xref: /openbmc/qemu/hw/usb/hcd-xhci.c (revision 43d9d604)
1 /*
2  * USB xHCI controller emulation
3  *
4  * Copyright (c) 2011 Securiforest
5  * Date: 2011-05-11 ;  Author: Hector Martin <hector@marcansoft.com>
6  * Based on usb-ohci.c, emulates Renesas NEC USB 3.0
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 #include "hw/hw.h"
22 #include "qemu-timer.h"
23 #include "hw/usb.h"
24 #include "hw/pci.h"
25 #include "hw/msi.h"
26 #include "hw/msix.h"
27 #include "trace.h"
28 
29 //#define DEBUG_XHCI
30 //#define DEBUG_DATA
31 
32 #ifdef DEBUG_XHCI
33 #define DPRINTF(...) fprintf(stderr, __VA_ARGS__)
34 #else
35 #define DPRINTF(...) do {} while (0)
36 #endif
37 #define FIXME() do { fprintf(stderr, "FIXME %s:%d\n", \
38                              __func__, __LINE__); abort(); } while (0)
39 
40 #define MAXPORTS_2 8
41 #define MAXPORTS_3 8
42 
43 #define MAXPORTS (MAXPORTS_2+MAXPORTS_3)
44 #define MAXSLOTS MAXPORTS
45 #define MAXINTRS 1 /* MAXPORTS */
46 
47 #define TD_QUEUE 24
48 
49 /* Very pessimistic, let's hope it's enough for all cases */
50 #define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS)
51 /* Do not deliver ER Full events. NEC's driver does some things not bound
52  * to the specs when it gets them */
53 #define ER_FULL_HACK
54 
55 #define LEN_CAP         0x40
56 #define LEN_OPER        (0x400 + 0x10 * MAXPORTS)
57 #define LEN_RUNTIME     ((MAXINTRS + 1) * 0x20)
58 #define LEN_DOORBELL    ((MAXSLOTS + 1) * 0x20)
59 
60 #define OFF_OPER        LEN_CAP
61 #define OFF_RUNTIME     0x1000
62 #define OFF_DOORBELL    0x2000
63 #define OFF_MSIX_TABLE  0x3000
64 #define OFF_MSIX_PBA    0x3800
65 /* must be power of 2 */
66 #define LEN_REGS        0x4000
67 
68 #if (OFF_OPER + LEN_OPER) > OFF_RUNTIME
69 #error Increase OFF_RUNTIME
70 #endif
71 #if (OFF_RUNTIME + LEN_RUNTIME) > OFF_DOORBELL
72 #error Increase OFF_DOORBELL
73 #endif
74 #if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS
75 # error Increase LEN_REGS
76 #endif
77 
78 #if MAXINTRS > 1
79 # error TODO: only one interrupter supported
80 #endif
81 
82 /* bit definitions */
83 #define USBCMD_RS       (1<<0)
84 #define USBCMD_HCRST    (1<<1)
85 #define USBCMD_INTE     (1<<2)
86 #define USBCMD_HSEE     (1<<3)
87 #define USBCMD_LHCRST   (1<<7)
88 #define USBCMD_CSS      (1<<8)
89 #define USBCMD_CRS      (1<<9)
90 #define USBCMD_EWE      (1<<10)
91 #define USBCMD_EU3S     (1<<11)
92 
93 #define USBSTS_HCH      (1<<0)
94 #define USBSTS_HSE      (1<<2)
95 #define USBSTS_EINT     (1<<3)
96 #define USBSTS_PCD      (1<<4)
97 #define USBSTS_SSS      (1<<8)
98 #define USBSTS_RSS      (1<<9)
99 #define USBSTS_SRE      (1<<10)
100 #define USBSTS_CNR      (1<<11)
101 #define USBSTS_HCE      (1<<12)
102 
103 
104 #define PORTSC_CCS          (1<<0)
105 #define PORTSC_PED          (1<<1)
106 #define PORTSC_OCA          (1<<3)
107 #define PORTSC_PR           (1<<4)
108 #define PORTSC_PLS_SHIFT        5
109 #define PORTSC_PLS_MASK     0xf
110 #define PORTSC_PP           (1<<9)
111 #define PORTSC_SPEED_SHIFT      10
112 #define PORTSC_SPEED_MASK   0xf
113 #define PORTSC_SPEED_FULL   (1<<10)
114 #define PORTSC_SPEED_LOW    (2<<10)
115 #define PORTSC_SPEED_HIGH   (3<<10)
116 #define PORTSC_SPEED_SUPER  (4<<10)
117 #define PORTSC_PIC_SHIFT        14
118 #define PORTSC_PIC_MASK     0x3
119 #define PORTSC_LWS          (1<<16)
120 #define PORTSC_CSC          (1<<17)
121 #define PORTSC_PEC          (1<<18)
122 #define PORTSC_WRC          (1<<19)
123 #define PORTSC_OCC          (1<<20)
124 #define PORTSC_PRC          (1<<21)
125 #define PORTSC_PLC          (1<<22)
126 #define PORTSC_CEC          (1<<23)
127 #define PORTSC_CAS          (1<<24)
128 #define PORTSC_WCE          (1<<25)
129 #define PORTSC_WDE          (1<<26)
130 #define PORTSC_WOE          (1<<27)
131 #define PORTSC_DR           (1<<30)
132 #define PORTSC_WPR          (1<<31)
133 
134 #define CRCR_RCS        (1<<0)
135 #define CRCR_CS         (1<<1)
136 #define CRCR_CA         (1<<2)
137 #define CRCR_CRR        (1<<3)
138 
139 #define IMAN_IP         (1<<0)
140 #define IMAN_IE         (1<<1)
141 
142 #define ERDP_EHB        (1<<3)
143 
144 #define TRB_SIZE 16
145 typedef struct XHCITRB {
146     uint64_t parameter;
147     uint32_t status;
148     uint32_t control;
149     dma_addr_t addr;
150     bool ccs;
151 } XHCITRB;
152 
153 
154 typedef enum TRBType {
155     TRB_RESERVED = 0,
156     TR_NORMAL,
157     TR_SETUP,
158     TR_DATA,
159     TR_STATUS,
160     TR_ISOCH,
161     TR_LINK,
162     TR_EVDATA,
163     TR_NOOP,
164     CR_ENABLE_SLOT,
165     CR_DISABLE_SLOT,
166     CR_ADDRESS_DEVICE,
167     CR_CONFIGURE_ENDPOINT,
168     CR_EVALUATE_CONTEXT,
169     CR_RESET_ENDPOINT,
170     CR_STOP_ENDPOINT,
171     CR_SET_TR_DEQUEUE,
172     CR_RESET_DEVICE,
173     CR_FORCE_EVENT,
174     CR_NEGOTIATE_BW,
175     CR_SET_LATENCY_TOLERANCE,
176     CR_GET_PORT_BANDWIDTH,
177     CR_FORCE_HEADER,
178     CR_NOOP,
179     ER_TRANSFER = 32,
180     ER_COMMAND_COMPLETE,
181     ER_PORT_STATUS_CHANGE,
182     ER_BANDWIDTH_REQUEST,
183     ER_DOORBELL,
184     ER_HOST_CONTROLLER,
185     ER_DEVICE_NOTIFICATION,
186     ER_MFINDEX_WRAP,
187     /* vendor specific bits */
188     CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48,
189     CR_VENDOR_NEC_FIRMWARE_REVISION  = 49,
190     CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50,
191 } TRBType;
192 
193 #define CR_LINK TR_LINK
194 
195 typedef enum TRBCCode {
196     CC_INVALID = 0,
197     CC_SUCCESS,
198     CC_DATA_BUFFER_ERROR,
199     CC_BABBLE_DETECTED,
200     CC_USB_TRANSACTION_ERROR,
201     CC_TRB_ERROR,
202     CC_STALL_ERROR,
203     CC_RESOURCE_ERROR,
204     CC_BANDWIDTH_ERROR,
205     CC_NO_SLOTS_ERROR,
206     CC_INVALID_STREAM_TYPE_ERROR,
207     CC_SLOT_NOT_ENABLED_ERROR,
208     CC_EP_NOT_ENABLED_ERROR,
209     CC_SHORT_PACKET,
210     CC_RING_UNDERRUN,
211     CC_RING_OVERRUN,
212     CC_VF_ER_FULL,
213     CC_PARAMETER_ERROR,
214     CC_BANDWIDTH_OVERRUN,
215     CC_CONTEXT_STATE_ERROR,
216     CC_NO_PING_RESPONSE_ERROR,
217     CC_EVENT_RING_FULL_ERROR,
218     CC_INCOMPATIBLE_DEVICE_ERROR,
219     CC_MISSED_SERVICE_ERROR,
220     CC_COMMAND_RING_STOPPED,
221     CC_COMMAND_ABORTED,
222     CC_STOPPED,
223     CC_STOPPED_LENGTH_INVALID,
224     CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29,
225     CC_ISOCH_BUFFER_OVERRUN = 31,
226     CC_EVENT_LOST_ERROR,
227     CC_UNDEFINED_ERROR,
228     CC_INVALID_STREAM_ID_ERROR,
229     CC_SECONDARY_BANDWIDTH_ERROR,
230     CC_SPLIT_TRANSACTION_ERROR
231 } TRBCCode;
232 
233 #define TRB_C               (1<<0)
234 #define TRB_TYPE_SHIFT          10
235 #define TRB_TYPE_MASK       0x3f
236 #define TRB_TYPE(t)         (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK)
237 
238 #define TRB_EV_ED           (1<<2)
239 
240 #define TRB_TR_ENT          (1<<1)
241 #define TRB_TR_ISP          (1<<2)
242 #define TRB_TR_NS           (1<<3)
243 #define TRB_TR_CH           (1<<4)
244 #define TRB_TR_IOC          (1<<5)
245 #define TRB_TR_IDT          (1<<6)
246 #define TRB_TR_TBC_SHIFT        7
247 #define TRB_TR_TBC_MASK     0x3
248 #define TRB_TR_BEI          (1<<9)
249 #define TRB_TR_TLBPC_SHIFT      16
250 #define TRB_TR_TLBPC_MASK   0xf
251 #define TRB_TR_FRAMEID_SHIFT    20
252 #define TRB_TR_FRAMEID_MASK 0x7ff
253 #define TRB_TR_SIA          (1<<31)
254 
255 #define TRB_TR_DIR          (1<<16)
256 
257 #define TRB_CR_SLOTID_SHIFT     24
258 #define TRB_CR_SLOTID_MASK  0xff
259 #define TRB_CR_EPID_SHIFT       16
260 #define TRB_CR_EPID_MASK    0x1f
261 
262 #define TRB_CR_BSR          (1<<9)
263 #define TRB_CR_DC           (1<<9)
264 
265 #define TRB_LK_TC           (1<<1)
266 
267 #define EP_TYPE_MASK        0x7
268 #define EP_TYPE_SHIFT           3
269 
270 #define EP_STATE_MASK       0x7
271 #define EP_DISABLED         (0<<0)
272 #define EP_RUNNING          (1<<0)
273 #define EP_HALTED           (2<<0)
274 #define EP_STOPPED          (3<<0)
275 #define EP_ERROR            (4<<0)
276 
277 #define SLOT_STATE_MASK     0x1f
278 #define SLOT_STATE_SHIFT        27
279 #define SLOT_STATE(s)       (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK)
280 #define SLOT_ENABLED        0
281 #define SLOT_DEFAULT        1
282 #define SLOT_ADDRESSED      2
283 #define SLOT_CONFIGURED     3
284 
285 #define SLOT_CONTEXT_ENTRIES_MASK 0x1f
286 #define SLOT_CONTEXT_ENTRIES_SHIFT 27
287 
288 typedef enum EPType {
289     ET_INVALID = 0,
290     ET_ISO_OUT,
291     ET_BULK_OUT,
292     ET_INTR_OUT,
293     ET_CONTROL,
294     ET_ISO_IN,
295     ET_BULK_IN,
296     ET_INTR_IN,
297 } EPType;
298 
299 typedef struct XHCIRing {
300     dma_addr_t base;
301     dma_addr_t dequeue;
302     bool ccs;
303 } XHCIRing;
304 
305 typedef struct XHCIPort {
306     uint32_t portsc;
307     uint32_t portnr;
308     USBPort  *uport;
309     uint32_t speedmask;
310 } XHCIPort;
311 
312 struct XHCIState;
313 typedef struct XHCIState XHCIState;
314 
315 typedef struct XHCITransfer {
316     XHCIState *xhci;
317     USBPacket packet;
318     QEMUSGList sgl;
319     bool running_async;
320     bool running_retry;
321     bool cancelled;
322     bool complete;
323     unsigned int iso_pkts;
324     unsigned int slotid;
325     unsigned int epid;
326     bool in_xfer;
327     bool iso_xfer;
328 
329     unsigned int trb_count;
330     unsigned int trb_alloced;
331     XHCITRB *trbs;
332 
333     TRBCCode status;
334 
335     unsigned int pkts;
336     unsigned int pktsize;
337     unsigned int cur_pkt;
338 
339     uint64_t mfindex_kick;
340 } XHCITransfer;
341 
342 typedef struct XHCIEPContext {
343     XHCIState *xhci;
344     unsigned int slotid;
345     unsigned int epid;
346 
347     XHCIRing ring;
348     unsigned int next_xfer;
349     unsigned int comp_xfer;
350     XHCITransfer transfers[TD_QUEUE];
351     XHCITransfer *retry;
352     EPType type;
353     dma_addr_t pctx;
354     unsigned int max_psize;
355     uint32_t state;
356 
357     /* iso xfer scheduling */
358     unsigned int interval;
359     int64_t mfindex_last;
360     QEMUTimer *kick_timer;
361 } XHCIEPContext;
362 
363 typedef struct XHCISlot {
364     bool enabled;
365     dma_addr_t ctx;
366     unsigned int port;
367     unsigned int devaddr;
368     XHCIEPContext * eps[31];
369 } XHCISlot;
370 
371 typedef struct XHCIEvent {
372     TRBType type;
373     TRBCCode ccode;
374     uint64_t ptr;
375     uint32_t length;
376     uint32_t flags;
377     uint8_t slotid;
378     uint8_t epid;
379 } XHCIEvent;
380 
381 typedef struct XHCIInterrupter {
382     uint32_t iman;
383     uint32_t imod;
384     uint32_t erstsz;
385     uint32_t erstba_low;
386     uint32_t erstba_high;
387     uint32_t erdp_low;
388     uint32_t erdp_high;
389 
390     bool msix_used, er_pcs, er_full;
391 
392     dma_addr_t er_start;
393     uint32_t er_size;
394     unsigned int er_ep_idx;
395 
396     XHCIEvent ev_buffer[EV_QUEUE];
397     unsigned int ev_buffer_put;
398     unsigned int ev_buffer_get;
399 
400 } XHCIInterrupter;
401 
402 struct XHCIState {
403     PCIDevice pci_dev;
404     USBBus bus;
405     qemu_irq irq;
406     MemoryRegion mem;
407     const char *name;
408     unsigned int devaddr;
409 
410     /* properties */
411     uint32_t numports_2;
412     uint32_t numports_3;
413     uint32_t flags;
414 
415     /* Operational Registers */
416     uint32_t usbcmd;
417     uint32_t usbsts;
418     uint32_t dnctrl;
419     uint32_t crcr_low;
420     uint32_t crcr_high;
421     uint32_t dcbaap_low;
422     uint32_t dcbaap_high;
423     uint32_t config;
424 
425     USBPort  uports[MAX(MAXPORTS_2, MAXPORTS_3)];
426     XHCIPort ports[MAXPORTS];
427     XHCISlot slots[MAXSLOTS];
428     uint32_t numports;
429 
430     /* Runtime Registers */
431     int64_t mfindex_start;
432     QEMUTimer *mfwrap_timer;
433     XHCIInterrupter intr[MAXINTRS];
434 
435     XHCIRing cmd_ring;
436 };
437 
438 typedef struct XHCIEvRingSeg {
439     uint32_t addr_low;
440     uint32_t addr_high;
441     uint32_t size;
442     uint32_t rsvd;
443 } XHCIEvRingSeg;
444 
445 enum xhci_flags {
446     XHCI_FLAG_USE_MSI = 1,
447     XHCI_FLAG_USE_MSI_X,
448 };
449 
450 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid,
451                          unsigned int epid);
452 static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v);
453 static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v);
454 
455 static const char *TRBType_names[] = {
456     [TRB_RESERVED]                     = "TRB_RESERVED",
457     [TR_NORMAL]                        = "TR_NORMAL",
458     [TR_SETUP]                         = "TR_SETUP",
