ring;
470 };
471 
472 typedef struct XHCIEvRingSeg {
473     uint32_t addr_low;
474     uint32_t addr_high;
475     uint32_t size;
476     uint32_t rsvd;
477 } XHCIEvRingSeg;
478 
479 enum xhci_flags {
480     XHCI_FLAG_USE_MSI = 1,
481     XHCI_FLAG_USE_MSI_X,
482 };
483 
484 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid,
485                          unsigned int epid);
486 static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v);
487 static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v);
488 
489 static const char *TRBType_names[] = {
490     [TRB_RESERVED]                     = "TRB_RESERVED",
491     [TR_NORMAL]                        = "TR_NORMAL",
492     [TR_SETUP]                         = "TR_SETUP",
493     [TR_DATA]                          = "TR_DATA",
494     [TR_STATUS]                        = "TR_STATUS",
495     [TR_ISOCH]                         = "TR_ISOCH",
496     [TR_LINK]                          = "TR_LINK",
497     [TR_EVDATA]                        = "TR_EVDATA",
498     [TR_NOOP]                          = "TR_NOOP",
499     [CR_ENABLE_SLOT]                   = "CR_ENABLE_SLOT",
500     [CR_DISABLE_SLOT]                  = "CR_DISABLE_SLOT",
501     [CR_ADDRESS_DEVICE]                = "CR_ADDRESS_DEVICE",
502     [CR_CONFIGURE_ENDPOINT]            = "CR_CONFIGURE_ENDPOINT",
503     [CR_EVALUATE_CONTEXT]              = "CR_EVALUATE_CONTEXT",
504     [CR_RESET_ENDPOINT]                = "CR_RESET_ENDPOINT",
505     [CR_STOP_ENDPOINT]                 = "CR_STOP_ENDPOINT",
506     [CR_SET_TR_DEQUEUE]                = "CR_SET_TR_DEQUEUE",
507     [CR_RESET_DEVICE]                  = "CR_RESET_DEVICE",
508     [CR_FORCE_EVENT]                   = "CR_FORCE_EVENT",
509     [CR_NEGOTIATE_BW]                  = "CR_NEGOTIATE_BW",
510     [CR_SET_LATENCY_TOLERANCE]         = "CR_SET_LATENCY_TOLERANCE",
511     [CR_GET_PORT_BANDWIDTH]            = "CR_GET_PORT_BANDWIDTH",
512     [CR_FORCE_HEADER]                  = "CR_FORCE_HEADER",
513     [CR_NOOP]                          = "CR_NOOP",
514     [ER_TRANSFER]                      = "ER_TRANSFER",
515     [ER_COMMAND_COMPLETE]              = "ER_COMMAND_COMPLETE",
516     [ER_PORT_STATUS_CHANGE]            = "ER_PORT_STATUS_CHANGE",
517     [ER_BANDWIDTH_REQUEST]             = "ER_BANDWIDTH_REQUEST",
518     [ER_DOORBELL]                      = "ER_DOORBELL",
519     [ER_HOST_CONTROLLER]               = "ER_HOST_CONTROLLER",
520     [ER_DEVICE_NOTIFICATION]           = "ER_DEVICE_NOTIFICATION",
521     [ER_MFINDEX_WRAP]                  = "ER_MFINDEX_WRAP",
522     [CR_VENDOR_VIA_CHALLENGE_RESPONSE] = "CR_VENDOR_VIA_CHALLENGE_RESPONSE",
523     [CR_VENDOR_NEC_FIRMWARE_REVISION]  = "CR_VENDOR_NEC_FIRMWARE_REVISION",
524     [CR_VENDOR_NEC_CHALLENGE_RESPONSE] = "CR_VENDOR_NEC_CHALLENGE_RESPONSE",
525 };
526 
527 static const char *TRBCCode_names[] = {
528     [CC_INVALID]                       = "CC_INVALID",
529     [CC_SUCCESS]                       = "CC_SUCCESS",
530     [CC_DATA_BUFFER_ERROR]             = "CC_DATA_BUFFER_ERROR",
531     [CC_BABBLE_DETECTED]               = "CC_BABBLE_DETECTED",
532     [CC_USB_TRANSACTION_ERROR]         = "CC_USB_TRANSACTION_ERROR",
533     [CC_TRB_ERROR]                     = "CC_TRB_ERROR",
534     [CC_STALL_ERROR]                   = "CC_STALL_ERROR",
535     [CC_RESOURCE_ERROR]                = "CC_RESOURCE_ERROR",
536     [CC_BANDWIDTH_ERROR]               = "CC_BANDWIDTH_ERROR",
537     [CC_NO_SLOTS_ERROR]                = "CC_NO_SLOTS_ERROR",
538     [CC_INVALID_STREAM_TYPE_ERROR]     = "CC_INVALID_STREAM_TYPE_ERROR",
539     [CC_SLOT_NOT_ENABLED_ERROR]        = "CC_SLOT_NOT_ENABLED_ERROR",
540     [CC_EP_NOT_ENABLED_ERROR]          = "CC_EP_NOT_ENABLED_ERROR",
541     [CC_SHORT_PACKET]                  = "CC_SHORT_PACKET",
542     [CC_RING_UNDERRUN]                 = "CC_RING_UNDERRUN",
543     [CC_RING_OVERRUN]                  = "CC_RING_OVERRUN",
544     [CC_VF_ER_FULL]                    = "CC_VF_ER_FULL",
545     [CC_PARAMETER_ERROR]               = "CC_PARAMETER_ERROR",
546     [CC_BANDWIDTH_OVERRUN]             = "CC_BANDWIDTH_OVERRUN",
547     [CC_CONTEXT_STATE_ERROR]           = "CC_CONTEXT_STATE_ERROR",
548     [CC_NO_PING_RESPONSE_ERROR]        = "CC_NO_PING_RESPONSE_ERROR",
549     [CC_EVENT_RING_FULL_ERROR]         = "CC_EVENT_RING_FULL_ERROR",
550     [CC_INCOMPATIBLE_DEVICE_ERROR]     = "CC_INCOMPATIBLE_DEVICE_ERROR",
551     [CC_MISSED_SERVICE_ERROR]          = "CC_MISSED_SERVICE_ERROR",
552     [CC_COMMAND_RING_STOPPED]          = "CC_COMMAND_RING_STOPPED",
553     [CC_COMMAND_ABORTED]               = "CC_COMMAND_ABORTED",
554     [CC_STOPPED]                       = "CC_STOPPED",
555     [CC_STOPPED_LENGTH_INVALID]        = "CC_STOPPED_LENGTH_INVALID",
556     [CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR]
557     = "CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR",
558     [CC_ISOCH_BUFFER_OVERRUN]          = "CC_ISOCH_BUFFER_OVERRUN",
559     [CC_EVENT_LOST_ERROR]              = "CC_EVENT_LOST_ERROR",
560     [CC_UNDEFINED_ERROR]               = "CC_UNDEFINED_ERROR",
561     [CC_INVALID_STREAM_ID_ERROR]       = "CC_INVALID_STREAM_ID_ERROR",
562     [CC_SECONDARY_BANDWIDTH_ERROR]     = "CC_SECONDARY_BANDWIDTH_ERROR",
563     [CC_SPLIT_TRANSACTION_ERROR]       = "CC_SPLIT_TRANSACTION_ERROR",
564 };
565 
566 static const char *lookup_name(uint32_t index, const char **list, uint32_t llen)
567 {
568     if (index >= llen || list[index] == NULL) {
569         return "???";
570     }
571     return list[index];
572 }
573 
574 static const char *trb_name(XHCITRB *trb)
575 {
576     return lookup_name(TRB_TYPE(*trb), TRBType_names,
577                        ARRAY_SIZE(TRBType_names));
578 }
579 
580 static const char *event_name(XHCIEvent *event)
581 {
582     return lookup_name(event->ccode, TRBCCode_names,
583                        ARRAY_SIZE(TRBCCode_names));
584 }
585 
586 static uint64_t xhci_mfindex_get(XHCIState *xhci)
587 {
588     int64_t now = qemu_get_clock_ns(vm_clock);
589     return (now - xhci->mfindex_start) / 125000;
590 }
591 
592 static void xhci_mfwrap_update(XHCIState *xhci)
593 {
594     const uint32_t bits = USBCMD_RS | USBCMD_EWE;
595     uint32_t mfindex, left;
596     int64_t now;
597 
598     if ((xhci->usbcmd & bits) == bits) {
599         now = qemu_get_clock_ns(vm_clock);
600         mfindex = ((now - xhci->mfindex_start) / 125000) & 0x3fff;
601         left = 0x4000 - mfindex;
602         qemu_mod_timer(xhci->mfwrap_timer, now + left * 125000);
603     } else {
604         qemu_del_timer(xhci->mfwrap_timer);
605     }
606 }
607 
608 static void xhci_mfwrap_timer(void *opaque)
609 {
610     XHCIState *xhci = opaque;
611     XHCIEvent wrap = { ER_MFINDEX_WRAP, CC_SUCCESS };
612 
613     xhci_event(xhci, &wrap, 0);
614     xhci_mfwrap_update(xhci);
615 }
616 
617 static inline dma_addr_t xhci_addr64(uint32_t low, uint32_t high)
618 {
619     if (sizeof(dma_addr_t) == 4) {
620         return low;
621     } else {
622         return low | (((dma_addr_t)high << 16) << 16);
623     }
624 }
625 
626 static inline dma_addr_t xhci_mask64(uint64_t addr)
627 {
628     if (sizeof(dma_addr_t) == 4) {
629         return addr & 0xffffffff;
630     } else {
631         return addr;
632     }
633 }
634 
635 static XHCIPort *xhci_lookup_port(XHCIState *xhci, struct USBPort *uport)
636 {
637     int index;
638 
639     if (!uport->dev) {
640         return NULL;
641     }
642     switch (uport->dev->speed) {
643     case USB_SPEED_LOW:
644     case USB_SPEED_FULL:
645     case USB_SPEED_HIGH:
646         index = uport->index;
647         break;
648     case USB_SPEED_SUPER:
649         index = uport->index + xhci->numports_2;
650         break;
651     default:
652         return NULL;
653     }
654     return &xhci->ports[index];
655 }
656 
657 static void xhci_intx_update(XHCIState *xhci)
658 {
659     int level = 0;
660 
661     if (msix_enabled(&xhci->pci_dev) ||
662         msi_enabled(&xhci->pci_dev)) {
663         return;
664     }
665 
666     if (xhci->intr[0].iman & IMAN_IP &&
667         xhci->intr[0].iman & IMAN_IE &&
668         xhci->usbcmd & USBCMD_INTE) {
669         level = 1;
670     }
671 
672     trace_usb_xhci_irq_intx(level);
673     qemu_set_irq(xhci->irq, level);
674 }
675 
676 static void xhci_msix_update(XHCIState *xhci, int v)
677 {
678     bool enabled;
679 
680     if (!msix_enabled(&xhci->pci_dev)) {
681         return;
682     }
683 
684     enabled = xhci->intr[v].iman & IMAN_IE;
685     if (enabled == xhci->intr[v].msix_used) {
686         return;
687     }
688 
689     if (enabled) {
690         trace_usb_xhci_irq_msix_use(v);
691         msix_vector_use(&xhci->pci_dev, v);
692         xhci->intr[v].msix_used = true;
693     } else {
694         trace_usb_xhci_irq_msix_unuse(v);
695         msix_vector_unuse(&xhci->pci_dev, v);
696         xhci->intr[v].msix_used = false;
697     }
698 }
699 
700 static void xhci_intr_raise(XHCIState *xhci, int v)
701 {
702     xhci->intr[v].erdp_low |= ERDP_EHB;
703     xhci->intr[v].iman |= IMAN_IP;
704     xhci->usbsts |= USBSTS_EINT;
705 
706     if (!(xhci->intr[v].iman & IMAN_IE)) {
707         return;
708     }
709 
710     if (!(xhci->usbcmd & USBCMD_INTE)) {
711         return;
712     }
713 
714     if (msix_enabled(&xhci->pci_dev)) {
715         trace_usb_xhci_irq_msix(v);
716         msix_notify(&xhci->pci_dev, v);
717         return;
718     }
719 
720     if (msi_enabled(&xhci->pci_dev)) {
721         trace_usb_xhci_irq_msi(v);
722         msi_notify(&xhci->pci_dev, v);
723         return;
724     }
725 
726     if (v == 0) {
727         trace_usb_xhci_irq_intx(1);
728         qemu_set_irq(xhci->irq, 1);
729     }
730 }
731 
732 static inline int xhci_running(XHCIState *xhci)
733 {
734     return !(xhci->usbsts & USBSTS_HCH) && !xhci->intr[0].er_full;
735 }
736 
737 static void xhci_die(XHCIState *xhci)
738 {
739     xhci->usbsts |= USBSTS_HCE;
740     fprintf(stderr, "xhci: asserted controller error\n");
741 }
742 
743 static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v)
744 {
745     XHCIInterrupter *intr = &xhci->intr[v];
746     XHCITRB ev_trb;
747     dma_addr_t addr;
748 
749     ev_trb.parameter = cpu_to_le64(event->ptr);
750     ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24));
751     ev_trb.control = (event->slotid << 24) | (event->epid << 16) |
752                      event->flags | (event->type << TRB_TYPE_SHIFT);
753     if (intr->er_pcs) {
754         ev_trb.control |= TRB_C;
755     }
756     ev_trb.control = cpu_to_le32(ev_trb.control);
757 
758     trace_usb_xhci_queue_event(v, intr->er_ep_idx, trb_name(&ev_trb),
759                                event_name(event), ev_trb.parameter,
760                                ev_trb.status, ev_trb.control);
761 
762     addr = intr->er_start + TRB_SIZE*intr->er_ep_idx;
763     pci_dma_write(&xhci->pci_dev, addr, &ev_trb, TRB_SIZE);
764 
765     intr->er_ep_idx++;
766     if (intr->er_ep_idx >= intr->er_size) {
767         intr->er_ep_idx = 0;
768         intr->er_pcs = !intr->er_pcs;
769     }
770 }
771 
772 static void xhci_events_update(XHCIState *xhci, int v)
773 {
774     XHCIInterrupter *intr = &xhci->intr[v];
775     dma_addr_t erdp;
776     unsigned int dp_idx;
777     bool do_irq = 0;
778 
779     if (xhci->usbsts & USBSTS_HCH) {
780         return;
781     }
782 
783     erdp = xhci_addr64(intr->erdp_low, intr->erdp_high);
