1 /* 2 * USB xHCI controller emulation 3 * 4 * Copyright (c) 2011 Securiforest 5 * Date: 2011-05-11 ; Author: Hector Martin <hector@marcansoft.com> 6 * Based on usb-ohci.c, emulates Renesas NEC USB 3.0 7 * 8 * This library is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2 of the License, or (at your option) any later version. 12 * 13 * This library is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 #include "hw/hw.h" 22 #include "qemu-timer.h" 23 #include "hw/usb.h" 24 #include "hw/pci.h" 25 #include "hw/msi.h" 26 #include "hw/msix.h" 27 #include "trace.h" 28 29 //#define DEBUG_XHCI 30 //#define DEBUG_DATA 31 32 #ifdef DEBUG_XHCI 33 #define DPRINTF(...) fprintf(stderr, __VA_ARGS__) 34 #else 35 #define DPRINTF(...) do {} while (0) 36 #endif 37 #define FIXME() do { fprintf(stderr, "FIXME %s:%d\n", \ 38 __func__, __LINE__); abort(); } while (0) 39 40 #define MAXPORTS_2 15 41 #define MAXPORTS_3 15 42 43 #define MAXPORTS (MAXPORTS_2+MAXPORTS_3) 44 #define MAXSLOTS 64 45 #define MAXINTRS 16 46 47 #define TD_QUEUE 24 48 49 /* Very pessimistic, let's hope it's enough for all cases */ 50 #define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS) 51 /* Do not deliver ER Full events. NEC's driver does some things not bound 52 * to the specs when it gets them */ 53 #define ER_FULL_HACK 54 55 #define LEN_CAP 0x40 56 #define LEN_OPER (0x400 + 0x10 * MAXPORTS) 57 #define LEN_RUNTIME ((MAXINTRS + 1) * 0x20) 58 #define LEN_DOORBELL ((MAXSLOTS + 1) * 0x20) 59 60 #define OFF_OPER LEN_CAP 61 #define OFF_RUNTIME 0x1000 62 #define OFF_DOORBELL 0x2000 63 #define OFF_MSIX_TABLE 0x3000 64 #define OFF_MSIX_PBA 0x3800 65 /* must be power of 2 */ 66 #define LEN_REGS 0x4000 67 68 #if (OFF_OPER + LEN_OPER) > OFF_RUNTIME 69 #error Increase OFF_RUNTIME 70 #endif 71 #if (OFF_RUNTIME + LEN_RUNTIME) > OFF_DOORBELL 72 #error Increase OFF_DOORBELL 73 #endif 74 #if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS 75 # error Increase LEN_REGS 76 #endif 77 78 /* bit definitions */ 79 #define USBCMD_RS (1<<0) 80 #define USBCMD_HCRST (1<<1) 81 #define USBCMD_INTE (1<<2) 82 #define USBCMD_HSEE (1<<3) 83 #define USBCMD_LHCRST (1<<7) 84 #define USBCMD_CSS (1<<8) 85 #define USBCMD_CRS (1<<9) 86 #define USBCMD_EWE (1<<10) 87 #define USBCMD_EU3S (1<<11) 88 89 #define USBSTS_HCH (1<<0) 90 #define USBSTS_HSE (1<<2) 91 #define USBSTS_EINT (1<<3) 92 #define USBSTS_PCD (1<<4) 93 #define USBSTS_SSS (1<<8) 94 #define USBSTS_RSS (1<<9) 95 #define USBSTS_SRE (1<<10) 96 #define USBSTS_CNR (1<<11) 97 #define USBSTS_HCE (1<<12) 98 99 100 #define PORTSC_CCS (1<<0) 101 #define PORTSC_PED (1<<1) 102 #define PORTSC_OCA (1<<3) 103 #define PORTSC_PR (1<<4) 104 #define PORTSC_PLS_SHIFT 5 105 #define PORTSC_PLS_MASK 0xf 106 #define PORTSC_PP (1<<9) 107 #define PORTSC_SPEED_SHIFT 10 108 #define PORTSC_SPEED_MASK 0xf 109 #define PORTSC_SPEED_FULL (1<<10) 110 #define PORTSC_SPEED_LOW (2<<10) 111 #define PORTSC_SPEED_HIGH (3<<10) 112 #define PORTSC_SPEED_SUPER (4<<10) 113 #define PORTSC_PIC_SHIFT 14 114 #define PORTSC_PIC_MASK 0x3 115 #define PORTSC_LWS (1<<16) 116 #define PORTSC_CSC (1<<17) 117 #define PORTSC_PEC (1<<18) 118 #define PORTSC_WRC (1<<19) 119 #define PORTSC_OCC (1<<20) 120 #define PORTSC_PRC (1<<21) 121 #define PORTSC_PLC (1<<22) 122 #define PORTSC_CEC (1<<23) 123 #define PORTSC_CAS (1<<24) 124 #define PORTSC_WCE (1<<25) 125 #define PORTSC_WDE (1<<26) 126 #define PORTSC_WOE (1<<27) 127 #define PORTSC_DR (1<<30) 128 #define PORTSC_WPR (1<<31) 129 130 #define CRCR_RCS (1<<0) 131 #define CRCR_CS (1<<1) 132 #define CRCR_CA (1<<2) 133 #define CRCR_CRR (1<<3) 134 135 #define IMAN_IP (1<<0) 136 #define IMAN_IE (1<<1) 137 138 #define ERDP_EHB (1<<3) 139 140 #define TRB_SIZE 16 141 typedef struct XHCITRB { 142 uint64_t parameter; 143 uint32_t status; 144 uint32_t control; 145 dma_addr_t addr; 146 bool ccs; 147 } XHCITRB; 148 149 150 typedef enum TRBType { 151 TRB_RESERVED = 0, 152 TR_NORMAL, 153 TR_SETUP, 154 TR_DATA, 155 TR_STATUS, 156 TR_ISOCH, 157 TR_LINK, 158 TR_EVDATA, 159 TR_NOOP, 160 CR_ENABLE_SLOT, 161 CR_DISABLE_SLOT, 162 CR_ADDRESS_DEVICE, 163 CR_CONFIGURE_ENDPOINT, 164 CR_EVALUATE_CONTEXT, 165 CR_RESET_ENDPOINT, 166 CR_STOP_ENDPOINT, 167 CR_SET_TR_DEQUEUE, 168 CR_RESET_DEVICE, 169 CR_FORCE_EVENT, 170 CR_NEGOTIATE_BW, 171 CR_SET_LATENCY_TOLERANCE, 172 CR_GET_PORT_BANDWIDTH, 173 CR_FORCE_HEADER, 174 CR_NOOP, 175 ER_TRANSFER = 32, 176 ER_COMMAND_COMPLETE, 177 ER_PORT_STATUS_CHANGE, 178 ER_BANDWIDTH_REQUEST, 179 ER_DOORBELL, 180 ER_HOST_CONTROLLER, 181 ER_DEVICE_NOTIFICATION, 182 ER_MFINDEX_WRAP, 183 /* vendor specific bits */ 184 CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48, 185 CR_VENDOR_NEC_FIRMWARE_REVISION = 49, 186 CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50, 187 } TRBType; 188 189 #define CR_LINK TR_LINK 190 191 typedef enum TRBCCode { 192 CC_INVALID = 0, 193 CC_SUCCESS, 194 CC_DATA_BUFFER_ERROR, 195 CC_BABBLE_DETECTED, 196 CC_USB_TRANSACTION_ERROR, 197 CC_TRB_ERROR, 198 CC_STALL_ERROR, 199 CC_RESOURCE_ERROR, 200 CC_BANDWIDTH_ERROR, 201 CC_NO_SLOTS_ERROR, 202 CC_INVALID_STREAM_TYPE_ERROR, 203 CC_SLOT_NOT_ENABLED_ERROR, 204 CC_EP_NOT_ENABLED_ERROR, 205 CC_SHORT_PACKET, 206 CC_RING_UNDERRUN, 207 CC_RING_OVERRUN, 208 CC_VF_ER_FULL, 209 CC_PARAMETER_ERROR, 210 CC_BANDWIDTH_OVERRUN, 211 CC_CONTEXT_STATE_ERROR, 212 CC_NO_PING_RESPONSE_ERROR, 213 CC_EVENT_RING_FULL_ERROR, 214 CC_INCOMPATIBLE_DEVICE_ERROR, 215 CC_MISSED_SERVICE_ERROR, 216 CC_COMMAND_RING_STOPPED, 217 CC_COMMAND_ABORTED, 218 CC_STOPPED, 219 CC_STOPPED_LENGTH_INVALID, 220 CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29, 221 CC_ISOCH_BUFFER_OVERRUN = 31, 222 CC_EVENT_LOST_ERROR, 223 CC_UNDEFINED_ERROR, 224 CC_INVALID_STREAM_ID_ERROR, 225 CC_SECONDARY_BANDWIDTH_ERROR, 226 CC_SPLIT_TRANSACTION_ERROR 227 } TRBCCode; 228 229 #define TRB_C (1<<0) 230 #define TRB_TYPE_SHIFT 10 231 #define TRB_TYPE_MASK 0x3f 232 #define TRB_TYPE(t) (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK) 233 234 #define TRB_EV_ED (1<<2) 235 236 #define TRB_TR_ENT (1<<1) 237 #define TRB_TR_ISP (1<<2) 238 #define TRB_TR_NS (1<<3) 239 #define TRB_TR_CH (1<<4) 240 #define TRB_TR_IOC (1<<5) 241 #define TRB_TR_IDT (1<<6) 242 #define TRB_TR_TBC_SHIFT 7 243 #define TRB_TR_TBC_MASK 0x3 244 #define TRB_TR_BEI (1<<9) 245 #define TRB_TR_TLBPC_SHIFT 16 246 #define TRB_TR_TLBPC_MASK 0xf 247 #define TRB_TR_FRAMEID_SHIFT 20 248 #define TRB_TR_FRAMEID_MASK 0x7ff 249 #define TRB_TR_SIA (1<<31) 250 251 #define TRB_TR_DIR (1<<16) 252 253 #define TRB_CR_SLOTID_SHIFT 24 254 #define TRB_CR_SLOTID_MASK 0xff 255 #define TRB_CR_EPID_SHIFT 16 256 #define TRB_CR_EPID_MASK 0x1f 257 258 #define TRB_CR_BSR (1<<9) 259 #define TRB_CR_DC (1<<9) 260 261 #define TRB_LK_TC (1<<1) 262 263 #define TRB_INTR_SHIFT 22 264 #define TRB_INTR_MASK 0x3ff 265 #define TRB_INTR(t) (((t).status >> TRB_INTR_SHIFT) & TRB_INTR_MASK) 266 267 #define EP_TYPE_MASK 0x7 268 #define EP_TYPE_SHIFT 3 269 270 #define EP_STATE_MASK 0x7 271 #define EP_DISABLED (0<<0) 272 #define EP_RUNNING (1<<0) 273 #define EP_HALTED (2<<0) 274 #define EP_STOPPED (3<<0) 275 #define EP_ERROR (4<<0) 276 277 #define SLOT_STATE_MASK 0x1f 278 #define SLOT_STATE_SHIFT 27 279 #define SLOT_STATE(s) (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK) 280 #define SLOT_ENABLED 0 281 #define SLOT_DEFAULT 1 282 #define SLOT_ADDRESSED 2 283 #define SLOT_CONFIGURED 3 284 285 #define SLOT_CONTEXT_ENTRIES_MASK 0x1f 286 #define SLOT_CONTEXT_ENTRIES_SHIFT 27 287 288 typedef struct XHCIState XHCIState; 289 290 typedef enum EPType { 291 ET_INVALID = 0, 292 ET_ISO_OUT, 293 ET_BULK_OUT, 294 ET_INTR_OUT, 295 ET_CONTROL, 296 ET_ISO_IN, 297 ET_BULK_IN, 298 ET_INTR_IN, 299 } EPType; 300 301 typedef struct XHCIRing { 302 dma_addr_t base; 303 dma_addr_t dequeue; 304 bool ccs; 305 } XHCIRing; 306 307 typedef struct XHCIPort { 308 XHCIState *xhci; 309 uint32_t portsc; 310 uint32_t portnr; 311 USBPort *uport; 312 uint32_t speedmask; 313 char name[16]; 314 MemoryRegion mem; 315 } XHCIPort; 316 317 typedef struct XHCITransfer { 318 XHCIState *xhci; 319 USBPacket packet; 320 QEMUSGList sgl; 321 bool running_async; 322 bool running_retry; 323 bool cancelled; 324 bool complete; 325 unsigned int iso_pkts; 326 unsigned int slotid; 327 unsigned int epid; 328 bool in_xfer; 329 bool iso_xfer; 330 331 unsigned int trb_count; 332 unsigned int trb_alloced; 333 XHCITRB *trbs; 334 335 TRBCCode status; 336 337 unsigned int pkts; 338 unsigned int pktsize; 339 unsigned int cur_pkt; 340 341 uint64_t mfindex_kick; 342 } XHCITransfer; 343 344 typedef struct XHCIEPContext { 345 XHCIState *xhci; 346 unsigned int slotid; 347 unsigned int epid; 348 349 XHCIRing ring; 350 unsigned int next_xfer; 351 unsigned int comp_xfer; 352 XHCITransfer