459     [TR_DATA]                          = "TR_DATA",
460     [TR_STATUS]                        = "TR_STATUS",
461     [TR_ISOCH]                         = "TR_ISOCH",
462     [TR_LINK]                          = "TR_LINK",
463     [TR_EVDATA]                        = "TR_EVDATA",
464     [TR_NOOP]                          = "TR_NOOP",
465     [CR_ENABLE_SLOT]                   = "CR_ENABLE_SLOT",
466     [CR_DISABLE_SLOT]                  = "CR_DISABLE_SLOT",
467     [CR_ADDRESS_DEVICE]                = "CR_ADDRESS_DEVICE",
468     [CR_CONFIGURE_ENDPOINT]            = "CR_CONFIGURE_ENDPOINT",
469     [CR_EVALUATE_CONTEXT]              = "CR_EVALUATE_CONTEXT",
470     [CR_RESET_ENDPOINT]                = "CR_RESET_ENDPOINT",
471     [CR_STOP_ENDPOINT]                 = "CR_STOP_ENDPOINT",
472     [CR_SET_TR_DEQUEUE]                = "CR_SET_TR_DEQUEUE",
473     [CR_RESET_DEVICE]                  = "CR_RESET_DEVICE",
474     [CR_FORCE_EVENT]                   = "CR_FORCE_EVENT",
475     [CR_NEGOTIATE_BW]                  = "CR_NEGOTIATE_BW",
476     [CR_SET_LATENCY_TOLERANCE]         = "CR_SET_LATENCY_TOLERANCE",
477     [CR_GET_PORT_BANDWIDTH]            = "CR_GET_PORT_BANDWIDTH",
478     [CR_FORCE_HEADER]                  = "CR_FORCE_HEADER",
479     [CR_NOOP]                          = "CR_NOOP",
480     [ER_TRANSFER]                      = "ER_TRANSFER",
481     [ER_COMMAND_COMPLETE]              = "ER_COMMAND_COMPLETE",
482     [ER_PORT_STATUS_CHANGE]            = "ER_PORT_STATUS_CHANGE",
483     [ER_BANDWIDTH_REQUEST]             = "ER_BANDWIDTH_REQUEST",
484     [ER_DOORBELL]                      = "ER_DOORBELL",
485     [ER_HOST_CONTROLLER]               = "ER_HOST_CONTROLLER",
486     [ER_DEVICE_NOTIFICATION]           = "ER_DEVICE_NOTIFICATION",
487     [ER_MFINDEX_WRAP]                  = "ER_MFINDEX_WRAP",
488     [CR_VENDOR_VIA_CHALLENGE_RESPONSE] = "CR_VENDOR_VIA_CHALLENGE_RESPONSE",
489     [CR_VENDOR_NEC_FIRMWARE_REVISION]  = "CR_VENDOR_NEC_FIRMWARE_REVISION",
490     [CR_VENDOR_NEC_CHALLENGE_RESPONSE] = "CR_VENDOR_NEC_CHALLENGE_RESPONSE",
491 };
492 
493 static const char *TRBCCode_names[] = {
494     [CC_INVALID]                       = "CC_INVALID",
495     [CC_SUCCESS]                       = "CC_SUCCESS",
496     [CC_DATA_BUFFER_ERROR]             = "CC_DATA_BUFFER_ERROR",
497     [CC_BABBLE_DETECTED]               = "CC_BABBLE_DETECTED",
498     [CC_USB_TRANSACTION_ERROR]         = "CC_USB_TRANSACTION_ERROR",
499     [CC_TRB_ERROR]                     = "CC_TRB_ERROR",
500     [CC_STALL_ERROR]                   = "CC_STALL_ERROR",
501     [CC_RESOURCE_ERROR]                = "CC_RESOURCE_ERROR",
502     [CC_BANDWIDTH_ERROR]               = "CC_BANDWIDTH_ERROR",
503     [CC_NO_SLOTS_ERROR]                = "CC_NO_SLOTS_ERROR",
504     [CC_INVALID_STREAM_TYPE_ERROR]     = "CC_INVALID_STREAM_TYPE_ERROR",
505     [CC_SLOT_NOT_ENABLED_ERROR]        = "CC_SLOT_NOT_ENABLED_ERROR",
506     [CC_EP_NOT_ENABLED_ERROR]          = "CC_EP_NOT_ENABLED_ERROR",
507     [CC_SHORT_PACKET]                  = "CC_SHORT_PACKET",
508     [CC_RING_UNDERRUN]                 = "CC_RING_UNDERRUN",
509     [CC_RING_OVERRUN]                  = "CC_RING_OVERRUN",
510     [CC_VF_ER_FULL]                    = "CC_VF_ER_FULL",
511     [CC_PARAMETER_ERROR]               = "CC_PARAMETER_ERROR",
512     [CC_BANDWIDTH_OVERRUN]             = "CC_BANDWIDTH_OVERRUN",
513     [CC_CONTEXT_STATE_ERROR]           = "CC_CONTEXT_STATE_ERROR",
514     [CC_NO_PING_RESPONSE_ERROR]        = "CC_NO_PING_RESPONSE_ERROR",
515     [CC_EVENT_RING_FULL_ERROR]         = "CC_EVENT_RING_FULL_ERROR",
516     [CC_INCOMPATIBLE_DEVICE_ERROR]     = "CC_INCOMPATIBLE_DEVICE_ERROR",
517     [CC_MISSED_SERVICE_ERROR]          = "CC_MISSED_SERVICE_ERROR",
518     [CC_COMMAND_RING_STOPPED]          = "CC_COMMAND_RING_STOPPED",
519     [CC_COMMAND_ABORTED]               = "CC_COMMAND_ABORTED",
520     [CC_STOPPED]                       = "CC_STOPPED",
521     [CC_STOPPED_LENGTH_INVALID]        = "CC_STOPPED_LENGTH_INVALID",
522     [CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR]
523     = "CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR",
524     [CC_ISOCH_BUFFER_OVERRUN]          = "CC_ISOCH_BUFFER_OVERRUN",
525     [CC_EVENT_LOST_ERROR]              = "CC_EVENT_LOST_ERROR",
526     [CC_UNDEFINED_ERROR]               = "CC_UNDEFINED_ERROR",
527     [CC_INVALID_STREAM_ID_ERROR]       = "CC_INVALID_STREAM_ID_ERROR",
528     [CC_SECONDARY_BANDWIDTH_ERROR]     = "CC_SECONDARY_BANDWIDTH_ERROR",
529     [CC_SPLIT_TRANSACTION_ERROR]       = "CC_SPLIT_TRANSACTION_ERROR",
530 };
531 
532 static const char *lookup_name(uint32_t index, const char **list, uint32_t llen)
533 {
534     if (index >= llen || list[index] == NULL) {
535         return "???";
536     }
537     return list[index];
538 }
539 
540 static const char *trb_name(XHCITRB *trb)
541 {
542     return lookup_name(TRB_TYPE(*trb), TRBType_names,
543                        ARRAY_SIZE(TRBType_names));
544 }
545 
546 static const char *event_name(XHCIEvent *event)
547 {
548     return lookup_name(event->ccode, TRBCCode_names,
549                        ARRAY_SIZE(TRBCCode_names));
550 }
551 
552 static uint64_t xhci_mfindex_get(XHCIState *xhci)
553 {
554     int64_t now = qemu_get_clock_ns(vm_clock);
555     return (now - xhci->mfindex_start) / 125000;
556 }
557 
558 static void xhci_mfwrap_update(XHCIState *xhci)
559 {
560     const uint32_t bits = USBCMD_RS | USBCMD_EWE;
561     uint32_t mfindex, left;
562     int64_t now;
563 
564     if ((xhci->usbcmd & bits) == bits) {
565         now = qemu_get_clock_ns(vm_clock);
566         mfindex = ((now - xhci->mfindex_start) / 125000) & 0x3fff;
567         left = 0x4000 - mfindex;
568         qemu_mod_timer(xhci->mfwrap_timer, now + left * 125000);
569     } else {
570         qemu_del_timer(xhci->mfwrap_timer);
571     }
572 }
573 
574 static void xhci_mfwrap_timer(void *opaque)
575 {
576     XHCIState *xhci = opaque;
577     XHCIEvent wrap = { ER_MFINDEX_WRAP, CC_SUCCESS };
578 
579     xhci_event(xhci, &wrap, 0);
580     xhci_mfwrap_update(xhci);
581 }
582 
583 static inline dma_addr_t xhci_addr64(uint32_t low, uint32_t high)
584 {
585     if (sizeof(dma_addr_t) == 4) {
586         return low;
587     } else {
588         return low | (((dma_addr_t)high << 16) << 16);
589     }
590 }
591 
592 static inline dma_addr_t xhci_mask64(uint64_t addr)
593 {
594     if (sizeof(dma_addr_t) == 4) {
595         return addr & 0xffffffff;
596     } else {
597         return addr;
598     }
599 }
600 
601 static XHCIPort *xhci_lookup_port(XHCIState *xhci, struct USBPort *uport)
602 {
603     int index;
604 
605     if (!uport->dev) {
606         return NULL;
607     }
608     switch (uport->dev->speed) {
609     case USB_SPEED_LOW:
610     case USB_SPEED_FULL:
611     case USB_SPEED_HIGH:
612         index = uport->index;
613         break;
614     case USB_SPEED_SUPER:
615         index = uport->index + xhci->numports_2;
616         break;
617     default:
618         return NULL;
619     }
620     return &xhci->ports[index];
621 }
622 
623 static void xhci_intx_update(XHCIState *xhci)
624 {
625     int level = 0;
626 
627     if (msix_enabled(&xhci->pci_dev) ||
628         msi_enabled(&xhci->pci_dev)) {
629         return;
630     }
631 
632     if (xhci->intr[0].iman & IMAN_IP &&
633         xhci->intr[0].iman & IMAN_IE &&
634         xhci->usbcmd & USBCMD_INTE) {
635         level = 1;
636     }
637 
638     trace_usb_xhci_irq_intx(level);
639     qemu_set_irq(xhci->irq, level);
640 }
641 
642 static void xhci_msix_update(XHCIState *xhci, int v)
643 {
644     bool enabled;
645 
646     if (!msix_enabled(&xhci->pci_dev)) {
647         return;
648     }
649 
650     enabled = xhci->intr[v].iman & IMAN_IE;
651     if (enabled == xhci->intr[v].msix_used) {
652         return;
653     }
654 
655     if (enabled) {
656         trace_usb_xhci_irq_msix_use(v);
657         msix_vector_use(&xhci->pci_dev, v);
658         xhci->intr[v].msix_used = true;
659     } else {
660         trace_usb_xhci_irq_msix_unuse(v);
661         msix_vector_unuse(&xhci->pci_dev, v);
662         xhci->intr[v].msix_used = false;
663     }
664 }
665 
666 static void xhci_intr_raise(XHCIState *xhci, int v)
667 {
668     xhci->intr[v].erdp_low |= ERDP_EHB;
669     xhci->intr[v].iman |= IMAN_IP;
670     xhci->usbsts |= USBSTS_EINT;
671 
672     if (!(xhci->intr[v].iman & IMAN_IE)) {
673         return;
674     }
675 
676     if (!(xhci->usbcmd & USBCMD_INTE)) {
677         return;
678     }
679 
680     if (msix_enabled(&xhci->pci_dev)) {
681         trace_usb_xhci_irq_msix(v);
682         msix_notify(&xhci->pci_dev, v);
683         return;
684     }
685 
686     if (msi_enabled(&xhci->pci_dev)) {
687         trace_usb_xhci_irq_msi(v);
688         msi_notify(&xhci->pci_dev, v);
689         return;
690     }
691 
692     if (v == 0) {
693         trace_usb_xhci_irq_intx(1);
694         qemu_set_irq(xhci->irq, 1);
695     }
696 }
697 
698 static inline int xhci_running(XHCIState *xhci)
699 {
700     return !(xhci->usbsts & USBSTS_HCH) && !xhci->intr[0].er_full;
701 }
702 
703 static void xhci_die(XHCIState *xhci)
704 {
705     xhci->usbsts |= USBSTS_HCE;
706     fprintf(stderr, "xhci: asserted controller error\n");
707 }
708 
709 static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v)
710 {
711     XHCIInterrupter *intr = &xhci->intr[v];
712     XHCITRB ev_trb;
713     dma_addr_t addr;
714 
715     ev_trb.parameter = cpu_to_le64(event->ptr);
716     ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24));
717     ev_trb.control = (event->slotid << 24) | (event->epid << 16) |
718                      event->flags | (event->type << TRB_TYPE_SHIFT);
719     if (intr->er_pcs) {
720         ev_trb.control |= TRB_C;
721     }
722     ev_trb.control = cpu_to_le32(ev_trb.control);
723 
724     trace_usb_xhci_queue_event(v, intr->er_ep_idx, trb_name(&ev_trb),
725                                event_name(event), ev_trb.parameter,
726                                ev_trb.status, ev_trb.control);
727 
728     addr = intr->er_start + TRB_SIZE*intr->er_ep_idx;
729     pci_dma_write(&xhci->pci_dev, addr, &ev_trb, TRB_SIZE);
730 
731     intr->er_ep_idx++;
732     if (intr->er_ep_idx >= intr->er_size) {
733         intr->er_ep_idx = 0;
734         intr->er_pcs = !intr->er_pcs;
735     }
736 }
737 
738 static void xhci_events_update(XHCIState *xhci, int v)
739 {
740     XHCIInterrupter *intr = &xhci->intr[v];
741     dma_addr_t erdp;
742     unsigned int dp_idx;
743     bool do_irq = 0;
744 
745     if (xhci->usbsts & USBSTS_HCH) {
746         return;
747     }
748 
749     erdp = xhci_addr64(intr->erdp_low, intr->erdp_high);
750     if (erdp < intr->er_start ||
751         erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) {
752         fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp);
753         fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n",
754                 v, intr->er_start, intr->er_size);
755         xhci_die(xhci);
756         return;
757     }
758     dp_idx = (erdp - intr->er_start) / TRB_SIZE;
759     assert(dp_idx < intr->er_size);
760 
761     /* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus
762      * deadlocks when the ER is full. Hack it by holding off events until
763      * the driver decides to free at least half of the ring */
764     if (intr->er_full) {
765         int er_free = dp_idx - intr->er_ep_idx;
766         if (er_free <= 0) {
767             er_free += intr->er_size;
768         }
769         if (er_free < (intr->er_size/2)) {
770             DPRINTF("xhci_events_update(): event ring still "
771                     "more than half full (hack)\n");
772             return;
773         }
774     }
775 
776     while (intr->ev_buffer_put != intr->ev_buffer_get) {
777         assert(intr->er_full);
778         if (((intr->er_ep_idx+1) % intr->er_size) == dp_idx) {
779             DPRINTF("xhci_events_update(): event ring full again\n");
780 #ifndef ER_FULL_HACK
781             XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
782             xhci_write_event(xhci, &full, v);
783 #endif
784             do_irq = 1;
785             break;
786         }
787         XHCIEvent *event = &intr->ev_buffer[intr->ev_buffer_get];
788         xhci_write_event(xhci, event, v);
789         intr->ev_buffer_get++;
790         do_irq = 1;
791         if (intr->ev_buffer_get == EV_QUEUE) {
792             intr->ev_buffer_get = 0;
793         }
794     }
795 
796     if (do_irq) {
797         xhci_intr_raise(xhci, v);
798     }
799 