784     if (erdp < intr->er_start ||
785         erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) {
786         fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp);
787         fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n",
788                 v, intr->er_start, intr->er_size);
789         xhci_die(xhci);
790         return;
791     }
792     dp_idx = (erdp - intr->er_start) / TRB_SIZE;
793     assert(dp_idx < intr->er_size);
794 
795     /* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus
796      * deadlocks when the ER is full. Hack it by holding off events until
797      * the driver decides to free at least half of the ring */
798     if (intr->er_full) {
799         int er_free = dp_idx - intr->er_ep_idx;
800         if (er_free <= 0) {
801             er_free += intr->er_size;
802         }
803         if (er_free < (intr->er_size/2)) {
804             DPRINTF("xhci_events_update(): event ring still "
805                     "more than half full (hack)\n");
806             return;
807         }
808     }
809 
810     while (intr->ev_buffer_put != intr->ev_buffer_get) {
811         assert(intr->er_full);
812         if (((intr->er_ep_idx+1) % intr->er_size) == dp_idx) {
813             DPRINTF("xhci_events_update(): event ring full again\n");
814 #ifndef ER_FULL_HACK
815             XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
816             xhci_write_event(xhci, &full, v);
817 #endif
818             do_irq = 1;
819             break;
820         }
821         XHCIEvent *event = &intr->ev_buffer[intr->ev_buffer_get];
822         xhci_write_event(xhci, event, v);
823         intr->ev_buffer_get++;
824         do_irq = 1;
825         if (intr->ev_buffer_get == EV_QUEUE) {
826             intr->ev_buffer_get = 0;
827         }
828     }
829 
830     if (do_irq) {
831         xhci_intr_raise(xhci, v);
832     }
833 
834     if (intr->er_full && intr->ev_buffer_put == intr->ev_buffer_get) {
835         DPRINTF("xhci_events_update(): event ring no longer full\n");
836         intr->er_full = 0;
837     }
838 }
839 
840 static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v)
841 {
842     XHCIInterrupter *intr;
843     dma_addr_t erdp;
844     unsigned int dp_idx;
845 
846     if (v >= xhci->numintrs) {
847         DPRINTF("intr nr out of range (%d >= %d)\n", v, xhci->numintrs);
848         return;
849     }
850     intr = &xhci->intr[v];
851 
852     if (intr->er_full) {
853         DPRINTF("xhci_event(): ER full, queueing\n");
854         if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) {
855             fprintf(stderr, "xhci: event queue full, dropping event!\n");
856             return;
857         }
858         intr->ev_buffer[intr->ev_buffer_put++] = *event;
859         if (intr->ev_buffer_put == EV_QUEUE) {
860             intr->ev_buffer_put = 0;
861         }
862         return;
863     }
864 
865     erdp = xhci_addr64(intr->erdp_low, intr->erdp_high);
866     if (erdp < intr->er_start ||
867         erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) {
868         fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp);
869         fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n",
870                 v, intr->er_start, intr->er_size);
871         xhci_die(xhci);
872         return;
873     }
874 
875     dp_idx = (erdp - intr->er_start) / TRB_SIZE;
876     assert(dp_idx < intr->er_size);
877 
878     if ((intr->er_ep_idx+1) % intr->er_size == dp_idx) {
879         DPRINTF("xhci_event(): ER full, queueing\n");
880 #ifndef ER_FULL_HACK
881         XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
882         xhci_write_event(xhci, &full);
883 #endif
884         intr->er_full = 1;
885         if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) {
886             fprintf(stderr, "xhci: event queue full, dropping event!\n");
887             return;
888         }
889         intr->ev_buffer[intr->ev_buffer_put++] = *event;
890         if (intr->ev_buffer_put == EV_QUEUE) {
891             intr->ev_buffer_put = 0;
892         }
893     } else {
894         xhci_write_event(xhci, event, v);
895     }
896 
897     xhci_intr_raise(xhci, v);
898 }
899 
900 static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring,
901                            dma_addr_t base)
902 {
903     ring->base = base;
904     ring->dequeue = base;
905     ring->ccs = 1;
906 }
907 
908 static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb,
909                                dma_addr_t *addr)
910 {
911     while (1) {
912         TRBType type;
913         pci_dma_read(&xhci->pci_dev, ring->dequeue, trb, TRB_SIZE);
914         trb->addr = ring->dequeue;
915         trb->ccs = ring->ccs;
916         le64_to_cpus(&trb->parameter);
917         le32_to_cpus(&trb->status);
918         le32_to_cpus(&trb->control);
919 
920         trace_usb_xhci_fetch_trb(ring->dequeue, trb_name(trb),
921                                  trb->parameter, trb->status, trb->control);
922 
923         if ((trb->control & TRB_C) != ring->ccs) {
924             return 0;
925         }
926 
927         type = TRB_TYPE(*trb);
928 
929         if (type != TR_LINK) {
930             if (addr) {
931                 *addr = ring->dequeue;
932             }
933             ring->dequeue += TRB_SIZE;
934             return type;
935         } else {
936             ring->dequeue = xhci_mask64(trb->parameter);
937             if (trb->control & TRB_LK_TC) {
938                 ring->ccs = !ring->ccs;
939             }
940         }
941     }
942 }
943 
944 static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring)
945 {
946     XHCITRB trb;
947     int length = 0;
948     dma_addr_t dequeue = ring->dequeue;
949     bool ccs = ring->ccs;
950     /* hack to bundle together the two/three TDs that make a setup transfer */
951     bool control_td_set = 0;
952 
953     while (1) {
954         TRBType type;
955         pci_dma_read(&xhci->pci_dev, dequeue, &trb, TRB_SIZE);
956         le64_to_cpus(&trb.parameter);
957         le32_to_cpus(&trb.status);
958         le32_to_cpus(&trb.control);
959 
960         if ((trb.control & TRB_C) != ccs) {
961             return -length;
962         }
963 
964         type = TRB_TYPE(trb);
965 
966         if (type == TR_LINK) {
967             dequeue = xhci_mask64(trb.parameter);
968             if (trb.control & TRB_LK_TC) {
969                 ccs = !ccs;
970             }
971             continue;
972         }
973 
974         length += 1;
975         dequeue += TRB_SIZE;
976 
977         if (type == TR_SETUP) {
978             control_td_set = 1;
979         } else if (type == TR_STATUS) {
980             control_td_set = 0;
981         }
982 
983         if (!control_td_set && !(trb.control & TRB_TR_CH)) {
984             return length;
985         }
986     }
987 }
988 
989 static void xhci_er_reset(XHCIState *xhci, int v)
990 {
991     XHCIInterrupter *intr = &xhci->intr[v];
992     XHCIEvRingSeg seg;
993 
994     if (intr->erstsz == 0) {
995         /* disabled */
996         intr->er_start = 0;
997         intr->er_size = 0;
998         return;
999     }
1000     /* cache the (sole) event ring segment location */
1001     if (intr->erstsz != 1) {
1002         fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", intr->erstsz);
1003         xhci_die(xhci);
1004         return;
1005     }
1006     dma_addr_t erstba = xhci_addr64(intr->erstba_low, intr->erstba_high);
1007     pci_dma_read(&xhci->pci_dev, erstba, &seg, sizeof(seg));
1008     le32_to_cpus(&seg.addr_low);
1009     le32_to_cpus(&seg.addr_high);
1010     le32_to_cpus(&seg.size);
1011     if (seg.size < 16 || seg.size > 4096) {
1012         fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size);
1013         xhci_die(xhci);
1014         return;
1015     }
1016     intr->er_start = xhci_addr64(seg.addr_low, seg.addr_high);
1017     intr->er_size = seg.size;
1018 
1019     intr->er_ep_idx = 0;
1020     intr->er_pcs = 1;
1021     intr->er_full = 0;
1022 
1023     DPRINTF("xhci: event ring[%d]:" DMA_ADDR_FMT " [%d]\n",
1024             v, intr->er_start, intr->er_size);
1025 }
1026 
1027 static void xhci_run(XHCIState *xhci)
1028 {
1029     trace_usb_xhci_run();
1030     xhci->usbsts &= ~USBSTS_HCH;
1031     xhci->mfindex_start = qemu_get_clock_ns(vm_clock);
1032 }
1033 
1034 static void xhci_stop(XHCIState *xhci)
1035 {
1036     trace_usb_xhci_stop();
1037     xhci->usbsts |= USBSTS_HCH;
1038     xhci->crcr_low &= ~CRCR_CRR;
1039 }
1040 
1041 static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx,
1042                               uint32_t state)
1043 {
1044     uint32_t ctx[5];
1045 
1046     pci_dma_read(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx));
1047     ctx[0] &= ~EP_STATE_MASK;
1048     ctx[0] |= state;
1049     ctx[2] = epctx->ring.dequeue | epctx->ring.ccs;
1050     ctx[3] = (epctx->ring.dequeue >> 16) >> 16;
1051     DPRINTF("xhci: set epctx: " DMA_ADDR_FMT " state=%d dequeue=%08x%08x\n",
1052             epctx->pctx, state, ctx[3], ctx[2]);
1053     pci_dma_write(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx));
1054     epctx->state = state;
1055 }
1056 
1057 static void xhci_ep_kick_timer(void *opaque)
1058 {
1059     XHCIEPContext *epctx = opaque;
1060     xhci_kick_ep(epctx->xhci, epctx->slotid, epctx->epid);
1061 }
1062 
1063 static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid,
1064                                unsigned int epid, dma_addr_t pctx,
1065                                uint32_t *ctx)
1066 {
1067     XHCISlot *slot;
1068     XHCIEPContext *epctx;
1069     dma_addr_t dequeue;
1070     int i;
1071 
1072     trace_usb_xhci_ep_enable(slotid, epid);
1073     assert(slotid >= 1 && slotid <= xhci->numslots);
1074     assert(epid >= 1 && epid <= 31);
1075 
1076     slot = &xhci->slots[slotid-1];
1077     if (slot->eps[epid-1]) {
1078         fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid);
1079         return CC_TRB_ERROR;
1080     }
1081 
1082     epctx = g_malloc(sizeof(XHCIEPContext));
1083     memset(epctx, 0, sizeof(XHCIEPContext));
1084     epctx->xhci = xhci;
1085     epctx->slotid = slotid;
1086     epctx->epid = epid;
1087 
1088     slot->eps[epid-1] = epctx;
1089 
1090     dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]);
1091     xhci_ring_init(xhci, &epctx->ring, dequeue);
1092     epctx->ring.ccs = ctx[2] & 1;
1093 
1094     epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK;
1095     DPRINTF("xhci: endpoint %d.%d type is %d\n", epid/2, epid%2, epctx->type);
1096     epctx->pctx = pctx;
1097     epctx->max_psize = ctx[1]>>16;
1098     epctx->max_psize *= 1+((ctx[1]>>8)&0xff);
1099     DPRINTF("xhci: endpoint %d.%d max transaction (burst) size is %d\n",
1100             epid/2, epid%2, epctx->max_psize);
1101     for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) {
1102         usb_packet_init(&epctx->transfers[i].packet);
1103     }
1104 
1105     epctx->interval = 1 << (ctx[0] >> 16) & 0xff;
1106     epctx->mfindex_last = 0;
1107     epctx->kick_timer = qemu_new_timer_ns(vm_clock, xhci_ep_kick_timer, epctx);
1108 
1109     epctx->state = EP_RUNNING;
1110     ctx[0] &= ~EP_STATE_MASK;
1111     ctx[0] |= EP_RUNNING;
1112 
1113     return CC_SUCCESS;
1114 }
1115 
1116 static int xhci_ep_nuke_one_xfer(XHCITransfer *t)
1117 {
1118     int killed = 0;
1119 
1120     if (t->running_async) {
1121         usb_cancel_packet(&t->packet);