transfers[TD_QUEUE]; 353 XHCITransfer *retry; 354 EPType type; 355 dma_addr_t pctx; 356 unsigned int max_psize; 357 uint32_t state; 358 359 /* iso xfer scheduling */ 360 unsigned int interval; 361 int64_t mfindex_last; 362 QEMUTimer *kick_timer; 363 } XHCIEPContext; 364 365 typedef struct XHCISlot { 366 bool enabled; 367 dma_addr_t ctx; 368 USBPort *uport; 369 unsigned int devaddr; 370 XHCIEPContext * eps[31]; 371 } XHCISlot; 372 373 typedef struct XHCIEvent { 374 TRBType type; 375 TRBCCode ccode; 376 uint64_t ptr; 377 uint32_t length; 378 uint32_t flags; 379 uint8_t slotid; 380 uint8_t epid; 381 } XHCIEvent; 382 383 typedef struct XHCIInterrupter { 384 uint32_t iman; 385 uint32_t imod; 386 uint32_t erstsz; 387 uint32_t erstba_low; 388 uint32_t erstba_high; 389 uint32_t erdp_low; 390 uint32_t erdp_high; 391 392 bool msix_used, er_pcs, er_full; 393 394 dma_addr_t er_start; 395 uint32_t er_size; 396 unsigned int er_ep_idx; 397 398 XHCIEvent ev_buffer[EV_QUEUE]; 399 unsigned int ev_buffer_put; 400 unsigned int ev_buffer_get; 401 402 } XHCIInterrupter; 403 404 struct XHCIState { 405 PCIDevice pci_dev; 406 USBBus bus; 407 qemu_irq irq; 408 MemoryRegion mem; 409 MemoryRegion mem_cap; 410 MemoryRegion mem_oper; 411 MemoryRegion mem_runtime; 412 MemoryRegion mem_doorbell; 413 const char *name; 414 unsigned int devaddr; 415 416 /* properties */ 417 uint32_t numports_2; 418 uint32_t numports_3; 419 uint32_t flags; 420 421 /* Operational Registers */ 422 uint32_t usbcmd; 423 uint32_t usbsts; 424 uint32_t dnctrl; 425 uint32_t crcr_low; 426 uint32_t crcr_high; 427 uint32_t dcbaap_low; 428 uint32_t dcbaap_high; 429 uint32_t config; 430 431 USBPort uports[MAX(MAXPORTS_2, MAXPORTS_3)]; 432 XHCIPort ports[MAXPORTS]; 433 XHCISlot slots[MAXSLOTS]; 434 uint32_t numports; 435 436 /* Runtime Registers */ 437 int64_t mfindex_start; 438 QEMUTimer *mfwrap_timer; 439 XHCIInterrupter intr[MAXINTRS]; 440 441 XHCIRing cmd_ring; 442 }; 443 444 typedef struct XHCIEvRingSeg { 445 uint32_t addr_low; 446 uint32_t addr_high; 447 uint32_t size; 448 uint32_t rsvd; 449 } XHCIEvRingSeg; 450 451 enum xhci_flags { 452 XHCI_FLAG_USE_MSI = 1, 453 XHCI_FLAG_USE_MSI_X, 454 }; 455 456 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, 457 unsigned int epid); 458 static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v); 459 static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v); 460 461 static const char *TRBType_names[] = { 462 [TRB_RESERVED] = "TRB_RESERVED", 463 [TR_NORMAL] = "TR_NORMAL", 464 [TR_SETUP] = "TR_SETUP", 465 [TR_DATA] = "TR_DATA", 466 [TR_STATUS] = "TR_STATUS", 467 [TR_ISOCH] = "TR_ISOCH", 468 [TR_LINK] = "TR_LINK", 469 [TR_EVDATA] = "TR_EVDATA", 470 [TR_NOOP] = "TR_NOOP", 471 [CR_ENABLE_SLOT] = "CR_ENABLE_SLOT", 472 [CR_DISABLE_SLOT] = "CR_DISABLE_SLOT", 473 [CR_ADDRESS_DEVICE] = "CR_ADDRESS_DEVICE", 474 [CR_CONFIGURE_ENDPOINT] = "CR_CONFIGURE_ENDPOINT", 475 [CR_EVALUATE_CONTEXT] = "CR_EVALUATE_CONTEXT", 476 [CR_RESET_ENDPOINT] = "CR_RESET_ENDPOINT", 477 [CR_STOP_ENDPOINT] = "CR_STOP_ENDPOINT", 478 [CR_SET_TR_DEQUEUE] = "CR_SET_TR_DEQUEUE", 479 [CR_RESET_DEVICE] = "CR_RESET_DEVICE", 480 [CR_FORCE_EVENT] = "CR_FORCE_EVENT", 481 [CR_NEGOTIATE_BW] = "CR_NEGOTIATE_BW", 482 [CR_SET_LATENCY_TOLERANCE] = "CR_SET_LATENCY_TOLERANCE", 483 [CR_GET_PORT_BANDWIDTH] = "CR_GET_PORT_BANDWIDTH", 484 [CR_FORCE_HEADER] = "CR_FORCE_HEADER", 485 [CR_NOOP] = "CR_NOOP", 486 [ER_TRANSFER] = "ER_TRANSFER", 487 [ER_COMMAND_COMPLETE] = "ER_COMMAND_COMPLETE", 488 [ER_PORT_STATUS_CHANGE] = "ER_PORT_STATUS_CHANGE", 489 [ER_BANDWIDTH_REQUEST] = "ER_BANDWIDTH_REQUEST", 490 [ER_DOORBELL] = "ER_DOORBELL", 491 [ER_HOST_CONTROLLER] = "ER_HOST_CONTROLLER", 492 [ER_DEVICE_NOTIFICATION] = "ER_DEVICE_NOTIFICATION", 493 [ER_MFINDEX_WRAP] = "ER_MFINDEX_WRAP", 494 [CR_VENDOR_VIA_CHALLENGE_RESPONSE] = "CR_VENDOR_VIA_CHALLENGE_RESPONSE", 495 [CR_VENDOR_NEC_FIRMWARE_REVISION] = "CR_VENDOR_NEC_FIRMWARE_REVISION", 496 [CR_VENDOR_NEC_CHALLENGE_RESPONSE] = "CR_VENDOR_NEC_CHALLENGE_RESPONSE", 497 }; 498 499 static const char *TRBCCode_names[] = { 500 [CC_INVALID] = "CC_INVALID", 501 [CC_SUCCESS] = "CC_SUCCESS", 502 [CC_DATA_BUFFER_ERROR] = "CC_DATA_BUFFER_ERROR", 503 [CC_BABBLE_DETECTED] = "CC_BABBLE_DETECTED", 504 [CC_USB_TRANSACTION_ERROR] = "CC_USB_TRANSACTION_ERROR", 505 [CC_TRB_ERROR] = "CC_TRB_ERROR", 506 [CC_STALL_ERROR] = "CC_STALL_ERROR", 507 [CC_RESOURCE_ERROR] = "CC_RESOURCE_ERROR", 508 [CC_BANDWIDTH_ERROR] = "CC_BANDWIDTH_ERROR", 509 [CC_NO_SLOTS_ERROR] = "CC_NO_SLOTS_ERROR", 510 [CC_INVALID_STREAM_TYPE_ERROR] = "CC_INVALID_STREAM_TYPE_ERROR", 511 [CC_SLOT_NOT_ENABLED_ERROR] = "CC_SLOT_NOT_ENABLED_ERROR", 512 [CC_EP_NOT_ENABLED_ERROR] = "CC_EP_NOT_ENABLED_ERROR", 513 [CC_SHORT_PACKET] = "CC_SHORT_PACKET", 514 [CC_RING_UNDERRUN] = "CC_RING_UNDERRUN", 515 [CC_RING_OVERRUN] = "CC_RING_OVERRUN", 516 [CC_VF_ER_FULL] = "CC_VF_ER_FULL", 517 [CC_PARAMETER_ERROR] = "CC_PARAMETER_ERROR", 518 [CC_BANDWIDTH_OVERRUN] = "CC_BANDWIDTH_OVERRUN", 519 [CC_CONTEXT_STATE_ERROR] = "CC_CONTEXT_STATE_ERROR", 520 [CC_NO_PING_RESPONSE_ERROR] = "CC_NO_PING_RESPONSE_ERROR", 521 [CC_EVENT_RING_FULL_ERROR] = "CC_EVENT_RING_FULL_ERROR", 522 [CC_INCOMPATIBLE_DEVICE_ERROR] = "CC_INCOMPATIBLE_DEVICE_ERROR", 523 [CC_MISSED_SERVICE_ERROR] = "CC_MISSED_SERVICE_ERROR", 524 [CC_COMMAND_RING_STOPPED] = "CC_COMMAND_RING_STOPPED", 525 [CC_COMMAND_ABORTED] = "CC_COMMAND_ABORTED", 526 [CC_STOPPED] = "CC_STOPPED", 527 [CC_STOPPED_LENGTH_INVALID] = "CC_STOPPED_LENGTH_INVALID", 528 [CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR] 529 = "CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR", 530 [CC_ISOCH_BUFFER_OVERRUN] = "CC_ISOCH_BUFFER_OVERRUN", 531 [CC_EVENT_LOST_ERROR] = "CC_EVENT_LOST_ERROR", 532 [CC_UNDEFINED_ERROR] = "CC_UNDEFINED_ERROR", 533 [CC_INVALID_STREAM_ID_ERROR] = "CC_INVALID_STREAM_ID_ERROR", 534 [CC_SECONDARY_BANDWIDTH_ERROR] = "CC_SECONDARY_BANDWIDTH_ERROR", 535 [CC_SPLIT_TRANSACTION_ERROR] = "CC_SPLIT_TRANSACTION_ERROR", 536 }; 537 538 static const char *lookup_name(uint32_t index, const char **list, uint32_t llen) 539 { 540 if (index >= llen || list[index] == NULL) { 541 return "???"; 542 } 543 return list[index]; 544 } 545 546 static const char *trb_name(XHCITRB *trb) 547 { 548 return lookup_name(TRB_TYPE(*trb), TRBType_names, 549 ARRAY_SIZE(TRBType_names)); 550 } 551 552 static const char *event_name(XHCIEvent *event) 553 { 554 return lookup_name(event->ccode, TRBCCode_names, 555 ARRAY_SIZE(TRBCCode_names)); 556 } 557 558 static uint64_t xhci_mfindex_get(XHCIState *xhci) 559 { 560 int64_t now = qemu_get_clock_ns(vm_clock); 561 return (now - xhci->mfindex_start) / 125000; 562 } 563 564 static void xhci_mfwrap_update(XHCIState *xhci) 565 { 566 const uint32_t bits = USBCMD_RS | USBCMD_EWE; 567 uint32_t mfindex, left; 568 int64_t now; 569 570 if ((xhci->usbcmd & bits) == bits) { 571 now = qemu_get_clock_ns(vm_clock); 572 mfindex = ((now - xhci->mfindex_start) / 125000) & 0x3fff; 573 left = 0x4000 - mfindex; 574 qemu_mod_timer(xhci->mfwrap_timer, now + left * 125000); 575 } else { 576 qemu_del_timer(xhci->mfwrap_timer); 577 } 578 } 579 580 static void xhci_mfwrap_timer(void *opaque) 581 { 582 XHCIState *xhci = opaque; 583 XHCIEvent wrap = { ER_MFINDEX_WRAP, CC_SUCCESS }; 584 585 xhci_event(xhci, &wrap, 0); 586 xhci_mfwrap_update(xhci); 587 } 588 589 static inline dma_addr_t xhci_addr64(uint32_t low, uint32_t high) 590 { 591 if (sizeof(dma_addr_t) == 4) { 592 return low; 593 } else { 594 return low | (((dma_addr_t)high << 16) << 16); 595 } 596 } 597 598 static inline dma_addr_t xhci_mask64(uint64_t addr) 599 { 600 if (sizeof(dma_addr_t) == 4) { 601 return addr & 0xffffffff; 602 } else { 603 return addr; 604 } 605 } 606 607 static XHCIPort *xhci_lookup_port(XHCIState *xhci, struct USBPort *uport) 608 { 609 int index; 610 611 if (!uport->dev) { 612 return NULL; 613 } 614 switch (uport->dev->speed) { 615 case USB_SPEED_LOW: 616 case USB_SPEED_FULL: 617 case USB_SPEED_HIGH: 618 index = uport->index; 619 break; 620 case USB_SPEED_SUPER: 621 index = uport->index + xhci->numports_2; 622 break; 623 default: 624 return NULL; 625 } 626 return &xhci->ports[index]; 627 } 628 629 static void xhci_intx_update(XHCIState *xhci) 630 { 631 int level = 0; 632 633 if (msix_enabled(&xhci->pci_dev) || 634 msi_enabled(&xhci->pci_dev)) { 635 return; 636 } 637 638 if (xhci->intr[0].iman & IMAN_IP && 639 xhci->intr[0].iman & IMAN_IE && 640 xhci->usbcmd & USBCMD_INTE) { 641 level = 1; 642 } 643 644 trace_usb_xhci_irq_intx(level); 645 qemu_set_irq(xhci->irq, level); 646 } 647 648 static void xhci_msix_update(XHCIState *xhci, int v) 649 { 650 bool enabled; 651 652 if (!msix_enabled(&xhci->pci_dev)) { 653 return; 654 } 655 656 enabled = xhci->intr[v].iman & IMAN_IE; 657 if (enabled == xhci->intr[v].msix_used) { 658 return; 659 } 660 661 if (enabled) { 662 trace_usb_xhci_irq_msix_use(v); 663 msix_vector_use(&xhci->pci_dev, v); 664 xhci->intr[v].msix_used = true; 665 } else { 666 trace_usb_xhci_irq_msix_unuse(v); 667 msix_vector_unuse(&xhci->pci_dev, v); 668 xhci->intr[v].msix_used = false; 669 } 670 } 671 672 static void xhci_intr_raise(XHCIState *xhci, int v) 673 { 674 xhci->intr[v].erdp_low |= ERDP_EHB; 675 xhci->intr[v].iman |= IMAN_IP; 676 xhci->usbsts |= USBSTS_EINT; 677 678 if (!