800     if (intr->er_full && intr->ev_buffer_put == intr->ev_buffer_get) {
801         DPRINTF("xhci_events_update(): event ring no longer full\n");
802         intr->er_full = 0;
803     }
804     return;
805 }
806 
807 static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v)
808 {
809     XHCIInterrupter *intr = &xhci->intr[v];
810     dma_addr_t erdp;
811     unsigned int dp_idx;
812 
813     if (intr->er_full) {
814         DPRINTF("xhci_event(): ER full, queueing\n");
815         if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) {
816             fprintf(stderr, "xhci: event queue full, dropping event!\n");
817             return;
818         }
819         intr->ev_buffer[intr->ev_buffer_put++] = *event;
820         if (intr->ev_buffer_put == EV_QUEUE) {
821             intr->ev_buffer_put = 0;
822         }
823         return;
824     }
825 
826     erdp = xhci_addr64(intr->erdp_low, intr->erdp_high);
827     if (erdp < intr->er_start ||
828         erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) {
829         fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp);
830         fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n",
831                 v, intr->er_start, intr->er_size);
832         xhci_die(xhci);
833         return;
834     }
835 
836     dp_idx = (erdp - intr->er_start) / TRB_SIZE;
837     assert(dp_idx < intr->er_size);
838 
839     if ((intr->er_ep_idx+1) % intr->er_size == dp_idx) {
840         DPRINTF("xhci_event(): ER full, queueing\n");
841 #ifndef ER_FULL_HACK
842         XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR};
843         xhci_write_event(xhci, &full);
844 #endif
845         intr->er_full = 1;
846         if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) {
847             fprintf(stderr, "xhci: event queue full, dropping event!\n");
848             return;
849         }
850         intr->ev_buffer[intr->ev_buffer_put++] = *event;
851         if (intr->ev_buffer_put == EV_QUEUE) {
852             intr->ev_buffer_put = 0;
853         }
854     } else {
855         xhci_write_event(xhci, event, v);
856     }
857 
858     xhci_intr_raise(xhci, v);
859 }
860 
861 static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring,
862                            dma_addr_t base)
863 {
864     ring->base = base;
865     ring->dequeue = base;
866     ring->ccs = 1;
867 }
868 
869 static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb,
870                                dma_addr_t *addr)
871 {
872     while (1) {
873         TRBType type;
874         pci_dma_read(&xhci->pci_dev, ring->dequeue, trb, TRB_SIZE);
875         trb->addr = ring->dequeue;
876         trb->ccs = ring->ccs;
877         le64_to_cpus(&trb->parameter);
878         le32_to_cpus(&trb->status);
879         le32_to_cpus(&trb->control);
880 
881         trace_usb_xhci_fetch_trb(ring->dequeue, trb_name(trb),
882                                  trb->parameter, trb->status, trb->control);
883 
884         if ((trb->control & TRB_C) != ring->ccs) {
885             return 0;
886         }
887 
888         type = TRB_TYPE(*trb);
889 
890         if (type != TR_LINK) {
891             if (addr) {
892                 *addr = ring->dequeue;
893             }
894             ring->dequeue += TRB_SIZE;
895             return type;
896         } else {
897             ring->dequeue = xhci_mask64(trb->parameter);
898             if (trb->control & TRB_LK_TC) {
899                 ring->ccs = !ring->ccs;
900             }
901         }
902     }
903 }
904 
905 static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring)
906 {
907     XHCITRB trb;
908     int length = 0;
909     dma_addr_t dequeue = ring->dequeue;
910     bool ccs = ring->ccs;
911     /* hack to bundle together the two/three TDs that make a setup transfer */
912     bool control_td_set = 0;
913 
914     while (1) {
915         TRBType type;
916         pci_dma_read(&xhci->pci_dev, dequeue, &trb, TRB_SIZE);
917         le64_to_cpus(&trb.parameter);
918         le32_to_cpus(&trb.status);
919         le32_to_cpus(&trb.control);
920 
921         if ((trb.control & TRB_C) != ccs) {
922             return -length;
923         }
924 
925         type = TRB_TYPE(trb);
926 
927         if (type == TR_LINK) {
928             dequeue = xhci_mask64(trb.parameter);
929             if (trb.control & TRB_LK_TC) {
930                 ccs = !ccs;
931             }
932             continue;
933         }
934 
935         length += 1;
936         dequeue += TRB_SIZE;
937 
938         if (type == TR_SETUP) {
939             control_td_set = 1;
940         } else if (type == TR_STATUS) {
941             control_td_set = 0;
942         }
943 
944         if (!control_td_set && !(trb.control & TRB_TR_CH)) {
945             return length;
946         }
947     }
948 }
949 
950 static void xhci_er_reset(XHCIState *xhci, int v)
951 {
952     XHCIInterrupter *intr = &xhci->intr[v];
953     XHCIEvRingSeg seg;
954 
955     /* cache the (sole) event ring segment location */
956     if (intr->erstsz != 1) {
957         fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", intr->erstsz);
958         xhci_die(xhci);
959         return;
960     }
961     dma_addr_t erstba = xhci_addr64(intr->erstba_low, intr->erstba_high);
962     pci_dma_read(&xhci->pci_dev, erstba, &seg, sizeof(seg));
963     le32_to_cpus(&seg.addr_low);
964     le32_to_cpus(&seg.addr_high);
965     le32_to_cpus(&seg.size);
966     if (seg.size < 16 || seg.size > 4096) {
967         fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size);
968         xhci_die(xhci);
969         return;
970     }
971     intr->er_start = xhci_addr64(seg.addr_low, seg.addr_high);
972     intr->er_size = seg.size;
973 
974     intr->er_ep_idx = 0;
975     intr->er_pcs = 1;
976     intr->er_full = 0;
977 
978     DPRINTF("xhci: event ring[%d]:" DMA_ADDR_FMT " [%d]\n",
979             v, intr->er_start, intr->er_size);
980 }
981 
982 static void xhci_run(XHCIState *xhci)
983 {
984     trace_usb_xhci_run();
985     xhci->usbsts &= ~USBSTS_HCH;
986     xhci->mfindex_start = qemu_get_clock_ns(vm_clock);
987 }
988 
989 static void xhci_stop(XHCIState *xhci)
990 {
991     trace_usb_xhci_stop();
992     xhci->usbsts |= USBSTS_HCH;
993     xhci->crcr_low &= ~CRCR_CRR;
994 }
995 
996 static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx,
997                               uint32_t state)
998 {
999     uint32_t ctx[5];
1000     if (epctx->state == state) {
1001         return;
1002     }
1003 
1004     pci_dma_read(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx));
1005     ctx[0] &= ~EP_STATE_MASK;
1006     ctx[0] |= state;
1007     ctx[2] = epctx->ring.dequeue | epctx->ring.ccs;
1008     ctx[3] = (epctx->ring.dequeue >> 16) >> 16;
1009     DPRINTF("xhci: set epctx: " DMA_ADDR_FMT " state=%d dequeue=%08x%08x\n",
1010             epctx->pctx, state, ctx[3], ctx[2]);
1011     pci_dma_write(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx));
1012     epctx->state = state;
1013 }
1014 
1015 static void xhci_ep_kick_timer(void *opaque)
1016 {
1017     XHCIEPContext *epctx = opaque;
1018     xhci_kick_ep(epctx->xhci, epctx->slotid, epctx->epid);
1019 }
1020 
1021 static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid,
1022                                unsigned int epid, dma_addr_t pctx,
1023                                uint32_t *ctx)
1024 {
1025     XHCISlot *slot;
1026     XHCIEPContext *epctx;
1027     dma_addr_t dequeue;
1028     int i;
1029 
1030     trace_usb_xhci_ep_enable(slotid, epid);
1031     assert(slotid >= 1 && slotid <= MAXSLOTS);
1032     assert(epid >= 1 && epid <= 31);
1033 
1034     slot = &xhci->slots[slotid-1];
1035     if (slot->eps[epid-1]) {
1036         fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid);
1037         return CC_TRB_ERROR;
1038     }
1039 
1040     epctx = g_malloc(sizeof(XHCIEPContext));
1041     memset(epctx, 0, sizeof(XHCIEPContext));
1042     epctx->xhci = xhci;
1043     epctx->slotid = slotid;
1044     epctx->epid = epid;
1045 
1046     slot->eps[epid-1] = epctx;
1047 
1048     dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]);
1049     xhci_ring_init(xhci, &epctx->ring, dequeue);
1050     epctx->ring.ccs = ctx[2] & 1;
1051 
1052     epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK;
1053     DPRINTF("xhci: endpoint %d.%d type is %d\n", epid/2, epid%2, epctx->type);
1054     epctx->pctx = pctx;
1055     epctx->max_psize = ctx[1]>>16;
1056     epctx->max_psize *= 1+((ctx[1]>>8)&0xff);
1057     DPRINTF("xhci: endpoint %d.%d max transaction (burst) size is %d\n",
1058             epid/2, epid%2, epctx->max_psize);
1059     for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) {
1060         usb_packet_init(&epctx->transfers[i].packet);
1061     }
1062 
1063     epctx->interval = 1 << (ctx[0] >> 16) & 0xff;
1064     epctx->mfindex_last = 0;
1065     epctx->kick_timer = qemu_new_timer_ns(vm_clock, xhci_ep_kick_timer, epctx);
1066 
1067     epctx->state = EP_RUNNING;
1068     ctx[0] &= ~EP_STATE_MASK;
1069     ctx[0] |= EP_RUNNING;
1070 
1071     return CC_SUCCESS;
1072 }
1073 
1074 static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid,
1075                                unsigned int epid)
1076 {
1077     XHCISlot *slot;
1078     XHCIEPContext *epctx;
1079     int i, xferi, killed = 0;
1080     assert(slotid >= 1 && slotid <= MAXSLOTS);
1081     assert(epid >= 1 && epid <= 31);
1082 
1083     DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid);
1084 
1085     slot = &xhci->slots[slotid-1];
1086 
1087     if (!slot->eps[epid-1]) {
1088         return 0;
1089     }
1090 
1091     epctx = slot->eps[epid-1];
1092 
1093     xferi = epctx->next_xfer;
1094     for (i = 0; i < TD_QUEUE; i++) {
1095         XHCITransfer *t = &epctx->transfers[xferi];
1096         if (t->running_async) {
1097             usb_cancel_packet(&t->packet);
1098             t->running_async = 0;
1099             t->cancelled = 1;
1100             DPRINTF("xhci: cancelling transfer %d, waiting for it to complete...\n", i);
1101             killed++;
1102         }
1103         if (t->running_retry) {
1104             t->running_retry = 0;
1105             epctx->retry = NULL;
1106             qemu_del_timer(epctx->kick_timer);
1107         }
1108         if (t->trbs) {
1109             g_free(t->trbs);
1110         }
1111 
1112         t->trbs = NULL;
1113         t->trb_count = t->trb_alloced = 0;
1114         xferi = (xferi + 1) % TD_QUEUE;
1115     }
1116     return killed;
1117 }
1118 
1119 static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid,
1120                                unsigned int epid)
1121 {
1122     XHCISlot *slot;
1123     XHCIEPContext *epctx;
1124 
1125     trace_usb_xhci_ep_disable(slotid, epid);
1126     assert(slotid >= 1 && slotid <= MAXSLOTS);
1127     assert(epid >= 1 && epid <= 31);
1128 
1129     slot = &xhci->slots[slotid-1];
1130 
1131     if (!slot->eps[epid-1]) {
1132         DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid);
1133         return CC_SUCCESS;
1134     }
1135 
1136     xhci_ep_nuke_xfers(xhci, slotid, epid);
1137 
1138     epctx = slot->eps[epid-1];
1139 
1140     xhci_set_ep_state(xhci, epctx, EP_DISABLED);
1141 
1142     qemu_free_timer(epctx->kick_timer);
1143     g_free(epctx);
1144     slot->eps[epid-1] = NULL;
1145 
1146     return CC_SUCCESS;
1147 }
1148 
1149 static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid,
1150                              unsigned int epid)
1151 {
1152     XHCISlot *slot;
1153     XHCIEPContext *epctx;
1154 
1155     trace_usb_xhci_ep_stop(slotid, epid);
1156     assert(slotid >= 1 && slotid <= MAXSLOTS);
1157 
1158     if (epid < 1 || epid > 31) {
1159         fprintf(stderr, "xhci: bad ep %d\n", epid);
1160         return CC_TRB_ERROR;
1161     }
1162 
1163     slot = &xhci->slots[slotid-1];
1164 
1165     if (!slot->eps[epid-1]) {
1166         DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1167         return CC_EP_NOT_ENABLED_ERROR;
1168     }
1169 
1170     if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1171         fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, "
1172                 "data might be lost\n");
1173     }
1174 
1175     epctx = slot->eps[epid-1];
1176 
1177     xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1178 
1179     return CC_SUCCESS;
1180 }
1181 
1182 static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid,
1183                               unsigned int epid)
1184 {
1185     XHCISlot *slot;
1186     XHCIEPContext *epctx;
1187     USBDevice *dev;