1122         t->running_async = 0;
1123         t->cancelled = 1;
1124         DPRINTF("xhci: cancelling transfer, waiting for it to complete\n");
1125         killed = 1;
1126     }
1127     if (t->running_retry) {
1128         XHCIEPContext *epctx = t->xhci->slots[t->slotid-1].eps[t->epid-1];
1129         if (epctx) {
1130             epctx->retry = NULL;
1131             qemu_del_timer(epctx->kick_timer);
1132         }
1133         t->running_retry = 0;
1134     }
1135     if (t->trbs) {
1136         g_free(t->trbs);
1137     }
1138 
1139     t->trbs = NULL;
1140     t->trb_count = t->trb_alloced = 0;
1141 
1142     return killed;
1143 }
1144 
1145 static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid,
1146                                unsigned int epid)
1147 {
1148     XHCISlot *slot;
1149     XHCIEPContext *epctx;
1150     int i, xferi, killed = 0;
1151     assert(slotid >= 1 && slotid <= xhci->numslots);
1152     assert(epid >= 1 && epid <= 31);
1153 
1154     DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid);
1155 
1156     slot = &xhci->slots[slotid-1];
1157 
1158     if (!slot->eps[epid-1]) {
1159         return 0;
1160     }
1161 
1162     epctx = slot->eps[epid-1];
1163 
1164     xferi = epctx->next_xfer;
1165     for (i = 0; i < TD_QUEUE; i++) {
1166         killed += xhci_ep_nuke_one_xfer(&epctx->transfers[xferi]);
1167         xferi = (xferi + 1) % TD_QUEUE;
1168     }
1169     return killed;
1170 }
1171 
1172 static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid,
1173                                unsigned int epid)
1174 {
1175     XHCISlot *slot;
1176     XHCIEPContext *epctx;
1177 
1178     trace_usb_xhci_ep_disable(slotid, epid);
1179     assert(slotid >= 1 && slotid <= xhci->numslots);
1180     assert(epid >= 1 && epid <= 31);
1181 
1182     slot = &xhci->slots[slotid-1];
1183 
1184     if (!slot->eps[epid-1]) {
1185         DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid);
1186         return CC_SUCCESS;
1187     }
1188 
1189     xhci_ep_nuke_xfers(xhci, slotid, epid);
1190 
1191     epctx = slot->eps[epid-1];
1192 
1193     xhci_set_ep_state(xhci, epctx, EP_DISABLED);
1194 
1195     qemu_free_timer(epctx->kick_timer);
1196     g_free(epctx);
1197     slot->eps[epid-1] = NULL;
1198 
1199     return CC_SUCCESS;
1200 }
1201 
1202 static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid,
1203                              unsigned int epid)
1204 {
1205     XHCISlot *slot;
1206     XHCIEPContext *epctx;
1207 
1208     trace_usb_xhci_ep_stop(slotid, epid);
1209     assert(slotid >= 1 && slotid <= xhci->numslots);
1210 
1211     if (epid < 1 || epid > 31) {
1212         fprintf(stderr, "xhci: bad ep %d\n", epid);
1213         return CC_TRB_ERROR;
1214     }
1215 
1216     slot = &xhci->slots[slotid-1];
1217 
1218     if (!slot->eps[epid-1]) {
1219         DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1220         return CC_EP_NOT_ENABLED_ERROR;
1221     }
1222 
1223     if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1224         fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, "
1225                 "data might be lost\n");
1226     }
1227 
1228     epctx = slot->eps[epid-1];
1229 
1230     xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1231 
1232     return CC_SUCCESS;
1233 }
1234 
1235 static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid,
1236                               unsigned int epid)
1237 {
1238     XHCISlot *slot;
1239     XHCIEPContext *epctx;
1240     USBDevice *dev;
1241 
1242     trace_usb_xhci_ep_reset(slotid, epid);
1243     assert(slotid >= 1 && slotid <= xhci->numslots);
1244 
1245     if (epid < 1 || epid > 31) {
1246         fprintf(stderr, "xhci: bad ep %d\n", epid);
1247         return CC_TRB_ERROR;
1248     }
1249 
1250     slot = &xhci->slots[slotid-1];
1251 
1252     if (!slot->eps[epid-1]) {
1253         DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1254         return CC_EP_NOT_ENABLED_ERROR;
1255     }
1256 
1257     epctx = slot->eps[epid-1];
1258 
1259     if (epctx->state != EP_HALTED) {
1260         fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n",
1261                 epid, epctx->state);
1262         return CC_CONTEXT_STATE_ERROR;
1263     }
1264 
1265     if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1266         fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, "
1267                 "data might be lost\n");
1268     }
1269 
1270     uint8_t ep = epid>>1;
1271 
1272     if (epid & 1) {
1273         ep |= 0x80;
1274     }
1275 
1276     dev = xhci->slots[slotid-1].uport->dev;
1277     if (!dev) {
1278         return CC_USB_TRANSACTION_ERROR;
1279     }
1280 
1281     xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1282 
1283     return CC_SUCCESS;
1284 }
1285 
1286 static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid,
1287                                     unsigned int epid, uint64_t pdequeue)
1288 {
1289     XHCISlot *slot;
1290     XHCIEPContext *epctx;
1291     dma_addr_t dequeue;
1292 
1293     assert(slotid >= 1 && slotid <= xhci->numslots);
1294 
1295     if (epid < 1 || epid > 31) {
1296         fprintf(stderr, "xhci: bad ep %d\n", epid);
1297         return CC_TRB_ERROR;
1298     }
1299 
1300     trace_usb_xhci_ep_set_dequeue(slotid, epid, pdequeue);
1301     dequeue = xhci_mask64(pdequeue);
1302 
1303     slot = &xhci->slots[slotid-1];
1304 
1305     if (!slot->eps[epid-1]) {
1306         DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1307         return CC_EP_NOT_ENABLED_ERROR;
1308     }
1309 
1310     epctx = slot->eps[epid-1];
1311 
1312 
1313     if (epctx->state != EP_STOPPED) {
1314         fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid);
1315         return CC_CONTEXT_STATE_ERROR;
1316     }
1317 
1318     xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF);
1319     epctx->ring.ccs = dequeue & 1;
1320 
1321     xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1322 
1323     return CC_SUCCESS;
1324 }
1325 
1326 static int xhci_xfer_create_sgl(XHCITransfer *xfer, int in_xfer)
1327 {
1328     XHCIState *xhci = xfer->xhci;
1329     int i;
1330 
1331     xfer->int_req = false;
1332     pci_dma_sglist_init(&xfer->sgl, &xhci->pci_dev, xfer->trb_count);
1333     for (i = 0; i < xfer->trb_count; i++) {
1334         XHCITRB *trb = &xfer->trbs[i];
1335         dma_addr_t addr;
1336         unsigned int chunk = 0;
1337 
1338         if (trb->control & TRB_TR_IOC) {
1339             xfer->int_req = true;
1340         }
1341 
1342         switch (TRB_TYPE(*trb)) {
1343         case TR_DATA:
1344             if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) {
1345                 fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n");
1346                 goto err;
1347             }
1348             /* fallthrough */
1349         case TR_NORMAL:
1350         case TR_ISOCH:
1351             addr = xhci_mask64(trb->parameter);
1352             chunk = trb->status & 0x1ffff;
1353             if (trb->control & TRB_TR_IDT) {
1354                 if (chunk > 8 || in_xfer) {
1355                     fprintf(stderr, "xhci: invalid immediate data TRB\n");
1356                     goto err;
1357                 }
1358                 qemu_sglist_add(&xfer->sgl, trb->addr, chunk);
1359             } else {
1360                 qemu_sglist_add(&xfer->sgl, addr, chunk);
1361             }
1362             break;
1363         }
1364     }
1365 
1366     return 0;
1367 
1368 err:
1369     qemu_sglist_destroy(&xfer->sgl);
1370     xhci_die(xhci);
1371     return -1;
1372 }
1373 
1374 static void xhci_xfer_unmap(XHCITransfer *xfer)
1375 {
1376     usb_packet_unmap(&xfer->packet, &xfer->sgl);
1377     qemu_sglist_destroy(&xfer->sgl);
1378 }
1379 
1380 static void xhci_xfer_report(XHCITransfer *xfer)
1381 {
1382     uint32_t edtla = 0;
1383     unsigned int left;
1384     bool reported = 0;
1385     bool shortpkt = 0;
1386     XHCIEvent event = {ER_TRANSFER, CC_SUCCESS};
1387     XHCIState *xhci = xfer->xhci;
1388     int i;
1389 
1390     left = xfer->packet.result < 0 ? 0 : xfer->packet.result;
1391 
1392     for (i = 0; i < xfer->trb_count; i++) {
1393         XHCITRB *trb = &xfer->trbs[i];
1394         unsigned int chunk = 0;
1395 
1396         switch (TRB_TYPE(*trb)) {
1397         case TR_DATA:
1398         case TR_NORMAL:
1399         case TR_ISOCH:
1400             chunk = trb->status & 0x1ffff;
1401             if (chunk > left) {
1402                 chunk = left;
1403                 if (xfer->status == CC_SUCCESS) {
1404                     shortpkt = 1;
1405                 }
1406             }
1407             left -= chunk;
1408             edtla += chunk;
1409             break;
1410         case TR_STATUS:
1411             reported = 0;
1412             shortpkt = 0;
1413             break;
1414         }
1415 
1416         if (!reported && ((trb->control & TRB_TR_IOC) ||
1417                           (shortpkt && (trb->control & TRB_TR_ISP)) ||
1418                           (xfer->status != CC_SUCCESS))) {
1419             event.slotid = xfer->slotid;
1420             event.epid = xfer->epid;
1421             event.length = (trb->status & 0x1ffff) - chunk;
1422             event.flags = 0;
1423             event.ptr = trb->addr;
1424             if (xfer->status == CC_SUCCESS) {
1425                 event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS;
1426             } else {
1427                 event.ccode = xfer->status;
1428             }
1429             if (TRB_TYPE(*trb) == TR_EVDATA) {
1430                 event.ptr = trb->parameter;
1431                 event.flags |= TRB_EV_ED;
1432                 event.length = edtla & 0xffffff;
1433                 DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length);
1434                 edtla = 0;
1435             }
1436             xhci_event(xhci, &event, TRB_INTR(*trb));
1437             reported = 1;
1438             if (xfer->status != CC_SUCCESS) {
1439                 return;
1440             }
1441         }
1442     }
1443 }
1444 
1445 static void xhci_stall_ep(XHCITransfer *xfer)
1446 {
1447     XHCIState *xhci = xfer->xhci;
1448     XHCISlot *slot = &xhci->slots[xfer->slotid-1];
1449     XHCIEPContext *epctx = slot->eps[xfer->epid-1];
1450 
1451     epctx->ring.dequeue = xfer->trbs[0].addr;
1452     epctx->ring.ccs = xfer->trbs[0].ccs;
1453     xhci_set_ep_state(xhci, epctx, EP_HALTED);
1454     DPRINTF("xhci: stalled slot %d ep %d\n", xfer->slotid, xfer->epid);
1455     DPRINTF("xhci: will continue at "DMA_ADDR_FMT"\n", epctx->ring.dequeue);
1456 }
1457 
1458 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer,
1459                        XHCIEPContext *epctx);
1460 
1461 static int xhci_setup_packet(XHCITransfer *xfer)
1462 {
1463     XHCIState *xhci = xfer->xhci;
1464     USBDevice *dev;
1465     USBEndpoint *ep;
1466     int dir;
1467 
1468     dir = xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT;
1469 
1470     if (xfer->packet.ep) {
1471         ep = xfer->packet.ep;
1472         dev = ep->dev;
1473     } else {
1474         if (!xhci->slots[xfer->slotid-1].uport) {
1475             fprintf(stderr, "xhci: slot %d has no device\n",
1476                     xfer->slotid);
1477             return -1;
1478         }
1479         dev = xhci->slots[xfer->slotid-1].uport->dev;
1480         ep = usb_ep_get(dev, dir, xfer->epid >> 1);
1481     }
1482 