(xhci->intr[v].iman & IMAN_IE)) { 679 return; 680 } 681 682 if (!(xhci->usbcmd & USBCMD_INTE)) { 683 return; 684 } 685 686 if (msix_enabled(&xhci->pci_dev)) { 687 trace_usb_xhci_irq_msix(v); 688 msix_notify(&xhci->pci_dev, v); 689 return; 690 } 691 692 if (msi_enabled(&xhci->pci_dev)) { 693 trace_usb_xhci_irq_msi(v); 694 msi_notify(&xhci->pci_dev, v); 695 return; 696 } 697 698 if (v == 0) { 699 trace_usb_xhci_irq_intx(1); 700 qemu_set_irq(xhci->irq, 1); 701 } 702 } 703 704 static inline int xhci_running(XHCIState *xhci) 705 { 706 return !(xhci->usbsts & USBSTS_HCH) && !xhci->intr[0].er_full; 707 } 708 709 static void xhci_die(XHCIState *xhci) 710 { 711 xhci->usbsts |= USBSTS_HCE; 712 fprintf(stderr, "xhci: asserted controller error\n"); 713 } 714 715 static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v) 716 { 717 XHCIInterrupter *intr = &xhci->intr[v]; 718 XHCITRB ev_trb; 719 dma_addr_t addr; 720 721 ev_trb.parameter = cpu_to_le64(event->ptr); 722 ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24)); 723 ev_trb.control = (event->slotid << 24) | (event->epid << 16) | 724 event->flags | (event->type << TRB_TYPE_SHIFT); 725 if (intr->er_pcs) { 726 ev_trb.control |= TRB_C; 727 } 728 ev_trb.control = cpu_to_le32(ev_trb.control); 729 730 trace_usb_xhci_queue_event(v, intr->er_ep_idx, trb_name(&ev_trb), 731 event_name(event), ev_trb.parameter, 732 ev_trb.status, ev_trb.control); 733 734 addr = intr->er_start + TRB_SIZE*intr->er_ep_idx; 735 pci_dma_write(&xhci->pci_dev, addr, &ev_trb, TRB_SIZE); 736 737 intr->er_ep_idx++; 738 if (intr->er_ep_idx >= intr->er_size) { 739 intr->er_ep_idx = 0; 740 intr->er_pcs = !intr->er_pcs; 741 } 742 } 743 744 static void xhci_events_update(XHCIState *xhci, int v) 745 { 746 XHCIInterrupter *intr = &xhci->intr[v]; 747 dma_addr_t erdp; 748 unsigned int dp_idx; 749 bool do_irq = 0; 750 751 if (xhci->usbsts & USBSTS_HCH) { 752 return; 753 } 754 755 erdp = xhci_addr64(intr->erdp_low, intr->erdp_high); 756 if (erdp < intr->er_start || 757 erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) { 758 fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp); 759 fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n", 760 v, intr->er_start, intr->er_size); 761 xhci_die(xhci); 762 return; 763 } 764 dp_idx = (erdp - intr->er_start) / TRB_SIZE; 765 assert(dp_idx < intr->er_size); 766 767 /* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus 768 * deadlocks when the ER is full. Hack it by holding off events until 769 * the driver decides to free at least half of the ring */ 770 if (intr->er_full) { 771 int er_free = dp_idx - intr->er_ep_idx; 772 if (er_free <= 0) { 773 er_free += intr->er_size; 774 } 775 if (er_free < (intr->er_size/2)) { 776 DPRINTF("xhci_events_update(): event ring still " 777 "more than half full (hack)\n"); 778 return; 779 } 780 } 781 782 while (intr->ev_buffer_put != intr->ev_buffer_get) { 783 assert(intr->er_full); 784 if (((intr->er_ep_idx+1) % intr->er_size) == dp_idx) { 785 DPRINTF("xhci_events_update(): event ring full again\n"); 786 #ifndef ER_FULL_HACK 787 XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR}; 788 xhci_write_event(xhci, &full, v); 789 #endif 790 do_irq = 1; 791 break; 792 } 793 XHCIEvent *event = &intr->ev_buffer[intr->ev_buffer_get]; 794 xhci_write_event(xhci, event, v); 795 intr->ev_buffer_get++; 796 do_irq = 1; 797 if (intr->ev_buffer_get == EV_QUEUE) { 798 intr->ev_buffer_get = 0; 799 } 800 } 801 802 if (do_irq) { 803 xhci_intr_raise(xhci, v); 804 } 805 806 if (intr->er_full && intr->ev_buffer_put == intr->ev_buffer_get) { 807 DPRINTF("xhci_events_update(): event ring no longer full\n"); 808 intr->er_full = 0; 809 } 810 } 811 812 static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v) 813 { 814 XHCIInterrupter *intr; 815 dma_addr_t erdp; 816 unsigned int dp_idx; 817 818 if (v >= MAXINTRS) { 819 DPRINTF("intr nr out of range (%d >= %d)\n", v, MAXINTRS); 820 return; 821 } 822 intr = &xhci->intr[v]; 823 824 if (intr->er_full) { 825 DPRINTF("xhci_event(): ER full, queueing\n"); 826 if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) { 827 fprintf(stderr, "xhci: event queue full, dropping event!\n"); 828 return; 829 } 830 intr->ev_buffer[intr->ev_buffer_put++] = *event; 831 if (intr->ev_buffer_put == EV_QUEUE) { 832 intr->ev_buffer_put = 0; 833 } 834 return; 835 } 836 837 erdp = xhci_addr64(intr->erdp_low, intr->erdp_high); 838 if (erdp < intr->er_start || 839 erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) { 840 fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp); 841 fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n", 842 v, intr->er_start, intr->er_size); 843 xhci_die(xhci); 844 return; 845 } 846 847 dp_idx = (erdp - intr->er_start) / TRB_SIZE; 848 assert(dp_idx < intr->er_size); 849 850 if ((intr->er_ep_idx+1) % intr->er_size == dp_idx) { 851 DPRINTF("xhci_event(): ER full, queueing\n"); 852 #ifndef ER_FULL_HACK 853 XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR}; 854 xhci_write_event(xhci, &full); 855 #endif 856 intr->er_full = 1; 857 if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) { 858 fprintf(stderr, "xhci: event queue full, dropping event!\n"); 859 return; 860 } 861 intr->ev_buffer[intr->ev_buffer_put++] = *event; 862 if (intr->ev_buffer_put == EV_QUEUE) { 863 intr->ev_buffer_put = 0; 864 } 865 } else { 866 xhci_write_event(xhci, event, v); 867 } 868 869 xhci_intr_raise(xhci, v); 870 } 871 872 static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring, 873 dma_addr_t base) 874 { 875 ring->base = base; 876 ring->dequeue = base; 877 ring->ccs = 1; 878 } 879 880 static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb, 881 dma_addr_t *addr) 882 { 883 while (1) { 884 TRBType type; 885 pci_dma_read(&xhci->pci_dev, ring->dequeue, trb, TRB_SIZE); 886 trb->addr = ring->dequeue; 887 trb->ccs = ring->ccs; 888 le64_to_cpus(&trb->parameter); 889 le32_to_cpus(&trb->status); 890 le32_to_cpus(&trb->control); 891 892 trace_usb_xhci_fetch_trb(ring->dequeue, trb_name(trb), 893 trb->parameter, trb->status, trb->control); 894 895 if ((trb->control & TRB_C) != ring->ccs) { 896 return 0; 897 } 898 899 type = TRB_TYPE(*trb); 900 901 if (type != TR_LINK) { 902 if (addr) { 903 *addr = ring->dequeue; 904 } 905 ring->dequeue += TRB_SIZE; 906 return type; 907 } else { 908 ring->dequeue = xhci_mask64(trb->parameter); 909 if (trb->control & TRB_LK_TC) { 910 ring->ccs = !ring->ccs; 911 } 912 } 913 } 914 } 915 916 static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring) 917 { 918 XHCITRB trb; 919 int length = 0; 920 dma_addr_t dequeue = ring->dequeue; 921 bool ccs = ring->ccs; 922 /* hack to bundle together the two/three TDs that make a setup transfer */ 923 bool control_td_set = 0; 924 925 while (1) { 926 TRBType type; 927 pci_dma_read(&xhci->pci_dev, dequeue, &trb, TRB_SIZE); 928 le64_to_cpus(&trb.parameter); 929 le32_to_cpus(&trb.status); 930 le32_to_cpus(&trb.control); 931 932 if ((trb.control & TRB_C) != ccs) { 933 return -length; 934 } 935 936 type = TRB_TYPE(trb); 937 938 if (type == TR_LINK) { 939 dequeue = xhci_mask64(trb.parameter); 940 if (trb.control & TRB_LK_TC) { 941 ccs = !ccs; 942 } 943 continue; 944 } 945 946 length += 1; 947 dequeue += TRB_SIZE; 948 949 if (type == TR_SETUP) { 950 control_td_set = 1; 951 } else if (type == TR_STATUS) { 952 control_td_set = 0; 953 } 954 955 if (!control_td_set && !