1188 
1189     trace_usb_xhci_ep_reset(slotid, epid);
1190     assert(slotid >= 1 && slotid <= MAXSLOTS);
1191 
1192     if (epid < 1 || epid > 31) {
1193         fprintf(stderr, "xhci: bad ep %d\n", epid);
1194         return CC_TRB_ERROR;
1195     }
1196 
1197     slot = &xhci->slots[slotid-1];
1198 
1199     if (!slot->eps[epid-1]) {
1200         DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1201         return CC_EP_NOT_ENABLED_ERROR;
1202     }
1203 
1204     epctx = slot->eps[epid-1];
1205 
1206     if (epctx->state != EP_HALTED) {
1207         fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n",
1208                 epid, epctx->state);
1209         return CC_CONTEXT_STATE_ERROR;
1210     }
1211 
1212     if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) {
1213         fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, "
1214                 "data might be lost\n");
1215     }
1216 
1217     uint8_t ep = epid>>1;
1218 
1219     if (epid & 1) {
1220         ep |= 0x80;
1221     }
1222 
1223     dev = xhci->ports[xhci->slots[slotid-1].port-1].uport->dev;
1224     if (!dev) {
1225         return CC_USB_TRANSACTION_ERROR;
1226     }
1227 
1228     xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1229 
1230     return CC_SUCCESS;
1231 }
1232 
1233 static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid,
1234                                     unsigned int epid, uint64_t pdequeue)
1235 {
1236     XHCISlot *slot;
1237     XHCIEPContext *epctx;
1238     dma_addr_t dequeue;
1239 
1240     assert(slotid >= 1 && slotid <= MAXSLOTS);
1241 
1242     if (epid < 1 || epid > 31) {
1243         fprintf(stderr, "xhci: bad ep %d\n", epid);
1244         return CC_TRB_ERROR;
1245     }
1246 
1247     trace_usb_xhci_ep_set_dequeue(slotid, epid, pdequeue);
1248     dequeue = xhci_mask64(pdequeue);
1249 
1250     slot = &xhci->slots[slotid-1];
1251 
1252     if (!slot->eps[epid-1]) {
1253         DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid);
1254         return CC_EP_NOT_ENABLED_ERROR;
1255     }
1256 
1257     epctx = slot->eps[epid-1];
1258 
1259 
1260     if (epctx->state != EP_STOPPED) {
1261         fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid);
1262         return CC_CONTEXT_STATE_ERROR;
1263     }
1264 
1265     xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF);
1266     epctx->ring.ccs = dequeue & 1;
1267 
1268     xhci_set_ep_state(xhci, epctx, EP_STOPPED);
1269 
1270     return CC_SUCCESS;
1271 }
1272 
1273 static int xhci_xfer_map(XHCITransfer *xfer)
1274 {
1275     int in_xfer = (xfer->packet.pid == USB_TOKEN_IN);
1276     XHCIState *xhci = xfer->xhci;
1277     int i;
1278 
1279     pci_dma_sglist_init(&xfer->sgl, &xhci->pci_dev, xfer->trb_count);
1280     for (i = 0; i < xfer->trb_count; i++) {
1281         XHCITRB *trb = &xfer->trbs[i];
1282         dma_addr_t addr;
1283         unsigned int chunk = 0;
1284 
1285         switch (TRB_TYPE(*trb)) {
1286         case TR_DATA:
1287             if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) {
1288                 fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n");
1289                 goto err;
1290             }
1291             /* fallthrough */
1292         case TR_NORMAL:
1293         case TR_ISOCH:
1294             addr = xhci_mask64(trb->parameter);
1295             chunk = trb->status & 0x1ffff;
1296             if (trb->control & TRB_TR_IDT) {
1297                 if (chunk > 8 || in_xfer) {
1298                     fprintf(stderr, "xhci: invalid immediate data TRB\n");
1299                     goto err;
1300                 }
1301                 qemu_sglist_add(&xfer->sgl, trb->addr, chunk);
1302             } else {
1303                 qemu_sglist_add(&xfer->sgl, addr, chunk);
1304             }
1305             break;
1306         }
1307     }
1308 
1309     usb_packet_map(&xfer->packet, &xfer->sgl);
1310     return 0;
1311 
1312 err:
1313     qemu_sglist_destroy(&xfer->sgl);
1314     xhci_die(xhci);
1315     return -1;
1316 }
1317 
1318 static void xhci_xfer_unmap(XHCITransfer *xfer)
1319 {
1320     usb_packet_unmap(&xfer->packet, &xfer->sgl);
1321     qemu_sglist_destroy(&xfer->sgl);
1322 }
1323 
1324 static void xhci_xfer_report(XHCITransfer *xfer)
1325 {
1326     uint32_t edtla = 0;
1327     unsigned int left;
1328     bool reported = 0;
1329     bool shortpkt = 0;
1330     XHCIEvent event = {ER_TRANSFER, CC_SUCCESS};
1331     XHCIState *xhci = xfer->xhci;
1332     int i;
1333 
1334     left = xfer->packet.result < 0 ? 0 : xfer->packet.result;
1335 
1336     for (i = 0; i < xfer->trb_count; i++) {
1337         XHCITRB *trb = &xfer->trbs[i];
1338         unsigned int chunk = 0;
1339 
1340         switch (TRB_TYPE(*trb)) {
1341         case TR_DATA:
1342         case TR_NORMAL:
1343         case TR_ISOCH:
1344             chunk = trb->status & 0x1ffff;
1345             if (chunk > left) {
1346                 chunk = left;
1347                 if (xfer->status == CC_SUCCESS) {
1348                     shortpkt = 1;
1349                 }
1350             }
1351             left -= chunk;
1352             edtla += chunk;
1353             break;
1354         case TR_STATUS:
1355             reported = 0;
1356             shortpkt = 0;
1357             break;
1358         }
1359 
1360         if (!reported && ((trb->control & TRB_TR_IOC) ||
1361                           (shortpkt && (trb->control & TRB_TR_ISP)) ||
1362                           (xfer->status != CC_SUCCESS))) {
1363             event.slotid = xfer->slotid;
1364             event.epid = xfer->epid;
1365             event.length = (trb->status & 0x1ffff) - chunk;
1366             event.flags = 0;
1367             event.ptr = trb->addr;
1368             if (xfer->status == CC_SUCCESS) {
1369                 event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS;
1370             } else {
1371                 event.ccode = xfer->status;
1372             }
1373             if (TRB_TYPE(*trb) == TR_EVDATA) {
1374                 event.ptr = trb->parameter;
1375                 event.flags |= TRB_EV_ED;
1376                 event.length = edtla & 0xffffff;
1377                 DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length);
1378                 edtla = 0;
1379             }
1380             xhci_event(xhci, &event, 0 /* FIXME */);
1381             reported = 1;
1382             if (xfer->status != CC_SUCCESS) {
1383                 return;
1384             }
1385         }
1386     }
1387 }
1388 
1389 static void xhci_stall_ep(XHCITransfer *xfer)
1390 {
1391     XHCIState *xhci = xfer->xhci;
1392     XHCISlot *slot = &xhci->slots[xfer->slotid-1];
1393     XHCIEPContext *epctx = slot->eps[xfer->epid-1];
1394 
1395     epctx->ring.dequeue = xfer->trbs[0].addr;
1396     epctx->ring.ccs = xfer->trbs[0].ccs;
1397     xhci_set_ep_state(xhci, epctx, EP_HALTED);
1398     DPRINTF("xhci: stalled slot %d ep %d\n", xfer->slotid, xfer->epid);
1399     DPRINTF("xhci: will continue at "DMA_ADDR_FMT"\n", epctx->ring.dequeue);
1400 }
1401 
1402 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer,
1403                        XHCIEPContext *epctx);
1404 
1405 static USBDevice *xhci_find_device(XHCIPort *port, uint8_t addr)
1406 {
1407     if (!(port->portsc & PORTSC_PED)) {
1408         return NULL;
1409     }
1410     return usb_find_device(port->uport, addr);
1411 }
1412 
1413 static int xhci_setup_packet(XHCITransfer *xfer)
1414 {
1415     XHCIState *xhci = xfer->xhci;
1416     XHCIPort *port;
1417     USBDevice *dev;
1418     USBEndpoint *ep;
1419     int dir;
1420 
1421     dir = xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT;
1422 
1423     if (xfer->packet.ep) {
1424         ep = xfer->packet.ep;
1425         dev = ep->dev;
1426     } else {
1427         port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1];
1428         dev = xhci_find_device(port, xhci->slots[xfer->slotid-1].devaddr);
1429         if (!dev) {
1430             fprintf(stderr, "xhci: slot %d port %d has no device\n",
1431                     xfer->slotid, xhci->slots[xfer->slotid-1].port);
1432             return -1;
1433         }
1434         ep = usb_ep_get(dev, dir, xfer->epid >> 1);
1435     }
1436 
1437     usb_packet_setup(&xfer->packet, dir, ep, xfer->trbs[0].addr);
1438     xhci_xfer_map(xfer);
1439     DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n",
1440             xfer->packet.pid, dev->addr, ep->nr);
1441     return 0;
1442 }
1443 
1444 static int xhci_complete_packet(XHCITransfer *xfer, int ret)
1445 {
1446     if (ret == USB_RET_ASYNC) {
1447         trace_usb_xhci_xfer_async(xfer);
1448         xfer->running_async = 1;
1449         xfer->running_retry = 0;
1450         xfer->complete = 0;
1451         xfer->cancelled = 0;
1452         return 0;
1453     } else if (ret == USB_RET_NAK) {
1454         trace_usb_xhci_xfer_nak(xfer);
1455         xfer->running_async = 0;
1456         xfer->running_retry = 1;
1457         xfer->complete = 0;
1458         xfer->cancelled = 0;
1459         return 0;
1460     } else {
1461         xfer->running_async = 0;
1462         xfer->running_retry = 0;
1463         xfer->complete = 1;
1464         xhci_xfer_unmap(xfer);
1465     }
1466 
1467     if (ret >= 0) {
1468         trace_usb_xhci_xfer_success(xfer, ret);
1469         xfer->status = CC_SUCCESS;
1470         xhci_xfer_report(xfer);
1471         return 0;
1472     }
1473 
1474     /* error */
1475     trace_usb_xhci_xfer_error(xfer, ret);
1476     switch (ret) {
1477     case USB_RET_NODEV:
1478         xfer->status = CC_USB_TRANSACTION_ERROR;
1479         xhci_xfer_report(xfer);
1480         xhci_stall_ep(xfer);
1481         break;
1482     case USB_RET_STALL:
1483         xfer->status = CC_STALL_ERROR;
1484         xhci_xfer_report(xfer);
1485         xhci_stall_ep(xfer);
1486         break;
1487     default:
1488         fprintf(stderr, "%s: FIXME: ret = %d\n", __FUNCTION__, ret);
1489         FIXME();
1490     }
1491     return 0;
1492 }
1493 
1494 static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer)
1495 {
1496     XHCITRB *trb_setup, *trb_status;
1497     uint8_t bmRequestType;
1498     int ret;
1499 
1500     trb_setup = &xfer->trbs[0];
1501     trb_status = &xfer->trbs[xfer->trb_count-1];
1502 
1503     trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid);
1504 
1505     /* at most one Event Data TRB allowed after STATUS */
1506     if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) {
1507         trb_status--;
1508     }
1509 
1510     /* do some sanity checks */
1511     if (TRB_TYPE(*trb_setup) != TR_SETUP) {
1512         fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n",
1513                 TRB_TYPE(*trb_setup));
1514         return -1;
1515     }
1516     if (TRB_TYPE(*trb_status) != TR_STATUS) {
1517         fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n",
1518                 TRB_TYPE(*trb_status));
1519         return -1;
1520     }
1521     if (!(trb_setup->control & TRB_TR_IDT)) {
1522         fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n");
1523         return -1;
1524     }
1525     if ((trb_setup->status & 0x1ffff) != 8) {
1526         fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n",
1527                 (trb_setup->status & 0x1ffff));
1528         return -1;
1529     }
1530 
1531     bmRequestType = trb_setup->parameter;
1532 
1533     xfer->in_xfer = bmRequestType & USB_DIR_IN;
1534     xfer->iso_xfer = false;
1535 
1536     if (xhci_setup_packet(xfer) < 0) {
1537         return -1;
1538     }
1539     xfer->packet.parameter = trb_setup->parameter;
1540 
1541     ret = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1542 
1543     xhci_complete_packet(xfer, ret);
1544     if (!xfer->running_async && !xfer->running_retry) {
1545         xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1546     }
1547     return 0;
1548 }
1549 
1550 static void xhci_calc_iso_kick(XHCIState *xhci, XHCITransfer *xfer,
1551                                XHCIEPContext *epctx, uint64_t mfindex)
1552 {
1553     if (xfer->trbs[0].control & TRB_TR_SIA) {
1554         uint64_t asap = ((mfindex + epctx->interval - 1) &
1555                          ~(epctx->interval-1));
1556         if (asap >= epctx->mfindex_last &&
1557             asap <= epctx->mfindex_last + epctx->interval * 4) {
1558             xfer->mfindex_kick = epctx->mfindex_last + epctx->interval;
1559         } else {
1560             xfer->mfindex_kick = asap;
1561         }
1562     } else {
1563         xfer->mfindex_kick = (xfer->trbs[0].control >> TRB_TR_FRAMEID_SHIFT)