1483     xhci_xfer_create_sgl(xfer, dir == USB_TOKEN_IN); /* Also sets int_req */
1484     usb_packet_setup(&xfer->packet, dir, ep, xfer->trbs[0].addr, false,
1485                      xfer->int_req);
1486     usb_packet_map(&xfer->packet, &xfer->sgl);
1487     DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n",
1488             xfer->packet.pid, dev->addr, ep->nr);
1489     return 0;
1490 }
1491 
1492 static int xhci_complete_packet(XHCITransfer *xfer, int ret)
1493 {
1494     if (ret == USB_RET_ASYNC) {
1495         trace_usb_xhci_xfer_async(xfer);
1496         xfer->running_async = 1;
1497         xfer->running_retry = 0;
1498         xfer->complete = 0;
1499         xfer->cancelled = 0;
1500         return 0;
1501     } else if (ret == USB_RET_NAK) {
1502         trace_usb_xhci_xfer_nak(xfer);
1503         xfer->running_async = 0;
1504         xfer->running_retry = 1;
1505         xfer->complete = 0;
1506         xfer->cancelled = 0;
1507         return 0;
1508     } else {
1509         xfer->running_async = 0;
1510         xfer->running_retry = 0;
1511         xfer->complete = 1;
1512         xhci_xfer_unmap(xfer);
1513     }
1514 
1515     if (ret >= 0) {
1516         trace_usb_xhci_xfer_success(xfer, ret);
1517         xfer->status = CC_SUCCESS;
1518         xhci_xfer_report(xfer);
1519         return 0;
1520     }
1521 
1522     /* error */
1523     trace_usb_xhci_xfer_error(xfer, ret);
1524     switch (ret) {
1525     case USB_RET_NODEV:
1526         xfer->status = CC_USB_TRANSACTION_ERROR;
1527         xhci_xfer_report(xfer);
1528         xhci_stall_ep(xfer);
1529         break;
1530     case USB_RET_STALL:
1531         xfer->status = CC_STALL_ERROR;
1532         xhci_xfer_report(xfer);
1533         xhci_stall_ep(xfer);
1534         break;
1535     default:
1536         fprintf(stderr, "%s: FIXME: ret = %d\n", __FUNCTION__, ret);
1537         FIXME();
1538     }
1539     return 0;
1540 }
1541 
1542 static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer)
1543 {
1544     XHCITRB *trb_setup, *trb_status;
1545     uint8_t bmRequestType;
1546     int ret;
1547 
1548     trb_setup = &xfer->trbs[0];
1549     trb_status = &xfer->trbs[xfer->trb_count-1];
1550 
1551     trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid);
1552 
1553     /* at most one Event Data TRB allowed after STATUS */
1554     if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) {
1555         trb_status--;
1556     }
1557 
1558     /* do some sanity checks */
1559     if (TRB_TYPE(*trb_setup) != TR_SETUP) {
1560         fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n",
1561                 TRB_TYPE(*trb_setup));
1562         return -1;
1563     }
1564     if (TRB_TYPE(*trb_status) != TR_STATUS) {
1565         fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n",
1566                 TRB_TYPE(*trb_status));
1567         return -1;
1568     }
1569     if (!(trb_setup->control & TRB_TR_IDT)) {
1570         fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n");
1571         return -1;
1572     }
1573     if ((trb_setup->status & 0x1ffff) != 8) {
1574         fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n",
1575                 (trb_setup->status & 0x1ffff));
1576         return -1;
1577     }
1578 
1579     bmRequestType = trb_setup->parameter;
1580 
1581     xfer->in_xfer = bmRequestType & USB_DIR_IN;
1582     xfer->iso_xfer = false;
1583 
1584     if (xhci_setup_packet(xfer) < 0) {
1585         return -1;
1586     }
1587     xfer->packet.parameter = trb_setup->parameter;
1588 
1589     ret = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1590 
1591     xhci_complete_packet(xfer, ret);
1592     if (!xfer->running_async && !xfer->running_retry) {
1593         xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1594     }
1595     return 0;
1596 }
1597 
1598 static void xhci_calc_iso_kick(XHCIState *xhci, XHCITransfer *xfer,
1599                                XHCIEPContext *epctx, uint64_t mfindex)
1600 {
1601     if (xfer->trbs[0].control & TRB_TR_SIA) {
1602         uint64_t asap = ((mfindex + epctx->interval - 1) &
1603                          ~(epctx->interval-1));
1604         if (asap >= epctx->mfindex_last &&
1605             asap <= epctx->mfindex_last + epctx->interval * 4) {
1606             xfer->mfindex_kick = epctx->mfindex_last + epctx->interval;
1607         } else {
1608             xfer->mfindex_kick = asap;
1609         }
1610     } else {
1611         xfer->mfindex_kick = (xfer->trbs[0].control >> TRB_TR_FRAMEID_SHIFT)
1612             & TRB_TR_FRAMEID_MASK;
1613         xfer->mfindex_kick |= mfindex & ~0x3fff;
1614         if (xfer->mfindex_kick < mfindex) {
1615             xfer->mfindex_kick += 0x4000;
1616         }
1617     }
1618 }
1619 
1620 static void xhci_check_iso_kick(XHCIState *xhci, XHCITransfer *xfer,
1621                                 XHCIEPContext *epctx, uint64_t mfindex)
1622 {
1623     if (xfer->mfindex_kick > mfindex) {
1624         qemu_mod_timer(epctx->kick_timer, qemu_get_clock_ns(vm_clock) +
1625                        (xfer->mfindex_kick - mfindex) * 125000);
1626         xfer->running_retry = 1;
1627     } else {
1628         epctx->mfindex_last = xfer->mfindex_kick;
1629         qemu_del_timer(epctx->kick_timer);
1630         xfer->running_retry = 0;
1631     }
1632 }
1633 
1634 
1635 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1636 {
1637     uint64_t mfindex;
1638     int ret;
1639 
1640     DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
1641 
1642     xfer->in_xfer = epctx->type>>2;
1643 
1644     switch(epctx->type) {
1645     case ET_INTR_OUT:
1646     case ET_INTR_IN:
1647     case ET_BULK_OUT:
1648     case ET_BULK_IN:
1649         xfer->pkts = 0;
1650         xfer->iso_xfer = false;
1651         break;
1652     case ET_ISO_OUT:
1653     case ET_ISO_IN:
1654         xfer->pkts = 1;
1655         xfer->iso_xfer = true;
1656         mfindex = xhci_mfindex_get(xhci);
1657         xhci_calc_iso_kick(xhci, xfer, epctx, mfindex);
1658         xhci_check_iso_kick(xhci, xfer, epctx, mfindex);
1659         if (xfer->running_retry) {
1660             return -1;
1661         }
1662         break;
1663     default:
1664         fprintf(stderr, "xhci: unknown or unhandled EP "
1665                 "(type %d, in %d, ep %02x)\n",
1666                 epctx->type, xfer->in_xfer, xfer->epid);
1667         return -1;
1668     }
1669 
1670     if (xhci_setup_packet(xfer) < 0) {
1671         return -1;
1672     }
1673     ret = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1674 
1675     xhci_complete_packet(xfer, ret);
1676     if (!xfer->running_async && !xfer->running_retry) {
1677         xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1678     }
1679     return 0;
1680 }
1681 
1682 static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1683 {
1684     trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid);
1685     return xhci_submit(xhci, xfer, epctx);
1686 }
1687 
1688 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid)
1689 {
1690     XHCIEPContext *epctx;
1691     USBEndpoint *ep = NULL;
1692     uint64_t mfindex;
1693     int length;
1694     int i;
1695 
1696     trace_usb_xhci_ep_kick(slotid, epid);
1697     assert(slotid >= 1 && slotid <= xhci->numslots);
1698     assert(epid >= 1 && epid <= 31);
1699 
1700     if (!xhci->slots[slotid-1].enabled) {
1701         fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid);
1702         return;
1703     }
1704     epctx = xhci->slots[slotid-1].eps[epid-1];
1705     if (!epctx) {
1706         fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n",
1707                 epid, slotid);
1708         return;
1709     }
1710 
1711     if (epctx->retry) {
1712         XHCITransfer *xfer = epctx->retry;
1713         int result;
1714 
1715         trace_usb_xhci_xfer_retry(xfer);
1716         assert(xfer->running_retry);
1717         if (xfer->iso_xfer) {
1718             /* retry delayed iso transfer */
1719             mfindex = xhci_mfindex_get(xhci);
1720             xhci_check_iso_kick(xhci, xfer, epctx, mfindex);
1721             if (xfer->running_retry) {
1722                 return;
1723             }
1724             if (xhci_setup_packet(xfer) < 0) {
1725                 return;
1726             }
1727             result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1728             assert(result != USB_RET_NAK);
1729             xhci_complete_packet(xfer, result);
1730         } else {
1731             /* retry nak'ed transfer */
1732             if (xhci_setup_packet(xfer) < 0) {
1733                 return;
1734             }
1735             result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1736             if (result == USB_RET_NAK) {
1737                 return;
1738             }
1739             xhci_complete_packet(xfer, result);
1740         }
1741         assert(!xfer->running_retry);
1742         epctx->retry = NULL;
1743     }
1744 
1745     if (epctx->state == EP_HALTED) {
1746         DPRINTF("xhci: ep halted, not running schedule\n");
1747         return;
1748     }
1749 
1750     xhci_set_ep_state(xhci, epctx, EP_RUNNING);
1751 
1752     while (1) {
1753         XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer];
1754         if (xfer->running_async || xfer->running_retry) {
1755             break;
1756         }
1757         length = xhci_ring_chain_length(xhci, &epctx->ring);
1758         if (length < 0) {
1759             break;
1760         } else if (length == 0) {
1761             break;
1762         }
1763         if (xfer->trbs && xfer->trb_alloced < length) {
1764             xfer->trb_count = 0;
1765             xfer->trb_alloced = 0;
1766             g_free(xfer->trbs);
1767             xfer->trbs = NULL;
1768         }
1769         if (!xfer->trbs) {
1770             xfer->trbs = g_malloc(sizeof(XHCITRB) * length);
1771             xfer->trb_alloced = length;
1772         }
1773         xfer->trb_count = length;
1774 
1775         for (i = 0; i < length; i++) {
1776             assert(xhci_ring_fetch(xhci, &epctx->ring, &xfer->trbs[i], NULL));
1777         }
1778         xfer->xhci = xhci;
1779         xfer->epid = epid;
1780         xfer->slotid = slotid;
1781 
1782         if (epid == 1) {
1783             if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) {
1784                 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1785                 ep = xfer->packet.ep;
1786             } else {
1787                 fprintf(stderr, "xhci: error firing CTL transfer\n");
1788             }
1789         } else {
1790             if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) {
1791                 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1792                 ep = xfer->packet.ep;
1793             } else {
1794                 if (!xfer->iso_xfer) {
1795                     fprintf(stderr, "xhci: error firing data transfer\n");
1796                 }
1797             }
1798         }
1799 
1800         if (epctx->state == EP_HALTED) {
1801             break;
1802         }
1803         if (xfer->running_retry) {
1804             DPRINTF("xhci: xfer nacked, stopping schedule\n");
1805             epctx->retry = xfer;
1806             break;
1807         }
1808     }
1809     if (ep) {
1810         usb_device_flush_ep_queue(ep->dev, ep);
1811     }
1812 }
1813 
1814 static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid)
1815 {
1816     trace_usb_xhci_slot_enable(slotid);