(trb.control & TRB_TR_CH)) { 956 return length; 957 } 958 } 959 } 960 961 static void xhci_er_reset(XHCIState *xhci, int v) 962 { 963 XHCIInterrupter *intr = &xhci->intr[v]; 964 XHCIEvRingSeg seg; 965 966 /* cache the (sole) event ring segment location */ 967 if (intr->erstsz != 1) { 968 fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", intr->erstsz); 969 xhci_die(xhci); 970 return; 971 } 972 dma_addr_t erstba = xhci_addr64(intr->erstba_low, intr->erstba_high); 973 pci_dma_read(&xhci->pci_dev, erstba, &seg, sizeof(seg)); 974 le32_to_cpus(&seg.addr_low); 975 le32_to_cpus(&seg.addr_high); 976 le32_to_cpus(&seg.size); 977 if (seg.size < 16 || seg.size > 4096) { 978 fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size); 979 xhci_die(xhci); 980 return; 981 } 982 intr->er_start = xhci_addr64(seg.addr_low, seg.addr_high); 983 intr->er_size = seg.size; 984 985 intr->er_ep_idx = 0; 986 intr->er_pcs = 1; 987 intr->er_full = 0; 988 989 DPRINTF("xhci: event ring[%d]:" DMA_ADDR_FMT " [%d]\n", 990 v, intr->er_start, intr->er_size); 991 } 992 993 static void xhci_run(XHCIState *xhci) 994 { 995 trace_usb_xhci_run(); 996 xhci->usbsts &= ~USBSTS_HCH; 997 xhci->mfindex_start = qemu_get_clock_ns(vm_clock); 998 } 999 1000 static void xhci_stop(XHCIState *xhci) 1001 { 1002 trace_usb_xhci_stop(); 1003 xhci->usbsts |= USBSTS_HCH; 1004 xhci->crcr_low &= ~CRCR_CRR; 1005 } 1006 1007 static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx, 1008 uint32_t state) 1009 { 1010 uint32_t ctx[5]; 1011 if (epctx->state == state) { 1012 return; 1013 } 1014 1015 pci_dma_read(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx)); 1016 ctx[0] &= ~EP_STATE_MASK; 1017 ctx[0] |= state; 1018 ctx[2] = epctx->ring.dequeue | epctx->ring.ccs; 1019 ctx[3] = (epctx->ring.dequeue >> 16) >> 16; 1020 DPRINTF("xhci: set epctx: " DMA_ADDR_FMT " state=%d dequeue=%08x%08x\n", 1021 epctx->pctx, state, ctx[3], ctx[2]); 1022 pci_dma_write(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx)); 1023 epctx->state = state; 1024 } 1025 1026 static void xhci_ep_kick_timer(void *opaque) 1027 { 1028 XHCIEPContext *epctx = opaque; 1029 xhci_kick_ep(epctx->xhci, epctx->slotid, epctx->epid); 1030 } 1031 1032 static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid, 1033 unsigned int epid, dma_addr_t pctx, 1034 uint32_t *ctx) 1035 { 1036 XHCISlot *slot; 1037 XHCIEPContext *epctx; 1038 dma_addr_t dequeue; 1039 int i; 1040 1041 trace_usb_xhci_ep_enable(slotid, epid); 1042 assert(slotid >= 1 && slotid <= MAXSLOTS); 1043 assert(epid >= 1 && epid <= 31); 1044 1045 slot = &xhci->slots[slotid-1]; 1046 if (slot->eps[epid-1]) { 1047 fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid); 1048 return CC_TRB_ERROR; 1049 } 1050 1051 epctx = g_malloc(sizeof(XHCIEPContext)); 1052 memset(epctx, 0, sizeof(XHCIEPContext)); 1053 epctx->xhci = xhci; 1054 epctx->slotid = slotid; 1055 epctx->epid = epid; 1056 1057 slot->eps[epid-1] = epctx; 1058 1059 dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]); 1060 xhci_ring_init(xhci, &epctx->ring, dequeue); 1061 epctx->ring.ccs = ctx[2] & 1; 1062 1063 epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK; 1064 DPRINTF("xhci: endpoint %d.%d type is %d\n", epid/2, epid%2, epctx->type); 1065 epctx->pctx = pctx; 1066 epctx->max_psize = ctx[1]>>16; 1067 epctx->max_psize *= 1+((ctx[1]>>8)&0xff); 1068 DPRINTF("xhci: endpoint %d.%d max transaction (burst) size is %d\n", 1069 epid/2, epid%2, epctx->max_psize); 1070 for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) { 1071 usb_packet_init(&epctx->transfers[i].packet); 1072 } 1073 1074 epctx->interval = 1 << (ctx[0] >> 16) & 0xff; 1075 epctx->mfindex_last = 0; 1076 epctx->kick_timer = qemu_new_timer_ns(vm_clock, xhci_ep_kick_timer, epctx); 1077 1078 epctx->state = EP_RUNNING; 1079 ctx[0] &= ~EP_STATE_MASK; 1080 ctx[0] |= EP_RUNNING; 1081 1082 return CC_SUCCESS; 1083 } 1084 1085 static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid, 1086 unsigned int epid) 1087 { 1088 XHCISlot *slot; 1089 XHCIEPContext *epctx; 1090 int i, xferi, killed = 0; 1091 assert(slotid >= 1 && slotid <= MAXSLOTS); 1092 assert(epid >= 1 && epid <= 31); 1093 1094 DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid); 1095 1096 slot = &xhci->slots[slotid-1]; 1097 1098 if (!slot->eps[epid-1]) { 1099 return 0; 1100 } 1101 1102 epctx = slot->eps[epid-1]; 1103 1104 xferi = epctx->next_xfer; 1105 for (i = 0; i < TD_QUEUE; i++) { 1106 XHCITransfer *t = &epctx->transfers[xferi]; 1107 if (t->running_async) { 1108 usb_cancel_packet(&t->packet); 1109 t->running_async = 0; 1110 t->cancelled = 1; 1111 DPRINTF("xhci: cancelling transfer %d, waiting for it to complete...\n", i); 1112 killed++; 1113 } 1114 if (t->running_retry) { 1115 t->running_retry = 0; 1116 epctx->retry = NULL; 1117 qemu_del_timer(epctx->kick_timer); 1118 } 1119 if (t->trbs) { 1120 g_free(t->trbs); 1121 } 1122 1123 t->trbs = NULL; 1124 t->trb_count = t->trb_alloced = 0; 1125 xferi = (xferi + 1) % TD_QUEUE; 1126 } 1127 return killed; 1128 } 1129 1130 static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid, 1131 unsigned int epid) 1132 { 1133 XHCISlot *slot; 1134 XHCIEPContext *epctx; 1135 1136 trace_usb_xhci_ep_disable(slotid, epid); 1137 assert(slotid >= 1 && slotid <= MAXSLOTS); 1138 assert(epid >= 1 && epid <= 31); 1139 1140 slot = &xhci->slots[slotid-1]; 1141 1142 if (!slot->eps[epid-1]) { 1143 DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid); 1144 return CC_SUCCESS; 1145 } 1146 1147 xhci_ep_nuke_xfers(xhci, slotid, epid); 1148 1149 epctx = slot->eps[epid-1]; 1150 1151 xhci_set_ep_state(xhci, epctx, EP_DISABLED); 1152 1153 qemu_free_timer(epctx->kick_timer); 1154 g_free(epctx); 1155 slot->eps[epid-1] = NULL; 1156 1157 return CC_SUCCESS; 1158 } 1159 1160 static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid, 1161 unsigned int epid) 1162 { 1163 XHCISlot *slot; 1164 XHCIEPContext *epctx; 1165 1166 trace_usb_xhci_ep_stop(slotid, epid); 1167 assert(slotid >= 1 && slotid <= MAXSLOTS); 1168 1169 if (epid < 1 || epid > 31) { 1170 fprintf(stderr, "xhci: bad ep %d\n", epid); 1171 return CC_TRB_ERROR; 1172 } 1173 1174 slot = &xhci->slots[slotid-1]; 1175 1176 if (!slot->eps[epid-1]) { 1177 DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); 1178 return CC_EP_NOT_ENABLED_ERROR; 1179 } 1180 1181 if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) { 1182 fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, " 1183 "data might be lost\n"); 1184 } 1185 1186 epctx = slot->eps[epid-1]; 1187 1188 xhci_set_ep_state(xhci, epctx, EP_STOPPED); 1189 1190 return CC_SUCCESS; 1191 } 1192 1193 static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid, 1194 unsigned int epid) 1195 { 1196 XHCISlot *slot; 1197 XHCIEPContext *epctx; 1198 USBDevice *dev; 1199 1200 trace_usb_xhci_ep_reset(slotid, epid); 1201 assert(slotid >= 1 && slotid <= MAXSLOTS); 1202 1203 if (epid < 1 || epid > 31) { 1204 fprintf(stderr, "xhci: bad ep %d\n", epid); 1205 return CC_TRB_ERROR; 1206 } 1207 1208 slot = &xhci->slots[slotid-1]; 1209 1210 if (!slot->eps[epid-1]) { 1211 DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); 1212 return CC_EP_NOT_ENABLED_ERROR; 1213 } 1214 1215 epctx = slot->eps[epid-1]; 1216 1217 if (epctx->state != EP_HALTED) { 1218 fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n", 1219 epid, epctx->state); 1220 return CC_CONTEXT_STATE_ERROR; 1221 } 1222 1223 if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) { 1224 fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, " 1225 "data might be lost\n"); 1226 } 1227 1228 uint8_t ep = epid>>1; 1229 1230 if (epid & 1) { 1231 ep |= 0x80; 1232 } 1233 1234 dev = xhci->slots[slotid-1].uport->dev; 1235 if (!dev) { 1236 return CC_USB_TRANSACTION_ERROR; 1237 } 1238 1239 xhci_set_ep_state(xhci, epctx, EP_STOPPED); 1240 1241 return CC_SUCCESS; 1242 } 1243 1244 static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid, 1245 unsigned int epid, uint64_t pdequeue) 1246 { 1247 XHCISlot *slot; 1248 XHCIEPContext *epctx; 1249 dma_addr_t dequeue; 1250 1251 assert(slotid >= 1 && slotid <= MAXSLOTS); 1252 1253 if (epid < 1 || epid > 31) { 1254 fprintf(stderr, "xhci: bad ep %d\n", epid); 1255 return CC_TRB_ERROR; 1256 } 1257 1258 trace_usb_xhci_ep_set_dequeue(slotid, epid, pdequeue); 1259 dequeue = xhci_mask64(pdequeue); 1260 1261 slot = &xhci->slots[slotid-1]; 1262 1263 if (!slot->eps[epid-1]) { 1264 DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); 1265 return CC_EP_NOT_ENABLED_ERROR; 1266 } 1267 1268 epctx = slot->eps[epid-1]; 1269 1270 1271 if (epctx->state != EP_STOPPED) { 1272 fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid); 1273 return CC_CONTEXT_STATE_ERROR; 1274 } 1275 1276 xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF); 1277 epctx->ring.ccs = dequeue & 1; 1278 1279 xhci_set_ep_state(xhci, epctx, EP_STOPPED); 1280 1281 return CC_SUCCESS; 1282 } 1283 1284 static int xhci_xfer_map(XHCITransfer *xfer) 1285 { 1286 int in_xfer = (xfer->packet.pid == USB_TOKEN_IN); 1287 XHCIState *xhci = xfer->xhci; 1288 int i; 1289 1290 pci_dma_sglist_init(&xfer->sgl, &xhci->pci_dev, xfer->trb_count); 1291 for (i = 0; i < xfer->trb_count; i++) { 1292 XHCITRB *trb = &xfer->trbs[i]; 1293 dma_addr_t addr; 1294 unsigned int chunk = 0; 1295 1296 switch (TRB_TYPE(*trb)) { 1297 case TR_DATA: 1298 if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) { 1299 fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n"); 1300 goto err; 1301 } 1302 /* fallthrough */ 1303 case TR_NORMAL: 1304 case TR_ISOCH: 1305 addr = xhci_mask64(trb->parameter); 1306 chunk = trb->status & 0x1ffff; 1307 if (trb->control & TRB_TR_IDT) { 1308 if (chunk > 8 || in_xfer) { 1309 fprintf(stderr, "xhci: invalid immediate data TRB\n"); 1310 goto err; 1311 } 1312 qemu_sglist_add(&xfer->sgl, trb->addr, chunk); 1313 } else { 1314 qemu_sglist_add(&xfer->sgl, addr, chunk); 1315 } 1316 break; 1317 } 1318 } 1319 1320 usb_packet_map(&xfer->packet, &xfer->sgl); 1321 return 0; 1322 1323 err: 1324 qemu_sglist_destroy(&xfer->sgl); 1325 xhci_die(xhci); 1326 return -1; 1327 } 1328 1329 static void xhci_xfer_unmap(XHCITransfer *xfer) 1330 { 1331 usb_packet_unmap(&xfer->packet, &xfer->sgl); 1332 qemu_sglist_destroy(&xfer->sgl); 1333 } 1334 1335 static void xhci_xfer_report(XHCITransfer *xfer) 1336 { 1337 uint32_t edtla = 0; 1338 unsigned int left; 1339 bool reported = 0; 1340 bool shortpkt = 0; 1341 XHCIEvent event = {ER_TRANSFER, CC_SUCCESS}; 1342 XHCIState *xhci = xfer->xhci; 1343 int i; 1344 1345 left = xfer->packet.result < 0 ? 