1564             & TRB_TR_FRAMEID_MASK;
1565         xfer->mfindex_kick |= mfindex & ~0x3fff;
1566         if (xfer->mfindex_kick < mfindex) {
1567             xfer->mfindex_kick += 0x4000;
1568         }
1569     }
1570 }
1571 
1572 static void xhci_check_iso_kick(XHCIState *xhci, XHCITransfer *xfer,
1573                                 XHCIEPContext *epctx, uint64_t mfindex)
1574 {
1575     if (xfer->mfindex_kick > mfindex) {
1576         qemu_mod_timer(epctx->kick_timer, qemu_get_clock_ns(vm_clock) +
1577                        (xfer->mfindex_kick - mfindex) * 125000);
1578         xfer->running_retry = 1;
1579     } else {
1580         epctx->mfindex_last = xfer->mfindex_kick;
1581         qemu_del_timer(epctx->kick_timer);
1582         xfer->running_retry = 0;
1583     }
1584 }
1585 
1586 
1587 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1588 {
1589     uint64_t mfindex;
1590     int ret;
1591 
1592     DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
1593 
1594     xfer->in_xfer = epctx->type>>2;
1595 
1596     switch(epctx->type) {
1597     case ET_INTR_OUT:
1598     case ET_INTR_IN:
1599     case ET_BULK_OUT:
1600     case ET_BULK_IN:
1601         xfer->pkts = 0;
1602         xfer->iso_xfer = false;
1603         break;
1604     case ET_ISO_OUT:
1605     case ET_ISO_IN:
1606         xfer->pkts = 1;
1607         xfer->iso_xfer = true;
1608         mfindex = xhci_mfindex_get(xhci);
1609         xhci_calc_iso_kick(xhci, xfer, epctx, mfindex);
1610         xhci_check_iso_kick(xhci, xfer, epctx, mfindex);
1611         if (xfer->running_retry) {
1612             return -1;
1613         }
1614         break;
1615     default:
1616         fprintf(stderr, "xhci: unknown or unhandled EP "
1617                 "(type %d, in %d, ep %02x)\n",
1618                 epctx->type, xfer->in_xfer, xfer->epid);
1619         return -1;
1620     }
1621 
1622     if (xhci_setup_packet(xfer) < 0) {
1623         return -1;
1624     }
1625     ret = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1626 
1627     xhci_complete_packet(xfer, ret);
1628     if (!xfer->running_async && !xfer->running_retry) {
1629         xhci_kick_ep(xhci, xfer->slotid, xfer->epid);
1630     }
1631     return 0;
1632 }
1633 
1634 static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx)
1635 {
1636     trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid);
1637     return xhci_submit(xhci, xfer, epctx);
1638 }
1639 
1640 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid)
1641 {
1642     XHCIEPContext *epctx;
1643     uint64_t mfindex;
1644     int length;
1645     int i;
1646 
1647     trace_usb_xhci_ep_kick(slotid, epid);
1648     assert(slotid >= 1 && slotid <= MAXSLOTS);
1649     assert(epid >= 1 && epid <= 31);
1650 
1651     if (!xhci->slots[slotid-1].enabled) {
1652         fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid);
1653         return;
1654     }
1655     epctx = xhci->slots[slotid-1].eps[epid-1];
1656     if (!epctx) {
1657         fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n",
1658                 epid, slotid);
1659         return;
1660     }
1661 
1662     if (epctx->retry) {
1663         XHCITransfer *xfer = epctx->retry;
1664         int result;
1665 
1666         trace_usb_xhci_xfer_retry(xfer);
1667         assert(xfer->running_retry);
1668         if (xfer->iso_xfer) {
1669             /* retry delayed iso transfer */
1670             mfindex = xhci_mfindex_get(xhci);
1671             xhci_check_iso_kick(xhci, xfer, epctx, mfindex);
1672             if (xfer->running_retry) {
1673                 return;
1674             }
1675             if (xhci_setup_packet(xfer) < 0) {
1676                 return;
1677             }
1678             result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1679             assert(result != USB_RET_NAK);
1680             xhci_complete_packet(xfer, result);
1681         } else {
1682             /* retry nak'ed transfer */
1683             if (xhci_setup_packet(xfer) < 0) {
1684                 return;
1685             }
1686             result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
1687             if (result == USB_RET_NAK) {
1688                 return;
1689             }
1690             xhci_complete_packet(xfer, result);
1691         }
1692         assert(!xfer->running_retry);
1693         epctx->retry = NULL;
1694     }
1695 
1696     if (epctx->state == EP_HALTED) {
1697         DPRINTF("xhci: ep halted, not running schedule\n");
1698         return;
1699     }
1700 
1701     xhci_set_ep_state(xhci, epctx, EP_RUNNING);
1702 
1703     while (1) {
1704         XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer];
1705         if (xfer->running_async || xfer->running_retry) {
1706             break;
1707         }
1708         length = xhci_ring_chain_length(xhci, &epctx->ring);
1709         if (length < 0) {
1710             break;
1711         } else if (length == 0) {
1712             break;
1713         }
1714         if (xfer->trbs && xfer->trb_alloced < length) {
1715             xfer->trb_count = 0;
1716             xfer->trb_alloced = 0;
1717             g_free(xfer->trbs);
1718             xfer->trbs = NULL;
1719         }
1720         if (!xfer->trbs) {
1721             xfer->trbs = g_malloc(sizeof(XHCITRB) * length);
1722             xfer->trb_alloced = length;
1723         }
1724         xfer->trb_count = length;
1725 
1726         for (i = 0; i < length; i++) {
1727             assert(xhci_ring_fetch(xhci, &epctx->ring, &xfer->trbs[i], NULL));
1728         }
1729         xfer->xhci = xhci;
1730         xfer->epid = epid;
1731         xfer->slotid = slotid;
1732 
1733         if (epid == 1) {
1734             if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) {
1735                 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1736             } else {
1737                 fprintf(stderr, "xhci: error firing CTL transfer\n");
1738             }
1739         } else {
1740             if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) {
1741                 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE;
1742             } else {
1743                 if (!xfer->iso_xfer) {
1744                     fprintf(stderr, "xhci: error firing data transfer\n");
1745                 }
1746             }
1747         }
1748 
1749         if (epctx->state == EP_HALTED) {
1750             break;
1751         }
1752         if (xfer->running_retry) {
1753             DPRINTF("xhci: xfer nacked, stopping schedule\n");
1754             epctx->retry = xfer;
1755             break;
1756         }
1757     }
1758 }
1759 
1760 static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid)
1761 {
1762     trace_usb_xhci_slot_enable(slotid);
1763     assert(slotid >= 1 && slotid <= MAXSLOTS);
1764     xhci->slots[slotid-1].enabled = 1;
1765     xhci->slots[slotid-1].port = 0;
1766     memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31);
1767 
1768     return CC_SUCCESS;
1769 }
1770 
1771 static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid)
1772 {
1773     int i;
1774 
1775     trace_usb_xhci_slot_disable(slotid);
1776     assert(slotid >= 1 && slotid <= MAXSLOTS);
1777 
1778     for (i = 1; i <= 31; i++) {
1779         if (xhci->slots[slotid-1].eps[i-1]) {
1780             xhci_disable_ep(xhci, slotid, i);
1781         }
1782     }
1783 
1784     xhci->slots[slotid-1].enabled = 0;
1785     return CC_SUCCESS;
1786 }
1787 
1788 static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid,
1789                                   uint64_t pictx, bool bsr)
1790 {
1791     XHCISlot *slot;
1792     USBDevice *dev;
1793     dma_addr_t ictx, octx, dcbaap;
1794     uint64_t poctx;
1795     uint32_t ictl_ctx[2];
1796     uint32_t slot_ctx[4];
1797     uint32_t ep0_ctx[5];
1798     unsigned int port;
1799     int i;
1800     TRBCCode res;
1801 
1802     trace_usb_xhci_slot_address(slotid);
1803     assert(slotid >= 1 && slotid <= MAXSLOTS);
1804 
1805     dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high);
1806     pci_dma_read(&xhci->pci_dev, dcbaap + 8*slotid, &poctx, sizeof(poctx));
1807     ictx = xhci_mask64(pictx);
1808     octx = xhci_mask64(le64_to_cpu(poctx));
1809 
1810     DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx);
1811     DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
1812 
1813     pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx));
1814 
1815     if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) {
1816         fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1817                 ictl_ctx[0], ictl_ctx[1]);
1818         return CC_TRB_ERROR;
1819     }
1820 
1821     pci_dma_read(&xhci->pci_dev, ictx+32, slot_ctx, sizeof(slot_ctx));
1822     pci_dma_read(&xhci->pci_dev, ictx+64, ep0_ctx, sizeof(ep0_ctx));
1823 
1824     DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
1825             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1826 
1827     DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
1828             ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1829 
1830     port = (slot_ctx[1]>>16) & 0xFF;
1831     dev = xhci->ports[port-1].uport->dev;
1832 
1833     if (port < 1 || port > xhci->numports) {
1834         fprintf(stderr, "xhci: bad port %d\n", port);
1835         return CC_TRB_ERROR;
1836     } else if (!dev) {
1837         fprintf(stderr, "xhci: port %d not connected\n", port);
1838         return CC_USB_TRANSACTION_ERROR;
1839     }
1840 
1841     for (i = 0; i < MAXSLOTS; i++) {
1842         if (xhci->slots[i].port == port) {
1843             fprintf(stderr, "xhci: port %d already assigned to slot %d\n",
1844                     port, i+1);
1845             return CC_TRB_ERROR;
1846         }
1847     }
1848 
1849     slot = &xhci->slots[slotid-1];
1850     slot->port = port;
1851     slot->ctx = octx;
1852 
1853     if (bsr) {
1854         slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT;
1855     } else {
1856         slot->devaddr = xhci->devaddr++;
1857         slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slot->devaddr;
1858         DPRINTF("xhci: device address is %d\n", slot->devaddr);
1859         usb_device_handle_control(dev, NULL,
1860                                   DeviceOutRequest | USB_REQ_SET_ADDRESS,
1861                                   slot->devaddr, 0, 0, NULL);
1862     }
1863 
1864     res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx);
1865 
1866     DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1867             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1868     DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
1869             ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
1870 
1871     pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1872     pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx));
1873 
1874     return res;
1875 }
1876 
1877 
1878 static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid,
1879                                   uint64_t pictx, bool dc)
1880 {
1881     dma_addr_t ictx, octx;
1882     uint32_t ictl_ctx[2];
1883     uint32_t slot_ctx[4];
1884     uint32_t islot_ctx[4];
1885     uint32_t ep_ctx[5];
1886     int i;
1887     TRBCCode res;
1888 
1889     trace_usb_xhci_slot_configure(slotid);
1890     assert(slotid >= 1 && slotid <= MAXSLOTS);
1891 
1892     ictx = xhci_mask64(pictx);
1893     octx = xhci->slots[slotid-1].ctx;
1894 
1895     DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx);
1896     DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
1897 
1898     if (dc) {
1899         for (i = 2; i <= 31; i++) {
1900             if (xhci->slots[slotid-1].eps[i-1]) {
1901                 xhci_disable_ep(xhci, slotid, i);
1902             }
1903         }
1904 
1905         pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1906         slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
1907         slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT;
1908         DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1909                 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1910         pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1911 
1912         return CC_SUCCESS;
1913     }
1914 
1915     pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx));
1916 
1917     if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) {
1918         fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1919                 ictl_ctx[0], ictl_ctx[1]);
1920         return CC_TRB_ERROR;