1817     assert(slotid >= 1 && slotid <= xhci->numslots);
1818     xhci->slots[slotid-1].enabled = 1;
1819     xhci->slots[slotid-1].uport = NULL;
1820     memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31);
1821 
1822     return CC_SUCCESS;
1823 }
1824 
1825 static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid)
1826 {
1827     int i;
1828 
1829     trace_usb_xhci_slot_disable(slotid);
1830     assert(slotid >= 1 && slotid <= xhci->numslots);
1831 
1832     for (i = 1; i <= 31; i++) {
1833         if (xhci->slots[slotid-1].eps[i-1]) {
1834             xhci_disable_ep(xhci, slotid, i);
1835         }
1836     }
1837 
1838     xhci->slots[slotid-1].enabled = 0;
1839     return CC_SUCCESS;
1840 }
1841 
1842 static USBPort *xhci_lookup_uport(XHCIState *xhci, uint32_t *slot_ctx)
1843 {
1844     USBPort *uport;
1845     char path[32];
1846     int i, pos, port;
1847 
1848     port = (slot_ctx[1]>>16) & 0xFF;
1849     port = xhci->ports[port-1].uport->index+1;
1850     pos = snprintf(path, sizeof(path), "%d", port);
1851     for (i = 0; i < 5; i++) {
1852         port = (slot_ctx[0] >> 4*i) & 0x0f;
1853         if (!port) {
1854             break;
1855         }
1856         pos += snprintf(path + pos, sizeof(path) - pos, ".%d", port);
1857     }
1858 
1859     QTAILQ_FOREACH(uport, &xhci->bus.used, next) {
1860         if (strcmp(uport->path, path) == 0) {
1861             return uport;
1862         }
1863     }
1864     return NULL;
1865 }
1866 
1867 static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid,
1868                                   uint64_t pictx, bool bsr)
1869 {
1870     XHCISlot *slot;
1871     USBPort *uport;
1872     USBDevice *dev;
1873     dma_addr_t ictx, octx, dcbaap;
1874     uint64_t poctx;
1875     uint32_t ictl_ctx[2];
1876     uint32_t slot_ctx[4];
1877     uint32_t ep0_ctx[5];
1878     int i;
1879     TRBCCode res;
1880 
1881     trace_usb_xhci_slot_address(slotid);
1882     assert(slotid >= 1 && slotid <= xhci->numslots);
1883 
1884     dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high);
1885     pci_dma_read(&xhci->pci_dev, dcbaap + 8*slotid, &poctx, sizeof(poctx));
1886     ictx = xhci_mask64(pictx);
1887     octx = xhci_mask64(le64_to_cpu(poctx));
1888 
1889     DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx);
1890     DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
1891 
1892     pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx));
1893 
1894     if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) {
1895         fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1896                 ictl_ctx[0], ictl_ctx[1]);
1897         return CC_TRB_ERROR;
1898     }
1899 
1900     pci_dma_read(&xhci->pci_dev, ictx+32, slot_ctx, sizeof(slot_ctx));
1901     pci_dma_read(&xhci->pci_dev, ictx+64, ep0_ctx, sizeof(ep0_ctx));
1902 
1903     DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
1904             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1905 
1906     DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
1907             ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1908 
1909     uport = xhci_lookup_uport(xhci, slot_ctx);
1910     if (uport == NULL) {
1911         fprintf(stderr, "xhci: port not found\n");
1912         return CC_TRB_ERROR;
1913     }
1914 
1915     dev = uport->dev;
1916     if (!dev) {
1917         fprintf(stderr, "xhci: port %s not connected\n", uport->path);
1918         return CC_USB_TRANSACTION_ERROR;
1919     }
1920 
1921     for (i = 0; i < xhci->numslots; i++) {
1922         if (xhci->slots[i].uport == uport) {
1923             fprintf(stderr, "xhci: port %s already assigned to slot %d\n",
1924                     uport->path, i+1);
1925             return CC_TRB_ERROR;
1926         }
1927     }
1928 
1929     slot = &xhci->slots[slotid-1];
1930     slot->uport = uport;
1931     slot->ctx = octx;
1932 
1933     if (bsr) {
1934         slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT;
1935     } else {
1936         slot->devaddr = xhci->devaddr++;
1937         slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slot->devaddr;
1938         DPRINTF("xhci: device address is %d\n", slot->devaddr);
1939         usb_device_handle_control(dev, NULL,
1940                                   DeviceOutRequest | USB_REQ_SET_ADDRESS,
1941                                   slot->devaddr, 0, 0, NULL);
1942     }
1943 
1944     res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx);
1945 
1946     DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1947             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1948     DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
1949             ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1950 
1951     pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1952     pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx));
1953 
1954     return res;
1955 }
1956 
1957 
1958 static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid,
1959                                   uint64_t pictx, bool dc)
1960 {
1961     dma_addr_t ictx, octx;
1962     uint32_t ictl_ctx[2];
1963     uint32_t slot_ctx[4];
1964     uint32_t islot_ctx[4];
1965     uint32_t ep_ctx[5];
1966     int i;
1967     TRBCCode res;
1968 
1969     trace_usb_xhci_slot_configure(slotid);
1970     assert(slotid >= 1 && slotid <= xhci->numslots);
1971 
1972     ictx = xhci_mask64(pictx);
1973     octx = xhci->slots[slotid-1].ctx;
1974 
1975     DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx);
1976     DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
1977 
1978     if (dc) {
1979         for (i = 2; i <= 31; i++) {
1980             if (xhci->slots[slotid-1].eps[i-1]) {
1981                 xhci_disable_ep(xhci, slotid, i);
1982             }
1983         }
1984 
1985         pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1986         slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
1987         slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT;
1988         DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1989                 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1990         pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1991 
1992         return CC_SUCCESS;
1993     }
1994 
1995     pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx));
1996 
1997     if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) {
1998         fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1999                 ictl_ctx[0], ictl_ctx[1]);
2000         return CC_TRB_ERROR;
2001     }
2002 
2003     pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx));
2004     pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2005 
2006     if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) {
2007         fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]);
2008         return CC_CONTEXT_STATE_ERROR;
2009     }
2010 
2011     for (i = 2; i <= 31; i++) {
2012         if (ictl_ctx[0] & (1<<i)) {
2013             xhci_disable_ep(xhci, slotid, i);
2014         }
2015         if (ictl_ctx[1] & (1<<i)) {
2016             pci_dma_read(&xhci->pci_dev, ictx+32+(32*i), ep_ctx,
2017                          sizeof(ep_ctx));
2018             DPRINTF("xhci: input ep%d.%d context: %08x %08x %08x %08x %08x\n",
2019                     i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
2020                     ep_ctx[3], ep_ctx[4]);
2021             xhci_disable_ep(xhci, slotid, i);
2022             res = xhci_enable_ep(xhci, slotid, i, octx+(32*i), ep_ctx);
2023             if (res != CC_SUCCESS) {
2024                 return res;
2025             }
2026             DPRINTF("xhci: output ep%d.%d context: %08x %08x %08x %08x %08x\n",
2027                     i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
2028                     ep_ctx[3], ep_ctx[4]);
2029             pci_dma_write(&xhci->pci_dev, octx+(32*i), ep_ctx, sizeof(ep_ctx));
2030         }
2031     }
2032 
2033     slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
2034     slot_ctx[3] |= SLOT_CONFIGURED << SLOT_STATE_SHIFT;
2035     slot_ctx[0] &= ~(SLOT_CONTEXT_ENTRIES_MASK << SLOT_CONTEXT_ENTRIES_SHIFT);
2036     slot_ctx[0] |= islot_ctx[0] & (SLOT_CONTEXT_ENTRIES_MASK <<
2037                                    SLOT_CONTEXT_ENTRIES_SHIFT);
2038     DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2039             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2040 
2041     pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2042 
2043     return CC_SUCCESS;
2044 }
2045 
2046 
2047 static TRBCCode xhci_evaluate_slot(XHCIState *xhci, unsigned int slotid,
2048                                    uint64_t pictx)
2049 {
2050     dma_addr_t ictx, octx;
2051     uint32_t ictl_ctx[2];
2052     uint32_t iep0_ctx[5];
2053     uint32_t ep0_ctx[5];
2054     uint32_t islot_ctx[4];
2055     uint32_t slot_ctx[4];
2056 
2057     trace_usb_xhci_slot_evaluate(slotid);
2058     assert(slotid >= 1 && slotid <= xhci->numslots);
2059 
2060     ictx = xhci_mask64(pictx);
2061     octx = xhci->slots[slotid-1].ctx;
2062 
2063     DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx);
2064     DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
2065 
2066     pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx));
2067 
2068     if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) {
2069         fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
2070                 ictl_ctx[0], ictl_ctx[1]);
2071         return CC_TRB_ERROR;
2072     }
2073 
2074     if (ictl_ctx[1] & 0x1) {
2075         pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx));
2076 
2077         DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
2078                 islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]);
2079 
2080         pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2081 
2082         slot_ctx[1] &= ~0xFFFF; /* max exit latency */
2083         slot_ctx[1] |= islot_ctx[1] & 0xFFFF;
2084         slot_ctx[2] &= ~0xFF00000; /* interrupter target */
2085         slot_ctx[2] |= islot_ctx[2] & 0xFF000000;
2086 
2087         DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2088                 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2089 
2090         pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2091     }
2092 
2093     if (ictl_ctx[1] & 0x2) {
2094         pci_dma_read(&xhci->pci_dev, ictx+64, iep0_ctx, sizeof(iep0_ctx));
2095 
2096         DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
2097                 iep0_ctx[0], iep0_ctx[1], iep0_ctx[2],
2098                 iep0_ctx[3], iep0_ctx[4]);
2099 
2100         pci_dma_read(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx));
2101 
2102         ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/
2103         ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000;
2104 
2105         DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
2106                 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
2107 
2108         pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx));
2109     }
2110 
2111     return CC_SUCCESS;
2112 }
2113 
2114 static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid)
2115 {
2116     uint32_t slot_ctx[4];
2117     dma_addr_t octx;
2118     int i;
2119 
2120     trace_usb_xhci_slot_reset(slotid);
2121     assert(slotid >= 1 && slotid <= xhci->numslots);
2122 