0 : xfer->packet.result; 1346 1347 for (i = 0; i < xfer->trb_count; i++) { 1348 XHCITRB *trb = &xfer->trbs[i]; 1349 unsigned int chunk = 0; 1350 1351 switch (TRB_TYPE(*trb)) { 1352 case TR_DATA: 1353 case TR_NORMAL: 1354 case TR_ISOCH: 1355 chunk = trb->status & 0x1ffff; 1356 if (chunk > left) { 1357 chunk = left; 1358 if (xfer->status == CC_SUCCESS) { 1359 shortpkt = 1; 1360 } 1361 } 1362 left -= chunk; 1363 edtla += chunk; 1364 break; 1365 case TR_STATUS: 1366 reported = 0; 1367 shortpkt = 0; 1368 break; 1369 } 1370 1371 if (!reported && ((trb->control & TRB_TR_IOC) || 1372 (shortpkt && (trb->control & TRB_TR_ISP)) || 1373 (xfer->status != CC_SUCCESS))) { 1374 event.slotid = xfer->slotid; 1375 event.epid = xfer->epid; 1376 event.length = (trb->status & 0x1ffff) - chunk; 1377 event.flags = 0; 1378 event.ptr = trb->addr; 1379 if (xfer->status == CC_SUCCESS) { 1380 event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS; 1381 } else { 1382 event.ccode = xfer->status; 1383 } 1384 if (TRB_TYPE(*trb) == TR_EVDATA) { 1385 event.ptr = trb->parameter; 1386 event.flags |= TRB_EV_ED; 1387 event.length = edtla & 0xffffff; 1388 DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length); 1389 edtla = 0; 1390 } 1391 xhci_event(xhci, &event, TRB_INTR(*trb)); 1392 reported = 1; 1393 if (xfer->status != CC_SUCCESS) { 1394 return; 1395 } 1396 } 1397 } 1398 } 1399 1400 static void xhci_stall_ep(XHCITransfer *xfer) 1401 { 1402 XHCIState *xhci = xfer->xhci; 1403 XHCISlot *slot = &xhci->slots[xfer->slotid-1]; 1404 XHCIEPContext *epctx = slot->eps[xfer->epid-1]; 1405 1406 epctx->ring.dequeue = xfer->trbs[0].addr; 1407 epctx->ring.ccs = xfer->trbs[0].ccs; 1408 xhci_set_ep_state(xhci, epctx, EP_HALTED); 1409 DPRINTF("xhci: stalled slot %d ep %d\n", xfer->slotid, xfer->epid); 1410 DPRINTF("xhci: will continue at "DMA_ADDR_FMT"\n", epctx->ring.dequeue); 1411 } 1412 1413 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, 1414 XHCIEPContext *epctx); 1415 1416 static int xhci_setup_packet(XHCITransfer *xfer) 1417 { 1418 XHCIState *xhci = xfer->xhci; 1419 USBDevice *dev; 1420 USBEndpoint *ep; 1421 int dir; 1422 1423 dir = xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT; 1424 1425 if (xfer->packet.ep) { 1426 ep = xfer->packet.ep; 1427 dev = ep->dev; 1428 } else { 1429 if (!xhci->slots[xfer->slotid-1].uport) { 1430 fprintf(stderr, "xhci: slot %d has no device\n", 1431 xfer->slotid); 1432 return -1; 1433 } 1434 dev = xhci->slots[xfer->slotid-1].uport->dev; 1435 ep = usb_ep_get(dev, dir, xfer->epid >> 1); 1436 } 1437 1438 usb_packet_setup(&xfer->packet, dir, ep, xfer->trbs[0].addr); 1439 xhci_xfer_map(xfer); 1440 DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n", 1441 xfer->packet.pid, dev->addr, ep->nr); 1442 return 0; 1443 } 1444 1445 static int xhci_complete_packet(XHCITransfer *xfer, int ret) 1446 { 1447 if (ret == USB_RET_ASYNC) { 1448 trace_usb_xhci_xfer_async(xfer); 1449 xfer->running_async = 1; 1450 xfer->running_retry = 0; 1451 xfer->complete = 0; 1452 xfer->cancelled = 0; 1453 return 0; 1454 } else if (ret == USB_RET_NAK) { 1455 trace_usb_xhci_xfer_nak(xfer); 1456 xfer->running_async = 0; 1457 xfer->running_retry = 1; 1458 xfer->complete = 0; 1459 xfer->cancelled = 0; 1460 return 0; 1461 } else { 1462 xfer->running_async = 0; 1463 xfer->running_retry = 0; 1464 xfer->complete = 1; 1465 xhci_xfer_unmap(xfer); 1466 } 1467 1468 if (ret >= 0) { 1469 trace_usb_xhci_xfer_success(xfer, ret); 1470 xfer->status = CC_SUCCESS; 1471 xhci_xfer_report(xfer); 1472 return 0; 1473 } 1474 1475 /* error */ 1476 trace_usb_xhci_xfer_error(xfer, ret); 1477 switch (ret) { 1478 case USB_RET_NODEV: 1479 xfer->status = CC_USB_TRANSACTION_ERROR; 1480 xhci_xfer_report(xfer); 1481 xhci_stall_ep(xfer); 1482 break; 1483 case USB_RET_STALL: 1484 xfer->status = CC_STALL_ERROR; 1485 xhci_xfer_report(xfer); 1486 xhci_stall_ep(xfer); 1487 break; 1488 default: 1489 fprintf(stderr, "%s: FIXME: ret = %d\n", __FUNCTION__, ret); 1490 FIXME(); 1491 } 1492 return 0; 1493 } 1494 1495 static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer) 1496 { 1497 XHCITRB *trb_setup, *trb_status; 1498 uint8_t bmRequestType; 1499 int ret; 1500 1501 trb_setup = &xfer->trbs[0]; 1502 trb_status = &xfer->trbs[xfer->trb_count-1]; 1503 1504 trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid); 1505 1506 /* at most one Event Data TRB allowed after STATUS */ 1507 if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) { 1508 trb_status--; 1509 } 1510 1511 /* do some sanity checks */ 1512 if (TRB_TYPE(*trb_setup) != TR_SETUP) { 1513 fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n", 1514 TRB_TYPE(*trb_setup)); 1515 return -1; 1516 } 1517 if (TRB_TYPE(*trb_status) != TR_STATUS) { 1518 fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n", 1519 TRB_TYPE(*trb_status)); 1520 return -1; 1521 } 1522 if (!(trb_setup->control & TRB_TR_IDT)) { 1523 fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n"); 1524 return -1; 1525 } 1526 if ((trb_setup->status & 0x1ffff) != 8) { 1527 fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n", 1528 (trb_setup->status & 0x1ffff)); 1529 return -1; 1530 } 1531 1532 bmRequestType = trb_setup->parameter; 1533 1534 xfer->in_xfer = bmRequestType & USB_DIR_IN; 1535 xfer->iso_xfer = false; 1536 1537 if (xhci_setup_packet(xfer) < 0) { 1538 return -1; 1539 } 1540 xfer->packet.parameter = trb_setup->parameter; 1541 1542 ret = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); 1543 1544 xhci_complete_packet(xfer, ret); 1545 if (!xfer->running_async && !xfer->running_retry) { 1546 xhci_kick_ep(xhci, xfer->slotid, xfer->epid); 1547 } 1548 return 0; 1549 } 1550 1551 static void xhci_calc_iso_kick(XHCIState *xhci, XHCITransfer *xfer, 1552 XHCIEPContext *epctx, uint64_t mfindex) 1553 { 1554 if (xfer->trbs[0].control & TRB_TR_SIA) { 1555 uint64_t asap = ((mfindex + epctx->interval - 1) & 1556 ~(epctx->interval-1)); 1557 if (asap >= epctx->mfindex_last && 1558 asap <= epctx->mfindex_last + epctx->interval * 4) { 1559 xfer->mfindex_kick = epctx->mfindex_last + epctx->interval; 1560 } else { 1561 xfer->mfindex_kick = asap; 1562 } 1563 } else { 1564 xfer->mfindex_kick = (xfer->trbs[0].control >> TRB_TR_FRAMEID_SHIFT) 1565 & TRB_TR_FRAMEID_MASK; 1566 xfer->mfindex_kick |= mfindex & ~0x3fff; 1567 if (xfer->mfindex_kick < mfindex) { 1568 xfer->mfindex_kick += 0x4000; 1569 } 1570 } 1571 } 1572 1573 static void xhci_check_iso_kick(XHCIState *xhci, XHCITransfer *xfer, 1574 XHCIEPContext *epctx, uint64_t mfindex) 1575 { 1576 if (xfer->mfindex_kick > mfindex) { 1577 qemu_mod_timer(epctx->kick_timer, qemu_get_clock_ns(vm_clock) + 1578 (xfer->mfindex_kick - mfindex) * 125000); 1579 xfer->running_retry = 1; 1580 } else { 1581 epctx->mfindex_last = xfer->mfindex_kick; 1582 qemu_del_timer(epctx->kick_timer); 1583 xfer->running_retry = 0; 1584 } 1585 } 1586 1587 1588 static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx) 1589 { 1590 uint64_t mfindex; 1591 int ret; 1592 1593 DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid); 1594 1595 xfer->in_xfer = epctx->type>>2; 1596 1597 switch(epctx->type) { 1598 case ET_INTR_OUT: 1599 case ET_INTR_IN: 1600 case ET_BULK_OUT: 1601 case ET_BULK_IN: 1602 xfer->pkts = 0; 1603 xfer->iso_xfer = false; 1604 break; 1605 case ET_ISO_OUT: 1606 case ET_ISO_IN: 1607 xfer->pkts = 1; 1608 xfer->iso_xfer = true; 1609 mfindex = xhci_mfindex_get(xhci); 1610 xhci_calc_iso_kick(xhci, xfer, epctx, mfindex); 1611 xhci_check_iso_kick(xhci, xfer, epctx, mfindex); 1612 if (xfer->running_retry) { 1613 return -1; 1614 } 1615 break; 1616 default: 1617 fprintf(stderr, "xhci: unknown or unhandled EP " 1618 "(type %d, in %d, ep %02x)\n", 1619 epctx->type, xfer->in_xfer, xfer->epid); 