1921     }
1922 
1923     pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx));
1924     pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1925 
1926     if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) {
1927         fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]);
1928         return CC_CONTEXT_STATE_ERROR;
1929     }
1930 
1931     for (i = 2; i <= 31; i++) {
1932         if (ictl_ctx[0] & (1<<i)) {
1933             xhci_disable_ep(xhci, slotid, i);
1934         }
1935         if (ictl_ctx[1] & (1<<i)) {
1936             pci_dma_read(&xhci->pci_dev, ictx+32+(32*i), ep_ctx,
1937                          sizeof(ep_ctx));
1938             DPRINTF("xhci: input ep%d.%d context: %08x %08x %08x %08x %08x\n",
1939                     i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
1940                     ep_ctx[3], ep_ctx[4]);
1941             xhci_disable_ep(xhci, slotid, i);
1942             res = xhci_enable_ep(xhci, slotid, i, octx+(32*i), ep_ctx);
1943             if (res != CC_SUCCESS) {
1944                 return res;
1945             }
1946             DPRINTF("xhci: output ep%d.%d context: %08x %08x %08x %08x %08x\n",
1947                     i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2],
1948                     ep_ctx[3], ep_ctx[4]);
1949             pci_dma_write(&xhci->pci_dev, octx+(32*i), ep_ctx, sizeof(ep_ctx));
1950         }
1951     }
1952 
1953     slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
1954     slot_ctx[3] |= SLOT_CONFIGURED << SLOT_STATE_SHIFT;
1955     slot_ctx[0] &= ~(SLOT_CONTEXT_ENTRIES_MASK << SLOT_CONTEXT_ENTRIES_SHIFT);
1956     slot_ctx[0] |= islot_ctx[0] & (SLOT_CONTEXT_ENTRIES_MASK <<
1957                                    SLOT_CONTEXT_ENTRIES_SHIFT);
1958     DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
1959             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
1960 
1961     pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
1962 
1963     return CC_SUCCESS;
1964 }
1965 
1966 
1967 static TRBCCode xhci_evaluate_slot(XHCIState *xhci, unsigned int slotid,
1968                                    uint64_t pictx)
1969 {
1970     dma_addr_t ictx, octx;
1971     uint32_t ictl_ctx[2];
1972     uint32_t iep0_ctx[5];
1973     uint32_t ep0_ctx[5];
1974     uint32_t islot_ctx[4];
1975     uint32_t slot_ctx[4];
1976 
1977     trace_usb_xhci_slot_evaluate(slotid);
1978     assert(slotid >= 1 && slotid <= MAXSLOTS);
1979 
1980     ictx = xhci_mask64(pictx);
1981     octx = xhci->slots[slotid-1].ctx;
1982 
1983     DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx);
1984     DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
1985 
1986     pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx));
1987 
1988     if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) {
1989         fprintf(stderr, "xhci: invalid input context control %08x %08x\n",
1990                 ictl_ctx[0], ictl_ctx[1]);
1991         return CC_TRB_ERROR;
1992     }
1993 
1994     if (ictl_ctx[1] & 0x1) {
1995         pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx));
1996 
1997         DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n",
1998                 islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]);
1999 
2000         pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2001 
2002         slot_ctx[1] &= ~0xFFFF; /* max exit latency */
2003         slot_ctx[1] |= islot_ctx[1] & 0xFFFF;
2004         slot_ctx[2] &= ~0xFF00000; /* interrupter target */
2005         slot_ctx[2] |= islot_ctx[2] & 0xFF000000;
2006 
2007         DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2008                 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2009 
2010         pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2011     }
2012 
2013     if (ictl_ctx[1] & 0x2) {
2014         pci_dma_read(&xhci->pci_dev, ictx+64, iep0_ctx, sizeof(iep0_ctx));
2015 
2016         DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n",
2017                 iep0_ctx[0], iep0_ctx[1], iep0_ctx[2],
2018                 iep0_ctx[3], iep0_ctx[4]);
2019 
2020         pci_dma_read(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx));
2021 
2022         ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/
2023         ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000;
2024 
2025         DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n",
2026                 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]);
2027 
2028         pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx));
2029     }
2030 
2031     return CC_SUCCESS;
2032 }
2033 
2034 static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid)
2035 {
2036     uint32_t slot_ctx[4];
2037     dma_addr_t octx;
2038     int i;
2039 
2040     trace_usb_xhci_slot_reset(slotid);
2041     assert(slotid >= 1 && slotid <= MAXSLOTS);
2042 
2043     octx = xhci->slots[slotid-1].ctx;
2044 
2045     DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx);
2046 
2047     for (i = 2; i <= 31; i++) {
2048         if (xhci->slots[slotid-1].eps[i-1]) {
2049             xhci_disable_ep(xhci, slotid, i);
2050         }
2051     }
2052 
2053     pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2054     slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT);
2055     slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT;
2056     DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n",
2057             slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]);
2058     pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx));
2059 
2060     return CC_SUCCESS;
2061 }
2062 
2063 static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb)
2064 {
2065     unsigned int slotid;
2066     slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK;
2067     if (slotid < 1 || slotid > MAXSLOTS) {
2068         fprintf(stderr, "xhci: bad slot id %d\n", slotid);
2069         event->ccode = CC_TRB_ERROR;
2070         return 0;
2071     } else if (!xhci->slots[slotid-1].enabled) {
2072         fprintf(stderr, "xhci: slot id %d not enabled\n", slotid);
2073         event->ccode = CC_SLOT_NOT_ENABLED_ERROR;
2074         return 0;
2075     }
2076     return slotid;
2077 }
2078 
2079 static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx)
2080 {
2081     dma_addr_t ctx;
2082     uint8_t bw_ctx[xhci->numports+1];
2083 
2084     DPRINTF("xhci_get_port_bandwidth()\n");
2085 
2086     ctx = xhci_mask64(pctx);
2087 
2088     DPRINTF("xhci: bandwidth context at "DMA_ADDR_FMT"\n", ctx);
2089 
2090     /* TODO: actually implement real values here */
2091     bw_ctx[0] = 0;
2092     memset(&bw_ctx[1], 80, xhci->numports); /* 80% */
2093     pci_dma_write(&xhci->pci_dev, ctx, bw_ctx, sizeof(bw_ctx));
2094 
2095     return CC_SUCCESS;
2096 }
2097 
2098 static uint32_t rotl(uint32_t v, unsigned count)
2099 {
2100     count &= 31;
2101     return (v << count) | (v >> (32 - count));
2102 }
2103 
2104 
2105 static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo)
2106 {
2107     uint32_t val;
2108     val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F));
2109     val += rotl(lo + 0x49434878, hi & 0x1F);
2110     val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F);
2111     return ~val;
2112 }
2113 
2114 static void xhci_via_challenge(XHCIState *xhci, uint64_t addr)
2115 {
2116     uint32_t buf[8];
2117     uint32_t obuf[8];
2118     dma_addr_t paddr = xhci_mask64(addr);
2119 
2120     pci_dma_read(&xhci->pci_dev, paddr, &buf, 32);
2121 
2122     memcpy(obuf, buf, sizeof(obuf));
2123 
2124     if ((buf[0] & 0xff) == 2) {
2125         obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3];
2126         obuf[0] |=  (buf[2] * buf[3]) & 0xff;
2127         obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3];
2128         obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3];
2129         obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3];
2130         obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3];
2131         obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3];
2132         obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956;
2133         obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593;
2134     }
2135 
2136     pci_dma_write(&xhci->pci_dev, paddr, &obuf, 32);
2137 }
2138 
2139 static void xhci_process_commands(XHCIState *xhci)
2140 {
2141     XHCITRB trb;
2142     TRBType type;
2143     XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS};
2144     dma_addr_t addr;
2145     unsigned int i, slotid = 0;
2146 
2147     DPRINTF("xhci_process_commands()\n");
2148     if (!xhci_running(xhci)) {
2149         DPRINTF("xhci_process_commands() called while xHC stopped or paused\n");
2150         return;
2151     }
2152 
2153     xhci->crcr_low |= CRCR_CRR;
2154 
2155     while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) {
2156         event.ptr = addr;
2157         switch (type) {
2158         case CR_ENABLE_SLOT:
2159             for (i = 0; i < MAXSLOTS; i++) {
2160                 if (!xhci->slots[i].enabled) {
2161                     break;
2162                 }
2163             }
2164             if (i >= MAXSLOTS) {
2165                 fprintf(stderr, "xhci: no device slots available\n");
2166                 event.ccode = CC_NO_SLOTS_ERROR;
2167             } else {
2168                 slotid = i+1;
2169                 event.ccode = xhci_enable_slot(xhci, slotid);
2170             }
2171             break;
2172         case CR_DISABLE_SLOT:
2173             slotid = xhci_get_slot(xhci, &event, &trb);
2174             if (slotid) {
2175                 event.ccode = xhci_disable_slot(xhci, slotid);
2176             }
2177             break;
2178         case CR_ADDRESS_DEVICE:
2179             slotid = xhci_get_slot(xhci, &event, &trb);
2180             if (slotid) {
2181                 event.ccode = xhci_address_slot(xhci, slotid, trb.parameter,
2182                                                 trb.control & TRB_CR_BSR);
2183             }
2184             break;
2185         case CR_CONFIGURE_ENDPOINT:
2186             slotid = xhci_get_slot(xhci, &event, &trb);
2187             if (slotid) {
2188                 event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter,
2189                                                   trb.control & TRB_CR_DC);
2190             }
2191             break;
2192         case CR_EVALUATE_CONTEXT:
2193             slotid = xhci_get_slot(xhci, &event, &trb);
2194             if (slotid) {
2195                 event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter);
2196             }
2197             break;
2198         case CR_STOP_ENDPOINT:
2199             slotid = xhci_get_slot(xhci, &event, &trb);
2200             if (slotid) {
2201                 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2202                     & TRB_CR_EPID_MASK;
2203                 event.ccode = xhci_stop_ep(xhci, slotid, epid);
2204             }
2205             break;
2206         case CR_RESET_ENDPOINT:
2207             slotid = xhci_get_slot(xhci, &event, &trb);
2208             if (slotid) {
2209                 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2210                     & TRB_CR_EPID_MASK;
2211                 event.ccode = xhci_reset_ep(xhci, slotid, epid);
2212             }
2213             break;
2214         case CR_SET_TR_DEQUEUE:
2215             slotid = xhci_get_slot(xhci, &event, &trb);
2216             if (slotid) {
2217                 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT)
2218                     & TRB_CR_EPID_MASK;
2219                 event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid,
2220                                                   trb.parameter);
2221             }
2222             break;
2223         case CR_RESET_DEVICE:
2224             slotid = xhci_get_slot(xhci, &event, &trb);
2225             if (slotid) {
2226                 event.ccode = xhci_reset_slot(xhci, slotid);
2227             }
2228             break;
2229         case CR_GET_PORT_BANDWIDTH:
2230             event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter);
2231             break;
2232         case CR_VENDOR_VIA_CHALLENGE_RESPONSE:
2233             xhci_via_challenge(xhci, trb.parameter);
2234             break;
2235         case CR_VENDOR_NEC_FIRMWARE_REVISION:
2236             event.type = 48; /* NEC reply */
2237             event.length = 0x3025;
2238             break;
2239         case CR_VENDOR_NEC_CHALLENGE_RESPONSE:
2240         {