2123     octx = xhci->slots[slotid-1].ctx;
2124 
2125     DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
2126 
2127     for (i = 2; i <= 31; i++) {
2128         if (xhci->slots[slotid-1].eps[i-1]) {
2129             xhci_disable_ep(xhci, slotid, i);
2130         }
2131     }
2132 
2133     pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2134     slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
2135     slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT;
2136     DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2137             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2138     pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2139 
2140     return CC_SUCCESS;
2141 }
2142 
2143 static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb)
2144 {
2145     unsigned int slotid;
2146     slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK;
2147     if (slotid < 1 || slotid > xhci->numslots) {
2148         fprintf(stderr, "xhci: bad slot id %d\n", slotid);
2149         event->ccode = CC_TRB_ERROR;
2150         return 0;
2151     } else if (!xhci->slots[slotid-1].enabled) {
2152         fprintf(stderr, "xhci: slot id %d not enabled\n", slotid);
2153         event->ccode = CC_SLOT_NOT_ENABLED_ERROR;
2154         return 0;
2155     }
2156     return slotid;
2157 }
2158 
2159 static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx)
2160 {
2161     dma_addr_t ctx;
2162     uint8_t bw_ctx[xhci->numports+1];
2163 
2164     DPRINTF("xhci_get_port_bandwidth()\n");
2165 
2166     ctx = xhci_mask64(pctx);
2167 
2168     DPRINTF("xhci: bandwidth context at "DMA_ADDR_FMT"\n", ctx);
2169 
2170     /* TODO: actually implement real values here */
2171     bw_ctx[0] = 0;
2172     memset(&bw_ctx[1], 80, xhci->numports); /* 80% */
2173     pci_dma_write(&xhci->pci_dev, ctx, bw_ctx, sizeof(bw_ctx));
2174 
2175     return CC_SUCCESS;
2176 }
2177 
2178 static uint32_t rotl(uint32_t v, unsigned count)
2179 {
2180     count &= 31;
2181     return (v << count) | (v >> (32 - count));
2182 }
2183 
2184 
2185 static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo)
2186 {
2187     uint32_t val;
2188     val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F));
2189     val += rotl(lo + 0x49434878, hi & 0x1F);
2190     val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F);
2191     return ~val;
2192 }
2193 
2194 static void xhci_via_challenge(XHCIState *xhci, uint64_t addr)
2195 {
2196     uint32_t buf[8];
2197     uint32_t obuf[8];
2198     dma_addr_t paddr = xhci_mask64(addr);
2199 
2200     pci_dma_read(&xhci->pci_dev, paddr, &buf, 32);
2201 
2202     memcpy(obuf, buf, sizeof(obuf));
2203 
2204     if ((buf[0] & 0xff) == 2) {
2205         obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3];
2206         obuf[0] |=  (buf[2] * buf[3]) & 0xff;
2207         obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3];
2208         obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3];
2209         obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3];
2210         obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3];
2211         obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3];
2212         obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956;
2213         obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593;
2214     }
2215 
2216     pci_dma_write(&xhci->pci_dev, paddr, &obuf, 32);
2217 }
2218 
2219 static void xhci_process_commands(XHCIState *xhci)
2220 {
2221     XHCITRB trb;
2222     TRBType type;
2223     XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS};
2224     dma_addr_t addr;
2225     unsigned int i, slotid = 0;
2226 
2227     DPRINTF("xhci_process_commands()\n");
2228     if (!xhci_running(xhci)) {
2229         DPRINTF("xhci_process_commands() called while xHC stopped or paused\n");
2230         return;
2231     }
2232 
2233     xhci->crcr_low |= CRCR_CRR;
2234 
2235     while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) {
2236         event.ptr = addr;
2237         switch (type) {
2238         case CR_ENABLE_SLOT:
2239             for (i = 0; i < xhci->numslots; i++) {
2240                 if (!xhci->slots[i].enabled) {
2241                     break;
2242                 }
2243             }
2244             if (i >= xhci->numslots) {
2245                 fprintf(stderr, "xhci: no device slots available\n");
2246                 event.ccode = CC_NO_SLOTS_ERROR;
2247             } else {
2248                 slotid = i+1;
2249                 event.ccode = xhci_enable_slot(xhci, slotid);
2250             }
2251             break;
2252         case CR_DISABLE_SLOT:
2253             slotid = xhci_get_slot(xhci, &event, &trb);
2254             if (slotid) {
2255                 event.ccode = xhci_disable_slot(xhci, slotid);
2256             }
2257             break;
2258         case CR_ADDRESS_DEVICE:
2259             slotid = xhci_get_slot(xhci, &event, &trb);
2260             if (slotid) {
2261                 event.ccode = xhci_address_slot(xhci, slotid, trb.parameter,
2262                                                 trb.control & TRB_CR_BSR);
2263             }
2264             break;
2265         case CR_CONFIGURE_ENDPOINT:
2266             slotid = xhci_get_slot(xhci, &event, &trb);
2267             if (slotid) {
2268                 event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter,
2269                                                   trb.control & TRB_CR_DC);
2270             }
2271             break;
2272         case CR_EVALUATE_CONTEXT:
2273             slotid = xhci_get_slot(xhci, &event, &trb);
2274             if (slotid) {
2275                 event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter);
2276             }
2277             break;
2278         case CR_STOP_ENDPOINT:
2279             slotid = xhci_get_slot(xhci, &event, &trb);
2280             if (slotid) {
2281                 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2282                     & TRB_CR_EPID_MASK;
2283                 event.ccode = xhci_stop_ep(xhci, slotid, epid);
2284             }
2285             break;
2286         case CR_RESET_ENDPOINT:
2287             slotid = xhci_get_slot(xhci, &event, &trb);
2288             if (slotid) {
2289                 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2290                     & TRB_CR_EPID_MASK;
2291                 event.ccode = xhci_reset_ep(xhci, slotid, epid);
2292             }
2293             break;
2294         case CR_SET_TR_DEQUEUE:
2295             slotid = xhci_get_slot(xhci, &event, &trb);
2296             if (slotid) {
2297                 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2298                     & TRB_CR_EPID_MASK;
2299                 event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid,
2300                                                   trb.parameter);
2301             }
2302             break;
2303         case CR_RESET_DEVICE:
2304             slotid = xhci_get_slot(xhci, &event, &trb);
2305             if (slotid) {
2306                 event.ccode = xhci_reset_slot(xhci, slotid);
2307             }
2308             break;
2309         case CR_GET_PORT_BANDWIDTH:
2310             event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter);
2311             break;
2312         case CR_VENDOR_VIA_CHALLENGE_RESPONSE:
2313             xhci_via_challenge(xhci, trb.parameter);
2314             break;
2315         case CR_VENDOR_NEC_FIRMWARE_REVISION:
2316             event.type = 48; /* NEC reply */
2317             event.length = 0x3025;
2318             break;
2319         case CR_VENDOR_NEC_CHALLENGE_RESPONSE:
2320         {
2321             uint32_t chi = trb.parameter >> 32;
2322             uint32_t clo = trb.parameter;
2323             uint32_t val = xhci_nec_challenge(chi, clo);
2324             event.length = val & 0xFFFF;
2325             event.epid = val >> 16;
2326             slotid = val >> 24;
2327             event.type = 48; /* NEC reply */
2328         }
2329         break;
2330         default:
2331             fprintf(stderr, "xhci: unimplemented command %d\n", type);
2332             event.ccode = CC_TRB_ERROR;
2333             break;
2334         }
2335         event.slotid = slotid;
2336         xhci_event(xhci, &event, 0);
2337     }
2338 }
2339 
2340 static void xhci_update_port(XHCIState *xhci, XHCIPort *port, int is_detach)
2341 {
2342     port->portsc = PORTSC_PP;
2343     if (port->uport->dev && port->uport->dev->attached && !is_detach &&
2344         (1 << port->uport->dev->speed) & port->speedmask) {
2345         port->portsc |= PORTSC_CCS;
2346         switch (port->uport->dev->speed) {
2347         case USB_SPEED_LOW:
2348             port->portsc |= PORTSC_SPEED_LOW;
2349             break;
2350         case USB_SPEED_FULL:
2351             port->portsc |= PORTSC_SPEED_FULL;
2352             break;
2353         case USB_SPEED_HIGH:
2354             port->portsc |= PORTSC_SPEED_HIGH;
2355             break;
2356         case USB_SPEED_SUPER:
2357             port->portsc |= PORTSC_SPEED_SUPER;
2358             break;
2359         }
2360     }
2361 
2362     if (xhci_running(port->xhci)) {
2363         port->portsc |= PORTSC_CSC;
2364         XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS,
2365                          port->portnr << 24};
2366         xhci_event(xhci, &ev, 0);
2367         DPRINTF("xhci: port change event for port %d\n", port->portnr);
2368     }
2369 }
2370 
2371 static void xhci_reset(DeviceState *dev)
2372 {
2373     XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev.qdev, dev);
2374     int i;
2375 
2376     trace_usb_xhci_reset();
2377     if (!(xhci->usbsts & USBSTS_HCH)) {
2378         fprintf(stderr, "xhci: reset while running!\n");
2379     }
2380 
2381     xhci->usbcmd = 0;
2382     xhci->usbsts = USBSTS_HCH;
2383     xhci->dnctrl = 0;
2384     xhci->crcr_low = 0;
2385     xhci->crcr_high = 0;
2386     xhci->dcbaap_low = 0;
2387     xhci->dcbaap_high = 0;
2388     xhci->config = 0;
2389     xhci->devaddr = 2;
2390 
2391     for (i = 0; i < xhci->numslots; i++) {
2392         xhci_disable_slot(xhci, i+1);
2393     }
2394 
2395     for (i = 0; i < xhci->numports; i++) {
2396         xhci_update_port(xhci->ports + i, 0);
2397     }
2398 
2399     for (i = 0; i < xhci->numintrs; i++) {
2400         xhci->intr[i].iman = 0;
2401         xhci->intr[i].imod = 0;
2402         xhci->intr[i].erstsz = 0;
2403         xhci->intr[i].erstba_low = 0;
2404         xhci->intr[i].erstba_high = 0;
2405         xhci->intr[i].erdp_low = 0;
2406         xhci->intr[i].erdp_high = 0;
2407         xhci->intr[i].msix_used = 0;
2408 
2409         xhci->intr[i].er_ep_idx = 0;
2410         xhci->intr[i].er_pcs = 1;
2411         xhci->intr[i].er_full = 0;
2412         xhci->intr[i].ev_buffer_put = 0;
2413         xhci->intr[i].ev_buffer_get = 0;
2414     }
2415 
2416     xhci->mfindex_start = qemu_get_clock_ns(vm_clock);
2417     xhci_mfwrap_update(xhci);
2418 }
2419 
2420 static uint64_t xhci_cap_read(void *ptr, hwaddr reg, unsigned size)
2421 {
2422     XHCIState *xhci = ptr;
2423     uint32_t ret;
2424 
2425     switch (reg) {
2426     case 0x00: /* HCIVERSION, CAPLENGTH */
2427         ret = 0x01000000 | LEN_CAP;
2428         break;
2429     case 0x04: /* HCSPARAMS 1 */
2430         ret = ((xhci->numports_2+xhci->numports_3)<<24)
2431             | (xhci->numintrs<<8) | xhci->numslots;
2432         break;