2241             uint32_t chi = trb.parameter >> 32;
2242             uint32_t clo = trb.parameter;
2243             uint32_t val = xhci_nec_challenge(chi, clo);
2244             event.length = val & 0xFFFF;
2245             event.epid = val >> 16;
2246             slotid = val >> 24;
2247             event.type = 48; /* NEC reply */
2248         }
2249         break;
2250         default:
2251             fprintf(stderr, "xhci: unimplemented command %d\n", type);
2252             event.ccode = CC_TRB_ERROR;
2253             break;
2254         }
2255         event.slotid = slotid;
2256         xhci_event(xhci, &event, 0 /* FIXME */);
2257     }
2258 }
2259 
2260 static void xhci_update_port(XHCIState *xhci, XHCIPort *port, int is_detach)
2261 {
2262     port->portsc = PORTSC_PP;
2263     if (port->uport->dev && port->uport->dev->attached && !is_detach &&
2264         (1 << port->uport->dev->speed) & port->speedmask) {
2265         port->portsc |= PORTSC_CCS;
2266         switch (port->uport->dev->speed) {
2267         case USB_SPEED_LOW:
2268             port->portsc |= PORTSC_SPEED_LOW;
2269             break;
2270         case USB_SPEED_FULL:
2271             port->portsc |= PORTSC_SPEED_FULL;
2272             break;
2273         case USB_SPEED_HIGH:
2274             port->portsc |= PORTSC_SPEED_HIGH;
2275             break;
2276         case USB_SPEED_SUPER:
2277             port->portsc |= PORTSC_SPEED_SUPER;
2278             break;
2279         }
2280     }
2281 
2282     if (xhci_running(xhci)) {
2283         port->portsc |= PORTSC_CSC;
2284         XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS,
2285                          port->portnr << 24};
2286         xhci_event(xhci, &ev, 0 /* FIXME */);
2287         DPRINTF("xhci: port change event for port %d\n", port->portnr);
2288     }
2289 }
2290 
2291 static void xhci_reset(DeviceState *dev)
2292 {
2293     XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev.qdev, dev);
2294     int i;
2295 
2296     trace_usb_xhci_reset();
2297     if (!(xhci->usbsts & USBSTS_HCH)) {
2298         fprintf(stderr, "xhci: reset while running!\n");
2299     }
2300 
2301     xhci->usbcmd = 0;
2302     xhci->usbsts = USBSTS_HCH;
2303     xhci->dnctrl = 0;
2304     xhci->crcr_low = 0;
2305     xhci->crcr_high = 0;
2306     xhci->dcbaap_low = 0;
2307     xhci->dcbaap_high = 0;
2308     xhci->config = 0;
2309     xhci->devaddr = 2;
2310 
2311     for (i = 0; i < MAXSLOTS; i++) {
2312         xhci_disable_slot(xhci, i+1);
2313     }
2314 
2315     for (i = 0; i < xhci->numports; i++) {
2316         xhci_update_port(xhci, xhci->ports + i, 0);
2317     }
2318 
2319     for (i = 0; i < MAXINTRS; i++) {
2320         xhci->intr[i].iman = 0;
2321         xhci->intr[i].imod = 0;
2322         xhci->intr[i].erstsz = 0;
2323         xhci->intr[i].erstba_low = 0;
2324         xhci->intr[i].erstba_high = 0;
2325         xhci->intr[i].erdp_low = 0;
2326         xhci->intr[i].erdp_high = 0;
2327         xhci->intr[i].msix_used = 0;
2328 
2329         xhci->intr[i].er_ep_idx = 0;
2330         xhci->intr[i].er_pcs = 1;
2331         xhci->intr[i].er_full = 0;
2332         xhci->intr[i].ev_buffer_put = 0;
2333         xhci->intr[i].ev_buffer_get = 0;
2334     }
2335 
2336     xhci->mfindex_start = qemu_get_clock_ns(vm_clock);
2337     xhci_mfwrap_update(xhci);
2338 }
2339 
2340 static uint32_t xhci_cap_read(XHCIState *xhci, uint32_t reg)
2341 {
2342     uint32_t ret;
2343 
2344     switch (reg) {
2345     case 0x00: /* HCIVERSION, CAPLENGTH */
2346         ret = 0x01000000 | LEN_CAP;
2347         break;
2348     case 0x04: /* HCSPARAMS 1 */
2349         ret = ((xhci->numports_2+xhci->numports_3)<<24)
2350             | (MAXINTRS<<8) | MAXSLOTS;
2351         break;
2352     case 0x08: /* HCSPARAMS 2 */
2353         ret = 0x0000000f;
2354         break;
2355     case 0x0c: /* HCSPARAMS 3 */
2356         ret = 0x00000000;
2357         break;
2358     case 0x10: /* HCCPARAMS */
2359         if (sizeof(dma_addr_t) == 4) {
2360             ret = 0x00081000;
2361         } else {
2362             ret = 0x00081001;
2363         }
2364         break;
2365     case 0x14: /* DBOFF */
2366         ret = OFF_DOORBELL;
2367         break;
2368     case 0x18: /* RTSOFF */
2369         ret = OFF_RUNTIME;
2370         break;
2371 
2372     /* extended capabilities */
2373     case 0x20: /* Supported Protocol:00 */
2374         ret = 0x02000402; /* USB 2.0 */
2375         break;
2376     case 0x24: /* Supported Protocol:04 */
2377         ret = 0x20425455; /* "USB " */
2378         break;
2379     case 0x28: /* Supported Protocol:08 */
2380         ret = 0x00000001 | (xhci->numports_2<<8);
2381         break;
2382     case 0x2c: /* Supported Protocol:0c */
2383         ret = 0x00000000; /* reserved */
2384         break;
2385     case 0x30: /* Supported Protocol:00 */
2386         ret = 0x03000002; /* USB 3.0 */
2387         break;
2388     case 0x34: /* Supported Protocol:04 */
2389         ret = 0x20425455; /* "USB " */
2390         break;
2391     case 0x38: /* Supported Protocol:08 */
2392         ret = 0x00000000 | (xhci->numports_2+1) | (xhci->numports_3<<8);
2393         break;
2394     case 0x3c: /* Supported Protocol:0c */
2395         ret = 0x00000000; /* reserved */
2396         break;
2397     default:
2398         fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", reg);
2399         ret = 0;
2400     }
2401 
2402     trace_usb_xhci_cap_read(reg, ret);
2403     return ret;
2404 }
2405 
2406 static uint32_t xhci_port_read(XHCIState *xhci, uint32_t reg)
2407 {
2408     uint32_t port = reg >> 4;
2409     uint32_t ret;
2410 
2411     if (port >= xhci->numports) {
2412         fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
2413         ret = 0;
2414         goto out;
2415     }
2416 
2417     switch (reg & 0xf) {
2418     case 0x00: /* PORTSC */
2419         ret = xhci->ports[port].portsc;
2420         break;
2421     case 0x04: /* PORTPMSC */
2422     case 0x08: /* PORTLI */
2423         ret = 0;
2424         break;
2425     case 0x0c: /* reserved */
2426     default:
2427         fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n",
2428                 port, reg);
2429         ret = 0;
2430     }
2431 
2432 out:
2433     trace_usb_xhci_port_read(port, reg & 0x0f, ret);
2434     return ret;
2435 }
2436 
2437 static void xhci_port_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2438 {
2439     uint32_t port = reg >> 4;
2440     uint32_t portsc;
2441 
2442     trace_usb_xhci_port_write(port, reg & 0x0f, val);
2443 
2444     if (port >= xhci->numports) {
2445         fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
2446         return;
2447     }
2448 
2449     switch (reg & 0xf) {
2450     case 0x00: /* PORTSC */
2451         portsc = xhci->ports[port].portsc;
2452         /* write-1-to-clear bits*/
2453         portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC|
2454                            PORTSC_PRC|PORTSC_PLC|PORTSC_CEC));
2455         if (val & PORTSC_LWS) {
2456             /* overwrite PLS only when LWS=1 */
2457             portsc &= ~(PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
2458             portsc |= val & (PORTSC_PLS_MASK << PORTSC_PLS_SHIFT);
2459         }
2460         /* read/write bits */
2461         portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE);
2462         portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE));
2463         /* write-1-to-start bits */
2464         if (val & PORTSC_PR) {
2465             DPRINTF("xhci: port %d reset\n", port);
2466             usb_device_reset(xhci->ports[port].uport->dev);
2467             portsc |= PORTSC_PRC | PORTSC_PED;
2468         }
2469         xhci->ports[port].portsc = portsc;
2470         break;
2471     case 0x04: /* PORTPMSC */
2472     case 0x08: /* PORTLI */
2473     default:
2474         fprintf(stderr, "xhci_port_write (port %d): reg 0x%x unimplemented\n",
2475                 port, reg);
2476     }
2477 }
2478 
2479 static uint32_t xhci_oper_read(XHCIState *xhci, uint32_t reg)
2480 {
2481     uint32_t ret;
2482 
2483     if (reg >= 0x400) {
2484         return xhci_port_read(xhci, reg - 0x400);
2485     }
2486 
2487     switch (reg) {
2488     case 0x00: /* USBCMD */
2489         ret = xhci->usbcmd;
2490         break;
2491     case 0x04: /* USBSTS */
2492         ret = xhci->usbsts;
2493         break;
2494     case 0x08: /* PAGESIZE */
2495         ret = 1; /* 4KiB */
2496         break;
2497     case 0x14: /* DNCTRL */
2498         ret = xhci->dnctrl;
2499         break;
2500     case 0x18: /* CRCR low */
2501         ret = xhci->crcr_low & ~0xe;
2502         break;
2503     case 0x1c: /* CRCR high */
2504         ret = xhci->crcr_high;
2505         break;
2506     case 0x30: /* DCBAAP low */
2507         ret = xhci->dcbaap_low;
2508         break;
2509     case 0x34: /* DCBAAP high */
2510         ret = xhci->dcbaap_high;
2511         break;
2512     case 0x38: /* CONFIG */
2513         ret = xhci->config;
2514         break;
2515     default:
2516         fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", reg);
2517         ret = 0;
2518     }
2519 
2520     trace_usb_xhci_oper_read(reg, ret);
2521     return ret;
2522 }
2523 
2524 static void xhci_oper_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2525 {
2526     if (reg >= 0x400) {
2527         xhci_port_write(xhci, reg - 0x400, val);
2528         return;
2529     }
2530 
2531     trace_usb_xhci_oper_write(reg, val);
2532 
2533     switch (reg) {
2534     case 0x00: /* USBCMD */
2535         if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) {
2536             xhci_run(xhci);
2537         } else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) {
2538             xhci_stop(xhci);
2539         }
2540         xhci->usbcmd = val & 0xc0f;
2541         xhci_mfwrap_update(xhci);
2542         if (val & USBCMD_HCRST) {
2543             xhci_reset(&xhci->pci_dev.qdev);
2544         }
2545         xhci_intx_update(xhci);
2546         break;
2547 
2548     case 0x04: /* USBSTS */
2549         /* these bits are write-1-to-clear */
2550         xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE));
2551         xhci_intx_update(xhci);
2552         break;
2553 
2554     case 0x14: /* DNCTRL */
2555         xhci->dnctrl = val & 0xffff;
2556         break;
2557     case 0x18: /* CRCR low */
2558         xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR);
2559         break;
2560     case 0x1c: /* CRCR high */
2561         xhci->crcr_high = val;
2562         if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) {
2563             XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED};
2564             xhci->crcr_low &= ~CRCR_CRR;
2565             xhci_event(xhci, &event, 0 /* FIXME */);
2566             DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low);
2567         } else {
2568             dma_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val);
2569             xhci_ring_init(xhci, &xhci->cmd_ring, base);
2570         }
2571         xhci->crcr_low &= ~(CRCR_CA | CRCR_CS);
2572         break;
2573     case 0x30: /* DCBAAP low */
2574         xhci->dcbaap_low = val & 0xffffffc0;
2575         break;
2576     case 0x34: /* DCBAAP high */
2577         xhci->dcbaap_high = val;
2578         break;
2579     case 0x38: /* CONFIG */
2580         xhci->config = val & 0xff;
2581         break;
2582     default:
2583         fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
2584     }
2585 }
2586 
2587 static uint32_t xhci_runtime_read(XHCIState *xhci, uint32_t reg)
2588 {
2589     uint32_t ret = 0;
2590 
2591     if (reg < 0x20) {
2592         switch (reg) {
2593         case 0x00: /* MFINDEX */
2594             ret = xhci_mfindex_get(xhci) & 0x3fff;
2595             break;
2596         default:
2597             fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n", reg);
2598             break;
2599         }
2600     } else {
2601         int v = (reg - 0x20) / 0x20;
2602         XHCIInterrupter *intr = &xhci->intr[v];
2603         switch (reg & 0x1f) {
2604         case 0x00: /* IMAN */
2605             ret = intr->iman;
2606             break;
2607         case 0x04: /* IMOD */
2608             ret = intr->imod;
2609             break;
2610         case 0x08: /* ERSTSZ */
2611             ret = intr->erstsz;
2612             break;
2613         case 0x10: /* ERSTBA low */
2614             ret = intr->erstba_low;
2615             break;
2616         case 0x14: /* ERSTBA high */
2617             ret = intr->erstba_high;
2618             break;
2619         case 0x18: /* ERDP low */
2620             ret = intr->erdp_low;
2621             break;
2622         case 0x1c: /* ERDP high */
2623             ret = intr->erdp_high;
2624             break;
2625         }
2626     }
2627 
2628     trace_usb_xhci_runtime_read(reg, ret);
2629     return ret;
2630 }
2631 
2632 static void xhci_runtime_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2633 {
2634     int v = (reg - 0x20) / 0x20;
2635     XHCIInterrupter *intr = &xhci->intr[v];
2636     trace_usb_xhci_runtime_write(reg, val);
2637 
2638     if (reg < 0x20) {
2639         fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
2640         return;
2641     }
2642 
2643     switch (reg & 0x1f) {
2644     case 0x00: /* IMAN */
2645         if (val & IMAN_IP) {
2646             intr->iman &= ~IMAN_IP;
2647         }
2648         intr->iman &= ~IMAN_IE;
2649         intr->iman |= val & IMAN_IE;
2650         if (v == 0) {
2651             xhci_intx_update(xhci);
2652         }
2653         xhci_msix_update(xhci, v);
2654         break;
2655     case 0x04: /* IMOD */
2656         intr->imod = val;
2657         break;
2658     case 0x08: /* ERSTSZ */
2659         intr->erstsz = val & 0xffff;
2660         break;
2661     case 0x10: /* ERSTBA low */
2662         /* XXX NEC driver bug: it doesn't align this to 64 bytes
2663         intr->erstba_low = val & 0xffffffc0; */
2664         intr->erstba_low = val & 0xfffffff0;
2665         break;
2666     case 0x14: /* ERSTBA high */
2667         intr->erstba_high = val;
2668         xhci_er_reset(xhci, v);
2669         break;
2670     case 0x18: /* ERDP low */
2671         if (val & ERDP_EHB) {
2672             intr->erdp_low &= ~ERDP_EHB;
2673         }
2674         intr->erdp_low = (val & ~ERDP_EHB) | (intr->erdp_low & ERDP_EHB);
2675         break;
2676     case 0x1c: /* ERDP high */
2677         intr->erdp_high = val;
2678         xhci_events_update(xhci, v);
2679         break;
2680     default:
2681         fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg);
2682     }
2683 }
2684 
2685 static uint32_t xhci_doorbell_read(XHCIState *xhci, uint32_t reg)
2686 {
2687     /* doorbells always read as 0 */
2688     trace_usb_xhci_doorbell_read(reg, 0);
2689     return 0;
2690 }
2691 
2692 static void xhci_doorbell_write(XHCIState *xhci, uint32_t reg, uint32_t val)
2693 {
2694     trace_usb_xhci_doorbell_write(reg, val);
2695 
2696     if (!xhci_running(xhci)) {
2697         fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n");
2698         return;
2699     }
2700 
2701     reg >>= 2;
2702 
2703     if (reg == 0) {
2704         if (val == 0) {
2705             xhci_process_commands(xhci);
2706         } else {
2707             fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n", val);
2708         }
2709     } else {
2710         if (reg > MAXSLOTS) {
2711             fprintf(stderr, "xhci: bad doorbell %d\n", reg);
2712         } else if (val > 31) {
2713             fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n", reg, val);
2714         } else {
2715             xhci_kick_ep(xhci, reg, val);
2716         }
2717     }
2718 }
2719 
2720 static uint64_t xhci_mem_read(void *ptr, target_phys_addr_t addr,
2721                               unsigned size)
2722 {
2723     XHCIState *xhci = ptr;
2724 
2725     /* Only aligned reads are allowed on xHCI */
2726     if (addr & 3) {
2727         fprintf(stderr, "xhci_mem_read: Mis-aligned read\n");
2728         return 0;
2729     }
2730 
2731     if (addr < LEN_CAP) {
2732         return xhci_cap_read(xhci, addr);
2733     } else if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
2734         return xhci_oper_read(xhci, addr - OFF_OPER);
2735     } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
2736         return xhci_runtime_read(xhci, addr - OFF_RUNTIME);
2737     } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
2738         return xhci_doorbell_read(xhci, addr - OFF_DOORBELL);
2739     } else {
2740         fprintf(stderr, "xhci_mem_read: Bad offset %x\n", (int)addr);
2741         return 0;
2742     }
2743 }
2744 
2745 static void xhci_mem_write(void *ptr, target_phys_addr_t addr,
2746                            uint64_t val, unsigned size)
2747 {
2748     XHCIState *xhci = ptr;
2749 
2750     /* Only aligned writes are allowed on xHCI */
2751     if (addr & 3) {
2752         fprintf(stderr, "xhci_mem_write: Mis-aligned write\n");
2753         return;
2754     }
2755 
2756     if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) {
2757         xhci_oper_write(xhci, addr - OFF_OPER, val);
2758     } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) {
2759         xhci_runtime_write(xhci, addr - OFF_RUNTIME, val);
2760     } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) {
2761         xhci_doorbell_write(xhci, addr - OFF_DOORBELL, val);
2762     } else {
2763         fprintf(stderr, "xhci_mem_write: Bad offset %x\n", (int)addr);
2764     }
2765 }
2766 
2767 static const MemoryRegionOps xhci_mem_ops = {
2768     .read = xhci_mem_read,
2769     .write = xhci_mem_write,
2770     .valid.min_access_size = 4,
2771     .valid.max_access_size = 4,
2772     .endianness = DEVICE_LITTLE_ENDIAN,
2773 };
2774 
2775 static void xhci_attach(USBPort *usbport)
2776 {
2777     XHCIState *xhci = usbport->opaque;
2778     XHCIPort *port = xhci_lookup_port(xhci, usbport);
2779 
2780     xhci_update_port(xhci, port, 0);
2781 }
2782 
2783 static void xhci_detach(USBPort *usbport)
2784 {
2785     XHCIState *xhci = usbport->opaque;
2786     XHCIPort *port = xhci_lookup_port(xhci, usbport);
2787 
2788     xhci_update_port(xhci, port, 1);
2789 }
2790 
2791 static void xhci_wakeup(USBPort *usbport)
2792 {
2793     XHCIState *xhci = usbport->opaque;
2794     XHCIPort *port = xhci_lookup_port(xhci, usbport);
2795     XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS,
2796                      port->portnr << 24};
2797     uint32_t pls;
2798 
2799     pls = (port->portsc >> PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK;
2800     if (pls != 3) {
2801         return;
2802     }
2803     port->portsc |= 0xf << PORTSC_PLS_SHIFT;
2804     if (port->portsc & PORTSC_PLC) {
2805         return;
2806     }
2807     port->portsc |= PORTSC_PLC;
2808     xhci_event(xhci, &ev, 0 /* FIXME */);
2809 }
2810 
2811 static void xhci_complete(USBPort *port, USBPacket *packet)
2812 {
2813     XHCITransfer *xfer = container_of(packet, XHCITransfer, packet);
2814 
2815     xhci_complete_packet(xfer, packet->result);
2816     xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid);
2817 }
2818 
2819 static void xhci_child_detach(USBPort *port, USBDevice *child)
2820 {
2821     FIXME();
2822 }
2823 
2824 static USBPortOps xhci_port_ops = {
2825     .attach   = xhci_attach,
2826     .detach   = xhci_detach,
2827     .wakeup   = xhci_wakeup,
2828     .complete = xhci_complete,
2829     .child_detach = xhci_child_detach,
2830 };
2831 
2832 static int xhci_find_slotid(XHCIState *xhci, USBDevice *dev)
2833 {
2834     XHCISlot *slot;
2835     int slotid;
2836 
2837     for (slotid = 1; slotid <= MAXSLOTS; slotid++) {
2838         slot = &xhci->slots[slotid-1];
2839         if (slot->devaddr == dev->addr) {
2840             return slotid;
2841         }
2842     }
2843     return 0;
2844 }
2845 
2846 static int xhci_find_epid(USBEndpoint *ep)
2847 {
2848     if (ep->nr == 0) {
2849         return 1;
2850     }
2851     if (ep->pid == USB_TOKEN_IN) {
2852         return ep->nr * 2 + 1;
2853     } else {
2854         return ep->nr * 2;
2855     }
2856 }
2857 
2858 static void xhci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep)
2859 {
2860     XHCIState *xhci = container_of(bus, XHCIState, bus);
2861     int slotid;
2862 
2863     DPRINTF("%s\n", __func__);
2864     slotid = xhci_find_slotid(xhci, ep->dev);
2865     if (slotid == 0 || !xhci->slots[slotid-1].enabled) {
2866         DPRINTF("%s: oops, no slot for dev %d\n", __func__, ep->dev->addr);
2867         return;
2868     }
2869     xhci_kick_ep(xhci, slotid, xhci_find_epid(ep));
2870 }
2871 
2872 static USBBusOps xhci_bus_ops = {
2873     .wakeup_endpoint = xhci_wakeup_endpoint,
2874 };
2875 
2876 static void usb_xhci_init(XHCIState *xhci, DeviceState *dev)
2877 {
2878     XHCIPort *port;
2879     int i, usbports, speedmask;
2880 
2881     xhci->usbsts = USBSTS_HCH;
2882 
2883     if (xhci->numports_2 > MAXPORTS_2) {
2884         xhci->numports_2 = MAXPORTS_2;
2885     }
2886     if (xhci->numports_3 > MAXPORTS_3) {
2887         xhci->numports_3 = MAXPORTS_3;
2888     }
2889     usbports = MAX(xhci->numports_2, xhci->numports_3);
2890     xhci->numports = xhci->numports_2 + xhci->numports_3;
2891 
2892     usb_bus_new(&xhci->bus, &xhci_bus_ops, &xhci->pci_dev.qdev);
2893 
2894     for (i = 0; i < usbports; i++) {
2895         speedmask = 0;
2896         if (i < xhci->numports_2) {
2897             port = &xhci->ports[i];
2898             port->portnr = i + 1;
2899             port->uport = &xhci->uports[i];
2900             port->speedmask =
2901                 USB_SPEED_MASK_LOW  |
2902                 USB_SPEED_MASK_FULL |
2903                 USB_SPEED_MASK_HIGH;
2904             speedmask |= port->speedmask;
2905         }
2906         if (i < xhci->numports_3) {
2907             port = &xhci->ports[i + xhci->numports_2];
2908             port->portnr = i + 1 + xhci->numports_2;
2909             port->uport = &xhci->uports[i];
2910             port->speedmask = USB_SPEED_MASK_SUPER;
2911             speedmask |= port->speedmask;
2912         }
2913         usb_register_port(&xhci->bus, &xhci->uports[i], xhci, i,
2914                           &xhci_port_ops, speedmask);
2915     }
2916 }
2917 
2918 static int usb_xhci_initfn(struct PCIDevice *dev)
2919 {
2920     int ret;
2921 
2922     XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev);
2923 
2924     xhci->pci_dev.config[PCI_CLASS_PROG] = 0x30;    /* xHCI */
2925     xhci->pci_dev.config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */
2926     xhci->pci_dev.config[PCI_CACHE_LINE_SIZE] = 0x10;
2927     xhci->pci_dev.config[0x60] = 0x30; /* release number */
2928 
2929     usb_xhci_init(xhci, &dev->qdev);
2930 
2931     xhci->mfwrap_timer = qemu_new_timer_ns(vm_clock, xhci_mfwrap_timer, xhci);
2932 
2933     xhci->irq = xhci->pci_dev.irq[0];
2934 
2935     memory_region_init_io(&xhci->mem, &xhci_mem_ops, xhci,
2936                           "xhci", LEN_REGS);
2937     pci_register_bar(&xhci->pci_dev, 0,
2938                      PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64,
2939                      &xhci->mem);
2940 
2941     ret = pcie_cap_init(&xhci->pci_dev, 0xa0, PCI_EXP_TYPE_ENDPOINT, 0);
2942     assert(ret >= 0);
2943 
2944     if (xhci->flags & (1 << XHCI_FLAG_USE_MSI)) {
2945         msi_init(&xhci->pci_dev, 0x70, MAXINTRS, true, false);
2946     }
2947     if (xhci->flags & (1 << XHCI_FLAG_USE_MSI_X)) {
2948         msix_init(&xhci->pci_dev, MAXINTRS,
2949                   &xhci->mem, 0, OFF_MSIX_TABLE,
2950                   &xhci->mem, 0, OFF_MSIX_PBA,
2951                   0x90);
2952     }
2953 
2954     return 0;
2955 }
2956 
2957 static const VMStateDescription vmstate_xhci = {
2958     .name = "xhci",
2959     .unmigratable = 1,
2960 };
2961 
2962 static Property xhci_properties[] = {
2963     DEFINE_PROP_BIT("msi",    XHCIState, flags, XHCI_FLAG_USE_MSI, true),
2964     DEFINE_PROP_BIT("msix",   XHCIState, flags, XHCI_FLAG_USE_MSI_X, true),
2965     DEFINE_PROP_UINT32("p2",  XHCIState, numports_2, 4),
2966     DEFINE_PROP_UINT32("p3",  XHCIState, numports_3, 4),
2967     DEFINE_PROP_END_OF_LIST(),
2968 };
2969 
2970 static void xhci_class_init(ObjectClass *klass, void *data)
2971 {
2972     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2973     DeviceClass *dc = DEVICE_CLASS(klass);
2974 
2975     dc->vmsd    = &vmstate_xhci;
2976     dc->props   = xhci_properties;
2977     dc->reset   = xhci_reset;
2978     k->init         = usb_xhci_initfn;
2979     k->vendor_id    = PCI_VENDOR_ID_NEC;
2980     k->device_id    = PCI_DEVICE_ID_NEC_UPD720200;
2981     k->class_id     = PCI_CLASS_SERIAL_USB;
2982     k->revision     = 0x03;
2983     k->is_express   = 1;
2984 }
2985 
2986 static TypeInfo xhci_info = {
2987     .name          = "nec-usb-xhci",
2988     .parent        = TYPE_PCI_DEVICE,
2989     .instance_size = sizeof(XHCIState),
2990     .class_init    = xhci_class_init,
2991 };
2992 
2993 static void xhci_register_types(void)
2994 {
2995     type_register_static(&xhci_info);
2996 }
2997 
2998 type_init(xhci_register_types)
2999