2433     case 0x08: /* HCSPARAMS 2 */
2434         ret = 0x0000000f;
2435         break;
2436     case 0x0c: /* HCSPARAMS 3 */
2437         ret = 0x00000000;
2438         break;
2439     case 0x10: /* HCCPARAMS */
2440         if (sizeof(dma_addr_t) == 4) {
2441             ret = 0x00081000;
2442         } else {
2443             ret = 0x00081001;
2444         }
2445         break;
2446     case 0x14: /* DBOFF */
2447         ret = OFF_DOORBELL;
2448         break;
2449     case 0x18: /* RTSOFF */
2450         ret = OFF_RUNTIME;
2451         break;
2452 
2453     /* extended capabilities */
2454     case 0x20: /* Supported Protocol:00 */
2455         ret = 0x02000402; /* USB 2.0 */
2456         break;
2457     case 0x24: /* Supported Protocol:04 */
2458         ret = 0x20425355; /* "USB " */
2459         break;
2460     case 0x28: /* Supported Protocol:08 */
2461         ret = 0x00000001 | (xhci->numports_2<<8);
2462         break;
2463     case 0x2c: /* Supported Protocol:0c */
2464         ret = 0x00000000; /* reserved */
2465         break;
2466     case 0x30: /* Supported Protocol:00 */
2467         ret = 0x03000002; /* USB 3.0 */
2468         break;
2469     case 0x34: /* Supported Protocol:04 */
2470         ret = 0x20425355; /* "USB " */
2471         break;
2472     case 0x38: /* Supported Protocol:08 */
2473         ret = 0x00000000 | (xhci->numports_2+1) | (xhci->numports_3<<8);
2474         break;
2475     case 0x3c: /* Supported Protocol:0c */
2476         ret = 0x00000000; /* reserved */
2477         break;
2478     default:
2479         fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", (int)reg);
2480         ret = 0;
2481     }
2482 
2483     trace_usb_xhci_cap_read(reg, ret);
2484     return ret;
2485 }
2486 
2487 static uint64_t xhci_port_read(void *ptr, hwaddr reg, unsigned size)
2488 {
2489     XHCIPort *port = ptr;
2490     uint32_t ret;
2491 
2492     switch (reg) {
2493     case 0x00: /* PORTSC */
2494         ret = port->portsc;
2495         break;
2496     case 0x04: /* PORTPMSC */
2497     case 0x08: /* PORTLI */
2498         ret = 0;
2499         break;
2500     case 0x0c: /* reserved */
2501     default:
2502         fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n",
2503                 port->portnr, (uint32_t)reg);
2504         ret = 0;
2505     }
2506 
2507     trace_usb_xhci_port_read(port->portnr, reg, ret);
2508     return ret;
2509 }
2510 
2511 static void xhci_port_write(void *ptr, hwaddr reg,
2512                             uint64_t val, unsigned size)
2513 {
2514     XHCIPort *port = ptr;
2515     uint32_t portsc;
2516 
2517     trace_usb_xhci_port_write(port->portnr, reg, val);
2518 
2519     switch (reg) {
2520     case 0x00: /* PORTSC */
2521         portsc = port->portsc;
2522         /* write-1-to-clear bits*/
2523         portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC|
2524                            PORTSC_PRC|PORTSC_PLC|PORTSC_CEC));
2525         if (val & PORTSC_LWS) {
2526             /* overwrite PLS only when LWS=1 */
2527             uint32_t pls = get_field(val, PORTSC_PLS);
2528             set_field(&portsc, pls, PORTSC_PLS);
2529         }
2530         /* read/write bits */
2531         portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE);
2532         portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE));
2533         /* write-1-to-start bits */
2534         if (val & PORTSC_PR) {
2535             DPRINTF("xhci: port %d reset\n", port);
2536             usb_device_reset(port->uport->dev);
2537             portsc |= PORTSC_PRC | PORTSC_PED;
2538         }
2539         port->portsc = portsc;
2540         break;
2541     case 0x04: /* PORTPMSC */
2542     case 0x08: /* PORTLI */
2543     default:
2544         fprintf(stderr, "xhci_port_write (port %d): reg 0x%x unimplemented\n",
2545                 port->portnr, (uint32_t)reg);
2546     }
2547 }
2548 
2549 static uint64_t xhci_oper_read(void *ptr, hwaddr reg, unsigned size)
2550 {
2551     XHCIState *xhci = ptr;
2552     uint32_t ret;
2553 
2554     switch (reg) {
2555     case 0x00: /* USBCMD */
2556         ret = xhci->usbcmd;
2557         break;
2558     case 0x04: /* USBSTS */
2559         ret = xhci->usbsts;
2560         break;
2561     case 0x08: /* PAGESIZE */
2562         ret = 1; /* 4KiB */
2563         break;
2564     case 0x14: /* DNCTRL */
2565         ret = xhci->dnctrl;
2566         break;
2567     case 0x18: /* CRCR low */
2568         ret = xhci->crcr_low & ~0xe;
2569         break;
2570     case 0x1c: /* CRCR high */
2571         ret = xhci->crcr_high;
2572         break;
2573     case 0x30: /* DCBAAP low */
2574         ret = xhci->dcbaap_low;
2575         break;
2576     case 0x34: /* DCBAAP high */
2577         ret = xhci->dcbaap_high;
2578         break;
2579     case 0x38: /* CONFIG */
2580         ret = xhci->config;
2581         break;
2582     default:
2583         fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", (int)reg);
2584         ret = 0;
2585     }
2586 
2587     trace_usb_xhci_oper_read(reg, ret);
2588     return ret;
2589 }
2590 
2591 static void xhci_oper_write(void *ptr, hwaddr reg,
2592                             uint64_t val, unsigned size)
2593 {
2594     XHCIState *xhci = ptr;
2595 
2596     trace_usb_xhci_oper_write(reg, val);
2597 
2598     switch (reg) {
2599     case 0x00: /* USBCMD */
2600         if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) {
2601             xhci_run(xhci);
2602         } else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) {
2603             xhci_stop(xhci);
2604         }
2605         xhci->usbcmd = val & 0xc0f;
2606         xhci_mfwrap_update(xhci);
2607         if (val & USBCMD_HCRST) {
2608             xhci_reset(&xhci->pci_dev.qdev);
2609         }
2610         xhci_intx_update(xhci);
2611         break;
2612 
2613     case 0x04: /* USBSTS */
2614         /* these bits are write-1-to-clear */
2615         xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE));
2616         xhci_intx_update(xhci);
2617         break;
2618 
2619     case 0x14: /* DNCTRL */
2620         xhci->dnctrl = val & 0xffff;
2621         break;
2622     case 0x18: /* CRCR low */
2623         xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR);
2624         break;
2625     case 0x1c: /* CRCR high */
2626         xhci->crcr_high = val;
2627         if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) {
2628             XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED};
2629             xhci->crcr_low &= ~CRCR_CRR;
2630             xhci_event(xhci, &event, 0);
2631             DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low);
2632         } else {
2633             dma_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val);
2634             xhci_ring_init(xhci, &xhci->cmd_ring, base);
2635         }
2636         xhci->crcr_low &= ~(CRCR_CA | CRCR_CS);
2637         break;
2638     case 0x30: /* DCBAAP low */
2639         xhci->dcbaap_low = val & 0xffffffc0;
2640         break;
2641     case 0x34: /* DCBAAP high */
2642         xhci->dcbaap_high = val;
2643         break;
2644     case 0x38: /* CONFIG */
2645         xhci->config = val & 0xff;
2646         break;
2647     default:
2648         fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", (int)reg);
2649     }
2650 }
2651 
2652 static uint64_t xhci_runtime_read(void *ptr, hwaddr reg,
2653                                   unsigned size)
2654 {
2655     XHCIState *xhci = ptr;
2656     uint32_t ret = 0;
2657 
2658     if (reg < 0x20) {
2659         switch (reg) {
2660         case 0x00: /* MFINDEX */
2661             ret = xhci_mfindex_get(xhci) & 0x3fff;
2662             break;
2663         default:
2664             fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n",
2665                     (int)reg);
2666             break;
2667         }
2668     } else {
2669         int v = (reg - 0x20) / 0x20;
2670         XHCIInterrupter *intr = &xhci->intr[v];
2671         switch (reg & 0x1f) {
2672         case 0x00: /* IMAN */
2673             ret = intr->iman;
2674             break;
2675         case 0x04: /* IMOD */
2676             ret = intr->imod;
2677             break;
2678         case 0x08: /* ERSTSZ */
2679             ret = intr->erstsz;
2680             break;
2681         case 0x10: /* ERSTBA low */
2682             ret = intr->erstba_low;
2683             break;
2684         case 0x14: /* ERSTBA high */
2685             ret = intr->erstba_high;
2686             break;
2687         case 0x18: /* ERDP low */
2688             ret = intr->erdp_low;
2689             break;
2690         case 0x1c: /* ERDP high */
2691             ret = intr->erdp_high;
2692             break;
2693         }
2694     }
2695 
2696     trace_usb_xhci_runtime_read(reg, ret);
2697     return ret;
2698 }
2699 
2700 static void xhci_runtime_write(void *ptr, hwaddr reg,
2701                                uint64_t val, unsigned size)
2702 {
2703     XHCIState *xhci = ptr;
2704     int v = (reg - 0x20) / 0x20;
2705     XHCIInterrupter *intr = &xhci->intr[v];
2706     trace_usb_xhci_runtime_write(reg, val);
2707 
2708     if (reg < 0x20) {
2709         fprintf(stderr, "%s: reg 0x%x unimplemented\n", __func__, (int)reg);
2710         return;
2711     }
2712 
2713     switch (reg & 0x1f) {
2714     case 0x00: /* IMAN */
2715         if (val & IMAN_IP) {
2716             intr->iman &= ~IMAN_IP;
2717         }
2718         intr->iman &= ~IMAN_IE;
2719         intr->iman |= val & IMAN_IE;
2720         if (v == 0) {
2721             xhci_intx_update(xhci);
2722         }
2723         xhci_msix_update(xhci, v);
2724         break;
2725     case 0x04: /* IMOD */
2726         intr->imod = val;
2727         break;
2728     case 0x08: /* ERSTSZ */
2729         intr->erstsz = val & 0xffff;
2730         break;
2731     case 0x10: /* ERSTBA low */
2732         /* XXX NEC driver bug: it doesn't align this to 64 bytes
2733         intr->erstba_low = val & 0xffffffc0; */
2734         intr->erstba_low = val & 0xfffffff0;
2735         break;
2736     case 0x14: /* ERSTBA high */
2737         intr->erstba_high = val;
2738         xhci_er_reset(xhci, v);
2739         break;
2740     case 0x18: /* ERDP low */
2741         if (val & ERDP_EHB) {
2742             intr->erdp_low &= ~ERDP_EHB;
2743         }
2744         intr->erdp_low = (val & ~ERDP_EHB) | (intr->erdp_low & ERDP_EHB);
2745         break;
2746     case 0x1c: /* ERDP high */
2747         intr->erdp_high = val;
2748         xhci_events_update(xhci, v);
2749         break;
2750     default:
2751         fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n",
2752                 (int)reg);
2753     }
2754 }
2755 
2756 static uint64_t xhci_doorbell_read(void *ptr, hwaddr reg,
2757                                    unsigned size)
2758 {
2759     /* doorbells always read as 0 */
2760     trace_usb_xhci_doorbell_read(reg, 0);
2761     return 0;
2762 }
2763 
2764 static void xhci_doorbell_write(void *ptr, hwaddr reg,
2765                                 uint64_t val, unsigned size)
2766 {
2767     XHCIState *xhci = ptr;
2768 
2769     trace_usb_xhci_doorbell_write(reg, val);
2770 
2771     if (!xhci_running(xhci)) {
2772         fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n");
2773         return;
2774     }
2775 
2776     reg >>= 2;
2777 
2778     if (reg == 0) {
2779         if (val == 0) {
2780             xhci_process_commands(xhci);
2781         } else {
2782             fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n",
2783                     (uint32_t)val);
2784         }
2785     } else {
2786         if (reg > xhci->numslots) {
2787             fprintf(stderr, "xhci: bad doorbell %d\n", (int)reg);
2788         } else if (val > 31) {
2789             fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n",
2790                     (int)reg, (uint32_t)val);
2791         } else {
2792             xhci_kick_ep(xhci, reg, val);
2793         }
2794     }
2795 }
2796 
2797 static const MemoryRegionOps xhci_cap_ops = {
2798     .read = xhci_cap_read,
2799     .valid.min_access_size = 1,
2800     .valid.max_access_size = 4,
2801     .impl.min_access_size = 4,
2802     .impl.max_access_size = 4,
2803     .endianness = DEVICE_LITTLE_ENDIAN,
2804 };
2805 
2806 static const MemoryRegionOps xhci_oper_ops = {
2807     .read = xhci_oper_read,
2808     .write = xhci_oper_write,
2809     .valid.min_access_size = 4,
2810     .valid.max_access_size = 4,
2811     .endianness = DEVICE_LITTLE_ENDIAN,
2812 };
2813 
2814 static const MemoryRegionOps xhci_port_ops = {
2815     .read = xhci_port_read,
2816     .write = xhci_port_write,
2817     .valid.min_access_size = 4,
2818     .valid.max_access_size = 4,
2819     .endianness = DEVICE_LITTLE_ENDIAN,
2820 };
2821 
2822 static const MemoryRegionOps xhci_runtime_ops = {
2823     .read = xhci_runtime_read,
2824     .write = xhci_runtime_write,
2825     .valid.min_access_size = 4,
2826     .valid.max_access_size = 4,
2827     .endianness = DEVICE_LITTLE_ENDIAN,
2828 };
2829 
2830 static const MemoryRegionOps xhci_doorbell_ops = {
2831     .read = xhci_doorbell_read,
2832     .write = xhci_doorbell_write,
2833     .valid.min_access_size = 4,
2834     .valid.max_access_size = 4,
2835     .endianness = DEVICE_LITTLE_ENDIAN,
2836 };
2837 
2838 static void xhci_attach(USBPort *usbport)
2839 {
2840     XHCIState *xhci = usbport->opaque;
2841     XHCIPort *port = xhci_lookup_port(xhci, usbport);
2842 
2843     xhci_update_port(xhci, port, 0);
2844 }
2845 
2846 static void xhci_detach(USBPort *usbport)
2847 {
2848     XHCIState *xhci = usbport->opaque;
2849     XHCIPort *port = xhci_lookup_port(xhci, usbport);
2850 
2851     xhci_update_port(xhci, port, 1);
2852 }
2853 
2854 static void xhci_wakeup(USBPort *usbport)
2855 {
2856     XHCIState *xhci = usbport->opaque;
2857     XHCIPort *port = xhci_lookup_port(xhci, usbport);
2858     XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS,
2859                      port->portnr << 24};
2860 
2861     if (get_field(port->portsc, PORTSC_PLS) != PLS_U3) {
2862         return;
2863     }
2864     set_field(&port->portsc, PLS_RESUME, PORTSC_PLS);
2865     if (port->portsc & PORTSC_PLC) {
2866         return;
2867     }
2868     port->portsc |= PORTSC_PLC;
2869     xhci_event(xhci, &ev, 0);
2870 }
2871 
2872 static void xhci_complete(USBPort *port, USBPacket *packet)
2873 {
2874     XHCITransfer *xfer = container_of(packet, XHCITransfer, packet);
2875 
2876     if (packet->result == USB_RET_REMOVE_FROM_QUEUE) {
2877         xhci_ep_nuke_one_xfer(xfer);
2878         return;
2879     }
2880     xhci_complete_packet(xfer, packet->result);
2881     xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid);
2882 }
2883 
2884 static void xhci_child_detach(USBPort *uport, USBDevice *child)
2885 {
2886     USBBus *bus = usb_bus_from_device(child);
2887     XHCIState *xhci = container_of(bus, XHCIState, bus);
2888     int i;
2889 
2890     for (i = 0; i < xhci->numslots; i++) {
2891         if (xhci->slots[i].uport == uport) {
2892             xhci->slots[i].uport = NULL;
2893         }
2894     }
2895 }
2896 
2897 static USBPortOps xhci_uport_ops = {
2898     .attach   = xhci_attach,
2899     .detach   = xhci_detach,
2900     .wakeup   = xhci_wakeup,
2901     .complete = xhci_complete,
2902     .child_detach = xhci_child_detach,
2903 };
2904 
2905 static int xhci_find_slotid(XHCIState *xhci, USBDevice *dev)
2906 {
2907     XHCISlot *slot;
2908     int slotid;
2909 
2910     for (slotid = 1; slotid <= xhci->numslots; slotid++) {
2911         slot = &xhci->slots[slotid-1];
2912         if (slot->devaddr == dev->addr) {
2913             return slotid;
2914         }
2915     }
2916     return 0;
2917 }
2918 
2919 static int xhci_find_epid(USBEndpoint *ep)
2920 {
2921     if (ep->nr == 0) {
2922         return 1;
2923     }
2924     if (ep->pid == USB_TOKEN_IN) {
2925         return ep->nr * 2 + 1;
2926     } else {
2927         return ep->nr * 2;
2928     }
2929 }
2930 
2931 static void xhci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep)
2932 {
2933     XHCIState *xhci = container_of(bus, XHCIState, bus);
2934     int slotid;
2935 
2936     DPRINTF("%s\n", __func__);
2937     slotid = xhci_find_slotid(xhci, ep->dev);
2938     if (slotid == 0 || !xhci->slots[slotid-1].enabled) {
2939         DPRINTF("%s: oops, no slot for dev %d\n", __func__, ep->dev->addr);
2940         return;
2941     }
2942     xhci_kick_ep(xhci, slotid, xhci_find_epid(ep));
2943 }
2944 
2945 static USBBusOps xhci_bus_ops = {
2946     .wakeup_endpoint = xhci_wakeup_endpoint,
2947 };
2948 
2949 static void usb_xhci_init(XHCIState *xhci, DeviceState *dev)
2950 {
2951     XHCIPort *port;
2952     int i, usbports, speedmask;
2953 
2954     xhci->usbsts = USBSTS_HCH;
2955 
2956     if (xhci->numports_2 > MAXPORTS_2) {
2957         xhci->numports_2 = MAXPORTS_2;
2958     }
2959     if (xhci->numports_3 > MAXPORTS_3) {
2960         xhci->numports_3 = MAXPORTS_3;
2961     }
2962     usbports = MAX(xhci->numports_2, xhci->numports_3);
2963     xhci->numports = xhci->numports_2 + xhci->numports_3;
2964 
2965     usb_bus_new(&xhci->bus, &xhci_bus_ops, &xhci->pci_dev.qdev);
2966 
2967     for (i = 0; i < usbports; i++) {
2968         speedmask = 0;
2969         if (i < xhci->numports_2) {
2970             port = &xhci->ports[i];
2971             port->portnr = i + 1;
2972             port->uport = &xhci->uports[i];
2973             port->speedmask =
2974                 USB_SPEED_MASK_LOW  |
2975                 USB_SPEED_MASK_FULL |
2976                 USB_SPEED_MASK_HIGH;
2977             snprintf(port->name, sizeof(port->name), "usb2 port #%d", i+1);
2978             speedmask |= port->speedmask;
2979         }
2980         if (i < xhci->numports_3) {
2981             port = &xhci->ports[i + xhci->numports_2];
2982             port->portnr = i + 1 + xhci->numports_2;
2983             port->uport = &xhci->uports[i];
2984             port->speedmask = USB_SPEED_MASK_SUPER;
2985             snprintf(port->name, sizeof(port->name), "usb3 port #%d", i+1);
2986             speedmask |= port->speedmask;
2987         }
2988         usb_register_port(&xhci->bus, &xhci->uports[i], xhci, i,
2989                           &xhci_uport_ops, speedmask);
2990     }
2991 }
2992 
2993 static int usb_xhci_initfn(struct PCIDevice *dev)
2994 {
2995     int i, ret;
2996 
2997     XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
2998 
2999     xhci->pci_dev.config[PCI_CLASS_PROG] = 0x30;    /* xHCI */
3000     xhci->pci_dev.config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */
3001     xhci->pci_dev.config[PCI_CACHE_LINE_SIZE] = 0x10;
3002     xhci->pci_dev.config[0x60] = 0x30; /* release number */
3003 
3004     usb_xhci_init(xhci, &dev->qdev);
3005 
3006     if (xhci->numintrs > MAXINTRS) {
3007         xhci->numintrs = MAXINTRS;
3008     }
3009     if (xhci->numintrs < 1) {
3010         xhci->numintrs = 1;
3011     }
3012     if (xhci->numslots > MAXSLOTS) {
3013         xhci->numslots = MAXSLOTS;
3014     }
3015     if (xhci->numslots < 1) {
3016         xhci->numslots = 1;
3017     }
3018 
3019     xhci->mfwrap_timer = qemu_new_timer_ns(vm_clock, xhci_mfwrap_timer, xhci);
3020 
3021     xhci->irq = xhci->pci_dev.irq[0];
3022 
3023     memory_region_init(&xhci->mem, "xhci", LEN_REGS);
3024     memory_region_init_io(&xhci->mem_cap, &xhci_cap_ops, xhci,
3025                           "capabilities", LEN_CAP);
3026     memory_region_init_io(&xhci->mem_oper, &xhci_oper_ops, xhci,
3027                           "operational", 0x400);
3028     memory_region_init_io(&xhci->mem_runtime, &xhci_runtime_ops, xhci,
3029                           "runtime", LEN_RUNTIME);
3030     memory_region_init_io(&xhci->mem_doorbell, &xhci_doorbell_ops, xhci,
3031                           "doorbell", LEN_DOORBELL);
3032 
3033     memory_region_add_subregion(&xhci->mem, 0,            &xhci->mem_cap);
3034     memory_region_add_subregion(&xhci->mem, OFF_OPER,     &xhci->mem_oper);
3035     memory_region_add_subregion(&xhci->mem, OFF_RUNTIME,  &xhci->mem_runtime);
3036     memory_region_add_subregion(&xhci->mem, OFF_DOORBELL, &xhci->mem_doorbell);
3037 
3038     for (i = 0; i < xhci->numports; i++) {
3039         XHCIPort *port = &xhci->ports[i];
3040         uint32_t offset = OFF_OPER + 0x400 + 0x10 * i;
3041         port->xhci = xhci;
3042         memory_region_init_io(&port->mem, &xhci_port_ops, port,
3043                               port->name, 0x10);
3044         memory_region_add_subregion(&xhci->mem, offset, &port->mem);
3045     }
3046 
3047     pci_register_bar(&xhci->pci_dev, 0,
3048                      PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64,
3049                      &xhci->mem);
3050 
3051     ret = pcie_cap_init(&xhci->pci_dev, 0xa0, PCI_EXP_TYPE_ENDPOINT, 0);
3052     assert(ret >= 0);
3053 
3054     if (xhci->flags & (1 << XHCI_FLAG_USE_MSI)) {
3055         msi_init(&xhci->pci_dev, 0x70, xhci->numintrs, true, false);
3056     }
3057     if (xhci->flags & (1 << XHCI_FLAG_USE_MSI_X)) {
3058         msix_init(&xhci->pci_dev, xhci->numintrs,
3059                   &xhci->mem, 0, OFF_MSIX_TABLE,
3060                   &xhci->mem, 0, OFF_MSIX_PBA,
3061                   0x90);
3062     }
3063 
3064     return 0;
3065 }
3066 
3067 static const VMStateDescription vmstate_xhci = {
3068     .name = "xhci",
3069     .unmigratable = 1,
3070 };
3071 
3072 static Property xhci_properties[] = {
3073     DEFINE_PROP_BIT("msi",      XHCIState, flags, XHCI_FLAG_USE_MSI, true),
3074     DEFINE_PROP_BIT("msix",     XHCIState, flags, XHCI_FLAG_USE_MSI_X, true),
3075     DEFINE_PROP_UINT32("intrs", XHCIState, numintrs, MAXINTRS),
3076     DEFINE_PROP_UINT32("slots", XHCIState, numslots, MAXSLOTS),
3077     DEFINE_PROP_UINT32("p2",    XHCIState, numports_2, 4),
3078     DEFINE_PROP_UINT32("p3",    XHCIState, numports_3, 4),
3079     DEFINE_PROP_END_OF_LIST(),
3080 };
3081 
3082 static void xhci_class_init(ObjectClass *klass, void *data)
3083 {
3084     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3085     DeviceClass *dc = DEVICE_CLASS(klass);
3086 
3087     dc->vmsd    = &vmstate_xhci;
3088     dc->props   = xhci_properties;
3089     dc->reset   = xhci_reset;
3090     k->init         = usb_xhci_initfn;
3091     k->vendor_id    = PCI_VENDOR_ID_NEC;
3092     k->device_id    = PCI_DEVICE_ID_NEC_UPD720200;
3093     k->class_id     = PCI_CLASS_SERIAL_USB;
3094     k->revision     = 0x03;
3095     k->is_express   = 1;
3096 }
3097 
3098 static TypeInfo xhci_info = {
3099     .name          = "nec-usb-xhci",
3100     .parent        = TYPE_PCI_DEVICE,
3101     .instance_size = sizeof(XHCIState),
3102     .class_init    = xhci_class_init,
3103 };
3104 
3105 static void xhci_register_types(void)
3106 {
3107     type_register_static(&xhci_info);
3108 }
3109 
3110 type_init(xhci_register_types)
3111