1620 return -1; 1621 } 1622 1623 if (xhci_setup_packet(xfer) < 0) { 1624 return -1; 1625 } 1626 ret = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); 1627 1628 xhci_complete_packet(xfer, ret); 1629 if (!xfer->running_async && !xfer->running_retry) { 1630 xhci_kick_ep(xhci, xfer->slotid, xfer->epid); 1631 } 1632 return 0; 1633 } 1634 1635 static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx) 1636 { 1637 trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid); 1638 return xhci_submit(xhci, xfer, epctx); 1639 } 1640 1641 static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) 1642 { 1643 XHCIEPContext *epctx; 1644 uint64_t mfindex; 1645 int length; 1646 int i; 1647 1648 trace_usb_xhci_ep_kick(slotid, epid); 1649 assert(slotid >= 1 && slotid <= MAXSLOTS); 1650 assert(epid >= 1 && epid <= 31); 1651 1652 if (!xhci->slots[slotid-1].enabled) { 1653 fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid); 1654 return; 1655 } 1656 epctx = xhci->slots[slotid-1].eps[epid-1]; 1657 if (!epctx) { 1658 fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n", 1659 epid, slotid); 1660 return; 1661 } 1662 1663 if (epctx->retry) { 1664 XHCITransfer *xfer = epctx->retry; 1665 int result; 1666 1667 trace_usb_xhci_xfer_retry(xfer); 1668 assert(xfer->running_retry); 1669 if (xfer->iso_xfer) { 1670 /* retry delayed iso transfer */ 1671 mfindex = xhci_mfindex_get(xhci); 1672 xhci_check_iso_kick(xhci, xfer, epctx, mfindex); 1673 if (xfer->running_retry) { 1674 return; 1675 } 1676 if (xhci_setup_packet(xfer) < 0) { 1677 return; 1678 } 1679 result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); 1680 assert(result != USB_RET_NAK); 1681 xhci_complete_packet(xfer, result); 1682 } else { 1683 /* retry nak'ed transfer */ 1684 if (xhci_setup_packet(xfer) < 0) { 1685 return; 1686 } 1687 result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); 1688 if (result == USB_RET_NAK) { 1689 return; 1690 } 1691 xhci_complete_packet(xfer, result); 1692 } 1693 assert(!xfer->running_retry); 1694 epctx->retry = NULL; 1695 } 1696 1697 if (epctx->state == EP_HALTED) { 1698 DPRINTF("xhci: ep halted, not running schedule\n"); 1699 return; 1700 } 1701 1702 xhci_set_ep_state(xhci, epctx, EP_RUNNING); 1703 1704 while (1) { 1705 XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer]; 1706 if (xfer->running_async || xfer->running_retry) { 1707 break; 1708 } 1709 length = xhci_ring_chain_length(xhci, &epctx->ring); 1710 if (length < 0) { 1711 break; 1712 } else if (length == 0) { 1713 break; 1714 } 1715 if (xfer->trbs && xfer->trb_alloced < length) { 1716 xfer->trb_count = 0; 1717 xfer->trb_alloced = 0; 1718 g_free(xfer->trbs); 1719 xfer->trbs = NULL; 1720 } 1721 if (!xfer->trbs) { 1722 xfer->trbs = g_malloc(sizeof(XHCITRB) * length); 1723 xfer->trb_alloced = length; 1724 } 1725 xfer->trb_count = length; 1726 1727 for (i = 0; i < length; i++) { 1728 assert(xhci_ring_fetch(xhci, &epctx->ring, &xfer->trbs[i], NULL)); 1729 } 1730 xfer->xhci = xhci; 1731 xfer->epid = epid; 1732 xfer->slotid = slotid; 1733 1734 if (epid == 1) { 1735 if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) { 1736 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; 1737 } else { 1738 fprintf(stderr, "xhci: error firing CTL transfer\n"); 1739 } 1740 } else { 1741 if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) { 1742 epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; 1743 } else { 1744 if (!xfer->iso_xfer) { 1745 fprintf(stderr, "xhci: error firing data transfer\n"); 1746 } 1747 } 1748 } 1749 1750 if (epctx->state == EP_HALTED) { 1751 break; 1752 } 1753 if (xfer->running_retry) { 1754 DPRINTF("xhci: xfer nacked, stopping schedule\n"); 1755 epctx->retry = xfer; 1756 break; 1757 } 1758 } 1759 } 1760 1761 static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid) 1762 { 1763 trace_usb_xhci_slot_enable(slotid); 1764 assert(slotid >= 1 && slotid <= MAXSLOTS); 1765 xhci->slots[slotid-1].enabled = 1; 1766 xhci->slots[slotid-1].uport = NULL; 1767 memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31); 1768 1769 return CC_SUCCESS; 1770 } 1771 1772 static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid) 1773 { 1774 int i; 1775 1776 trace_usb_xhci_slot_disable(slotid); 1777 assert(slotid >= 1 && slotid <= MAXSLOTS); 1778 1779 for (i = 1; i <= 31; i++) { 1780 if (xhci->slots[slotid-1].eps[i-1]) { 1781 xhci_disable_ep(xhci, slotid, i); 1782 } 1783 } 1784 1785 xhci->slots[slotid-1].enabled = 0; 1786 return CC_SUCCESS; 1787 } 1788 1789 static USBPort *xhci_lookup_uport(XHCIState *xhci, uint32_t *slot_ctx) 1790 { 1791 USBPort *uport; 1792 char path[32]; 1793 int i, pos, port; 1794 1795 port = (slot_ctx[1]>>16) & 0xFF; 1796 port = xhci->ports[port-1].uport->index+1; 1797 pos = snprintf(path, sizeof(path), "%d", port); 1798 for (i = 0; i < 5; i++) { 1799 port = (slot_ctx[0] >> 4*i) & 0x0f; 1800 if (!port) { 1801 break; 1802 } 1803 pos += snprintf(path + pos, sizeof(path) - pos, ".%d", port); 1804 } 1805 1806 QTAILQ_FOREACH(uport, &xhci->bus.used, next) { 1807 if (strcmp(uport->path, path) == 0) { 1808 return uport; 1809 } 1810 } 1811 return NULL; 1812 } 1813 1814 static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid, 1815 uint64_t pictx, bool bsr) 1816 { 1817 XHCISlot *slot; 1818 USBPort *uport; 1819 USBDevice *dev; 1820 dma_addr_t ictx, octx, dcbaap; 1821 uint64_t poctx; 1822 uint32_t ictl_ctx[2]; 1823 uint32_t slot_ctx[4]; 1824 uint32_t ep0_ctx[5]; 1825 int i; 1826 TRBCCode res; 1827 1828 trace_usb_xhci_slot_address(slotid); 1829 assert(slotid >= 1 && slotid <= MAXSLOTS); 1830 1831 dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high); 1832 pci_dma_read(&xhci->pci_dev, dcbaap + 8*slotid, &poctx, sizeof(poctx)); 1833 ictx = xhci_mask64(pictx); 1834 octx = xhci_mask64(le64_to_cpu(poctx)); 1835 1836 DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx); 1837 DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); 1838 1839 pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx)); 1840 1841 if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) { 1842 fprintf(stderr, "xhci: invalid input context control %08x %08x\n", 1843 ictl_ctx[0], ictl_ctx[1]); 1844 return CC_TRB_ERROR; 1845 } 1846 1847 pci_dma_read(&xhci->pci_dev, ictx+32, slot_ctx, sizeof(slot_ctx)); 1848 pci_dma_read(&xhci->pci_dev, ictx+64, ep0_ctx, sizeof(ep0_ctx)); 1849 1850 DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n", 1851 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); 1852 1853 DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n", 1854 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); 1855 1856 uport = xhci_lookup_uport(xhci, slot_ctx); 1857 if (uport == NULL) { 1858 fprintf(stderr, "xhci: port not found\n"); 1859 return CC_TRB_ERROR; 1860 } 1861 1862 dev = uport->dev; 1863 if (!dev) { 1864 fprintf(stderr, "xhci: port %s not connected\n", uport->path); 1865 return CC_USB_TRANSACTION_ERROR; 1866 } 1867 1868 for (i = 0; i < MAXSLOTS; i++) { 1869 if (xhci->slots[i].uport == uport) { 1870 fprintf(stderr, "xhci: port %s already assigned to slot %d\n", 1871 uport->path, i+1); 1872 return CC_TRB_ERROR; 1873 } 1874 } 1875 1876 slot = &xhci->slots[slotid-1]; 1877 slot->uport = uport; 1878 slot->ctx = octx; 1879 1880 if (bsr) { 1881 slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT; 1882 } else { 1883 slot->devaddr = xhci->devaddr++; 1884 slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slot->devaddr; 1885 DPRINTF("xhci: device address is %d\n", slot->devaddr); 1886 usb_device_handle_control(dev, NULL, 1887 DeviceOutRequest | USB_REQ_SET_ADDRESS, 1888 slot->devaddr, 0, 0, NULL); 1889 } 1890 1891 res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx); 1892 1893 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", 1894 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); 1895 DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n", 1896 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); 1897 1898 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); 1899 pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx)); 1900 1901 return res; 1902 } 1903 1904 1905 static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid, 1906 uint64_t pictx, bool dc) 1907 { 1908 dma_addr_t ictx, octx; 1909 uint32_t ictl_ctx[2]; 1910 uint32_t slot_ctx[4]; 1911 uint32_t islot_ctx[4]; 1912 uint32_t ep_ctx[5]; 1913 int i; 1914 TRBCCode res; 1915 1916 trace_usb_xhci_slot_configure(slotid); 1917 assert(slotid >= 1 && slotid <= MAXSLOTS); 1918 1919 ictx = xhci_mask64(pictx); 1920 octx = xhci->slots[slotid-1].ctx; 1921 1922 DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx); 1923 DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); 1924 1925 if (dc) { 1926 for (i = 2; i <= 31; i++) { 1927 if (xhci->slots[slotid-1].eps[i-1]) { 1928 xhci_disable_ep(xhci, slotid, i); 1929 } 1930 } 1931 1932 pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); 1933 slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); 1934 slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT; 1935 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", 1936 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); 1937 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); 1938 1939 return CC_SUCCESS; 1940 } 1941 1942 pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx)); 1943 1944 if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) { 1945 fprintf(stderr, "xhci: invalid input context control %08x %08x\n", 1946 ictl_ctx[0], ictl_ctx[1]); 1947 return CC_TRB_ERROR; 1948 } 1949 1950 pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx)); 1951 pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); 1952 1953 if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) { 1954 fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]); 1955 return CC_CONTEXT_STATE_ERROR; 1956 } 1957 1958 for (i = 2; i <= 31; i++) { 1959 if (ictl_ctx[0] & (1<<i)) { 1960 xhci_disable_ep(xhci, slotid, i); 1961 } 1962 if (ictl_ctx[1] & (1<<i)) { 1963 pci_dma_read(&xhci->pci_dev, ictx+32+(32*i), ep_ctx, 1964 sizeof(ep_ctx)); 1965 DPRINTF("xhci: input ep%d.%d context: %08x %08x %08x %08x %08x\n", 1966 i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2], 1967 ep_ctx[3], ep_ctx[4]); 1968 xhci_disable_ep(xhci, slotid, i); 1969 res = xhci_enable_ep(xhci, slotid, i, octx+(32*i), ep_ctx); 1970 if (res != CC_SUCCESS) { 1971 return res; 1972 } 1973 DPRINTF("xhci: output ep%d.%d context: %08x %08x %08x %08x %08x\n", 1974 i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2], 1975 ep_ctx[3], ep_ctx[4]); 1976 pci_dma_write(&xhci->pci_dev, octx+(32*i), ep_ctx, sizeof(ep_ctx)); 1977 } 1978 } 1979 1980 slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); 1981 slot_ctx[3] |= SLOT_CONFIGURED << SLOT_STATE_SHIFT; 1982 slot_ctx[0] &= ~(SLOT_CONTEXT_ENTRIES_MASK << SLOT_CONTEXT_ENTRIES_SHIFT); 1983 slot_ctx[0] |= islot_ctx[0] & (SLOT_CONTEXT_ENTRIES_MASK << 1984 SLOT_CONTEXT_ENTRIES_SHIFT); 1985 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", 1986 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); 1987 1988 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); 1989 1990 return CC_SUCCESS; 1991 } 1992 1993 1994 static TRBCCode xhci_evaluate_slot(XHCIState *xhci, unsigned int slotid, 1995 uint64_t pictx) 1996 { 1997 dma_addr_t ictx, octx; 1998 uint32_t ictl_ctx[2]; 1999 uint32_t iep0_ctx[5]; 2000 uint32_t ep0_ctx[5]; 2001 uint32_t islot_ctx[4]; 2002 uint32_t slot_ctx[4]; 2003 2004 trace_usb_xhci_slot_evaluate(slotid); 2005 assert(slotid >= 1 && slotid <= MAXSLOTS); 2006 2007 ictx = xhci_mask64(pictx); 2008 octx = xhci->slots[slotid-1].ctx; 2009 2010 DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx); 2011 DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); 2012 2013 pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx)); 2014 2015 if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) { 2016 fprintf(stderr, "xhci: invalid input context control %08x %08x\n", 2017 ictl_ctx[0], ictl_ctx[1]); 2018 return CC_TRB_ERROR; 2019 } 2020 2021 if (ictl_ctx[1] & 0x1) { 2022 pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx)); 2023 2024 DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n", 2025 islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]); 2026 2027 pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); 2028 2029 slot_ctx[1] &= ~0xFFFF; /* max exit latency */ 2030 slot_ctx[1] |= islot_ctx[1] & 0xFFFF; 2031 slot_ctx[2] &= ~0xFF00000; /* interrupter target */ 2032 slot_ctx[2] |= islot_ctx[2] & 0xFF000000; 2033 2034 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", 2035 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); 2036 2037 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); 2038 } 2039 2040 if (ictl_ctx[1] & 0x2) { 2041 pci_dma_read(&xhci->pci_dev, ictx+64, iep0_ctx, sizeof(iep0_ctx)); 2042 2043 DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n", 2044 iep0_ctx[0], iep0_ctx[1], iep0_ctx[2], 2045 iep0_ctx[3], iep0_ctx[4]); 2046 2047 pci_dma_read(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx)); 2048 2049 ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/ 2050 ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000; 2051 2052 DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n", 2053 ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); 2054 2055 pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx)); 2056 } 2057 2058 return CC_SUCCESS; 2059 } 2060 2061 static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid) 2062 { 2063 uint32_t slot_ctx[4]; 2064 dma_addr_t octx; 2065 int i; 2066 2067 trace_usb_xhci_slot_reset(slotid); 2068 assert(slotid >= 1 && slotid <= MAXSLOTS); 2069 2070 octx = xhci->slots[slotid-1].ctx; 2071 2072 DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); 2073 2074 for (i = 2; i <= 31; i++) { 2075 if (xhci->slots[slotid-1].eps[i-1]) { 2076 xhci_disable_ep(xhci, slotid, i); 2077 } 2078 } 2079 2080 pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); 2081 slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); 2082 slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT; 2083 DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", 2084 slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); 2085 pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); 2086 2087 return CC_SUCCESS; 2088 } 2089 2090 static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb) 2091 { 2092 unsigned int slotid; 2093 slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK; 2094 if (slotid < 1 || slotid > MAXSLOTS) { 2095 fprintf(stderr, "xhci: bad slot id %d\n", slotid); 2096 event->ccode = CC_TRB_ERROR; 2097 return 0; 2098 } else if (!xhci->slots[slotid-1].enabled) { 2099 fprintf(stderr, "xhci: slot id %d not enabled\n", slotid); 2100 event->ccode = CC_SLOT_NOT_ENABLED_ERROR; 2101 return 0; 2102 } 2103 return slotid; 2104 } 2105 2106 static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx) 2107 { 2108 dma_addr_t ctx; 2109 uint8_t bw_ctx[xhci->numports+1]; 2110 2111 DPRINTF("xhci_get_port_bandwidth()\n"); 2112 2113 ctx = xhci_mask64(pctx); 2114 2115 DPRINTF("xhci: bandwidth context at "DMA_ADDR_FMT"\n", ctx); 2116 2117 /* TODO: actually implement real values here */ 2118 bw_ctx[0] = 0; 2119 memset(&bw_ctx[1], 80, xhci->numports); /* 80% */ 2120 pci_dma_write(&xhci->pci_dev, ctx, bw_ctx, sizeof(bw_ctx)); 2121 2122 return CC_SUCCESS; 2123 } 2124 2125 static uint32_t rotl(uint32_t v, unsigned count) 2126 { 2127 count &= 31; 2128 return (v << count) | (v >> (32 - count)); 2129 } 2130 2131 2132 static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo) 2133 { 2134 uint32_t val; 2135 val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F)); 2136 val += rotl(lo + 0x49434878, hi & 0x1F); 2137 val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F); 2138 return ~val; 2139 } 2140 2141 static void xhci_via_challenge(XHCIState *xhci, uint64_t addr) 2142 { 2143 uint32_t buf[8]; 2144 uint32_t obuf[8]; 2145 dma_addr_t paddr = xhci_mask64(addr); 2146 2147 pci_dma_read(&xhci->pci_dev, paddr, &buf, 32); 2148 2149 memcpy(obuf, buf, sizeof(obuf)); 2150 2151 if ((buf[0] & 0xff) == 2) { 2152 obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3]; 2153 obuf[0] |= (buf[2] * buf[3]) & 0xff; 2154 obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3]; 2155 obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3]; 2156 obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3]; 2157 obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3]; 2158 obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3]; 2159 obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956; 2160 obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593; 2161 } 2162 2163 pci_dma_write(&xhci->pci_dev, paddr, &obuf, 32); 2164 } 2165 2166 static void xhci_process_commands(XHCIState *xhci) 2167 { 2168 XHCITRB trb; 2169 TRBType type; 2170 XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS}; 2171 dma_addr_t addr; 2172 unsigned int i, slotid = 0; 2173 2174 DPRINTF("xhci_process_commands()\n"); 2175 if (!xhci_running(xhci)) { 2176 DPRINTF("xhci_process_commands() called while xHC stopped or paused\n"); 2177 return; 2178 } 2179 2180 xhci->crcr_low |= CRCR_CRR; 2181 2182 while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) { 2183 event.ptr = addr; 2184 switch (type) { 2185 case CR_ENABLE_SLOT: 2186 for (i = 0; i < MAXSLOTS; i++) { 2187 if (!xhci->slots[i].enabled) { 2188 break; 2189 } 2190 } 2191 if (i >= MAXSLOTS) { 2192 fprintf(stderr, "xhci: no device slots available\n"); 2193 event.ccode = CC_NO_SLOTS_ERROR; 2194 } else { 2195 slotid = i+1; 2196 event.ccode = xhci_enable_slot(xhci, slotid); 2197 } 2198 break; 2199 case CR_DISABLE_SLOT: 2200 slotid = xhci_get_slot(xhci, &event, &trb); 2201 if (slotid) { 2202 event.ccode = xhci_disable_slot(xhci, slotid); 2203 } 2204 break; 2205 case CR_ADDRESS_DEVICE: 2206 slotid = xhci_get_slot(xhci, &event, &trb); 2207 if (slotid) { 2208 event.ccode = xhci_address_slot(xhci, slotid, trb.parameter, 2209 trb.control & TRB_CR_BSR); 2210 } 2211 break; 2212 case CR_CONFIGURE_ENDPOINT: 2213 slotid = xhci_get_slot(xhci, &event, &trb); 2214 if (slotid) { 2215 event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter, 2216 trb.control & TRB_CR_DC); 2217 } 2218 break; 2219 case CR_EVALUATE_CONTEXT: 2220 slotid = xhci_get_slot(xhci, &event, &trb); 2221 if (slotid) { 2222 event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter); 2223 } 2224 break; 2225 case CR_STOP_ENDPOINT: 2226 slotid = xhci_get_slot(xhci, &event, &trb); 2227 if (slotid) { 2228 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) 2229 & TRB_CR_EPID_MASK; 2230 event.ccode = xhci_stop_ep(xhci, slotid, epid); 2231 } 2232 break; 2233 case CR_RESET_ENDPOINT: 2234 slotid = xhci_get_slot(xhci, &event, &trb); 2235 if (slotid) { 2236 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) 2237 & TRB_CR_EPID_MASK; 2238 event.ccode = xhci_reset_ep(xhci, slotid, epid); 2239 } 2240 break; 2241 case CR_SET_TR_DEQUEUE: 2242 slotid = xhci_get_slot(xhci, &event, &trb); 2243 if (slotid) { 2244 unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) 2245 & TRB_CR_EPID_MASK; 2246 event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid, 2247 trb.parameter); 2248 } 2249 break; 2250 case CR_RESET_DEVICE: 2251 slotid = xhci_get_slot(xhci, &event, &trb); 2252 if (slotid) { 2253 event.ccode = xhci_reset_slot(xhci, slotid); 2254 } 2255 break; 2256 case CR_GET_PORT_BANDWIDTH: 2257 event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter); 2258 break; 2259 case CR_VENDOR_VIA_CHALLENGE_RESPONSE: 2260 xhci_via_challenge(xhci, trb.parameter); 2261 break; 2262 case CR_VENDOR_NEC_FIRMWARE_REVISION: 2263 event.type = 48; /* NEC reply */ 2264 event.length = 0x3025; 2265 break; 2266 case CR_VENDOR_NEC_CHALLENGE_RESPONSE: 2267 { 2268 uint32_t chi = trb.parameter >> 32; 2269 uint32_t clo = trb.parameter; 2270 uint32_t val = xhci_nec_challenge(chi, clo); 2271 event.length = val & 0xFFFF; 2272 event.epid = val >> 16; 2273 slotid = val >> 24; 2274 event.type = 48; /* NEC reply */ 2275 } 2276 break; 2277 default: 2278 fprintf(stderr, "xhci: unimplemented command %d\n", type); 2279 event.ccode = CC_TRB_ERROR; 2280 break; 2281 } 2282 event.slotid = slotid; 2283 xhci_event(xhci, &event, 0); 2284 } 2285 } 2286 2287 static void xhci_update_port(XHCIState *xhci, XHCIPort *port, int is_detach) 2288 { 2289 port->portsc = PORTSC_PP; 2290 if (port->uport->dev && port->uport->dev->attached && !is_detach && 2291 (1 << port->uport->dev->speed) & port->speedmask) { 2292 port->portsc |= PORTSC_CCS; 2293 switch (port->uport->dev->speed) { 2294 case USB_SPEED_LOW: 2295 port->portsc |= PORTSC_SPEED_LOW; 2296 break; 2297 case USB_SPEED_FULL: 2298 port->portsc |= PORTSC_SPEED_FULL; 2299 break; 2300 case USB_SPEED_HIGH: 2301 port->portsc |= PORTSC_SPEED_HIGH; 2302 break; 2303 case USB_SPEED_SUPER: 2304 port->portsc |= PORTSC_SPEED_SUPER; 2305 break; 2306 } 2307 } 2308 2309 if (xhci_running(xhci)) { 2310 port->portsc |= PORTSC_CSC; 2311 XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, 2312 port->portnr << 24}; 2313 xhci_event(xhci, &ev, 0); 2314 DPRINTF("xhci: port change event for port %d\n", port->portnr); 2315 } 2316 } 2317 2318 static void xhci_reset(DeviceState *dev) 2319 { 2320 XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev.qdev, dev); 2321 int i; 2322 2323 trace_usb_xhci_reset(); 2324 if (!(xhci->usbsts & USBSTS_HCH)) { 2325 fprintf(stderr, "xhci: reset while running!\n"); 2326 } 2327 2328 xhci->usbcmd = 0; 2329 xhci->usbsts = USBSTS_HCH; 2330 xhci->dnctrl = 0; 2331 xhci->crcr_low = 0; 2332 xhci->crcr_high = 0; 2333 xhci->dcbaap_low = 0; 2334 xhci->dcbaap_high = 0; 2335 xhci->config = 0; 2336 xhci->devaddr = 2; 2337 2338 for (i = 0; i < MAXSLOTS; i++) { 2339 xhci_disable_slot(xhci, i+1); 2340 } 2341 2342 for (i = 0; i < xhci->numports; i++) { 2343 xhci_update_port(xhci, xhci->ports + i, 0); 2344 } 2345 2346 for (i = 0; i < MAXINTRS; i++) { 2347 xhci->intr[i].iman = 0; 2348 xhci->intr[i].imod = 0; 2349 xhci->intr[i].erstsz = 0; 2350 xhci->intr[i].erstba_low = 0; 2351 xhci->intr[i].erstba_high = 0; 2352 xhci->intr[i].erdp_low = 0; 2353 xhci->intr[i].erdp_high = 0; 2354 xhci->intr[i].msix_used = 0; 2355 2356 xhci->intr[i].er_ep_idx = 0; 2357 xhci->intr[i].er_pcs = 1; 2358 xhci->intr[i].er_full = 0; 2359 xhci->intr[i].ev_buffer_put = 0; 2360 xhci->intr[i].ev_buffer_get = 0; 2361 } 2362 2363 xhci->mfindex_start = qemu_get_clock_ns(vm_clock); 2364 xhci_mfwrap_update(xhci); 2365 } 2366 2367 static uint64_t xhci_cap_read(void *ptr, target_phys_addr_t reg, unsigned size) 2368 { 2369 XHCIState *xhci = ptr; 2370 uint32_t ret; 2371 2372 switch (reg) { 2373 case 0x00: /* HCIVERSION, CAPLENGTH */ 2374 ret = 0x01000000 | LEN_CAP; 2375 break; 2376 case 0x04: /* HCSPARAMS 1 */ 2377 ret = ((xhci->numports_2+xhci->numports_3)<<24) 2378 | (MAXINTRS<<8) | MAXSLOTS; 2379 break; 2380 case 0x08: /* HCSPARAMS 2 */ 2381 ret = 0x0000000f; 2382 break; 2383 case 0x0c: /* HCSPARAMS 3 */ 2384 ret = 0x00000000; 2385 break; 2386 case 0x10: /* HCCPARAMS */ 2387 if (sizeof(dma_addr_t) == 4) { 2388 ret = 0x00081000; 2389 } else { 2390 ret = 0x00081001; 2391 } 2392 break; 2393 case 0x14: /* DBOFF */ 2394 ret = OFF_DOORBELL; 2395 break; 2396 case 0x18: /* RTSOFF */ 2397 ret = OFF_RUNTIME; 2398 break; 2399 2400 /* extended capabilities */ 2401 case 0x20: /* Supported Protocol:00 */ 2402 ret = 0x02000402; /* USB 2.0 */ 2403 break; 2404 case 0x24: /* Supported Protocol:04 */ 2405 ret = 0x20425455; /* "USB " */ 2406 break; 2407 case 0x28: /* Supported Protocol:08 */ 2408 ret = 0x00000001 | (xhci->numports_2<<8); 2409 break; 2410 case 0x2c: /* Supported Protocol:0c */ 2411 ret = 0x00000000; /* reserved */ 2412 break; 2413 case 0x30: /* Supported Protocol:00 */ 2414 ret = 0x03000002; /* USB 3.0 */ 2415 break; 2416 case 0x34: /* Supported Protocol:04 */ 2417 ret = 0x20425455; /* "USB " */ 2418 break; 2419 case 0x38: /* Supported Protocol:08 */ 2420 ret = 0x00000000 | (xhci->numports_2+1) | (xhci->numports_3<<8); 2421 break; 2422 case 0x3c: /* Supported Protocol:0c */ 2423 ret = 0x00000000; /* reserved */ 2424 break; 2425 default: 2426 fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", (int)reg); 2427 ret = 0; 2428 } 2429 2430 trace_usb_xhci_cap_read(reg, ret); 2431 return ret; 2432 } 2433 2434 static uint64_t xhci_port_read(void *ptr, target_phys_addr_t reg, unsigned size) 2435 { 2436 XHCIPort *port = ptr; 2437 uint32_t ret; 2438 2439 switch (reg) { 2440 case 0x00: /* PORTSC */ 2441 ret = port->portsc; 2442 break; 2443 case 0x04: /* PORTPMSC */ 2444 case 0x08: /* PORTLI */ 2445 ret = 0; 2446 break; 2447 case 0x0c: /* reserved */ 2448 default: 2449 fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n", 2450 port->portnr, (uint32_t)reg); 2451 ret = 0; 2452 } 2453 2454 trace_usb_xhci_port_read(port->portnr, reg, ret); 2455 return ret; 2456 } 2457 2458 static void xhci_port_write(void *ptr, target_phys_addr_t reg, 2459 uint64_t val, unsigned size) 2460 { 2461 XHCIPort *port = ptr; 2462 uint32_t portsc; 2463 2464 trace_usb_xhci_port_write(port->portnr, reg, val); 2465 2466 switch (reg) { 2467 case 0x00: /* PORTSC */ 2468 portsc = port->portsc; 2469 /* write-1-to-clear bits*/ 2470 portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC| 2471 PORTSC_PRC|PORTSC_PLC|PORTSC_CEC)); 2472 if (val & PORTSC_LWS) { 2473 /* overwrite PLS only when LWS=1 */ 2474 portsc &= ~(PORTSC_PLS_MASK << PORTSC_PLS_SHIFT); 2475 portsc |= val & (PORTSC_PLS_MASK << PORTSC_PLS_SHIFT); 2476 } 2477 /* read/write bits */ 2478 portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE); 2479 portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE)); 2480 /* write-1-to-start bits */ 2481 if (val & PORTSC_PR) { 2482 DPRINTF("xhci: port %d reset\n", port); 2483 usb_device_reset(port->uport->dev); 2484 portsc |= PORTSC_PRC | PORTSC_PED; 2485 } 2486 port->portsc = portsc; 2487 break; 2488 case 0x04: /* PORTPMSC */ 2489 case 0x08: /* PORTLI */ 2490 default: 2491 fprintf(stderr, "xhci_port_write (port %d): reg 0x%x unimplemented\n", 2492 port->portnr, (uint32_t)reg); 2493 } 2494 } 2495 2496 static uint64_t xhci_oper_read(void *ptr, target_phys_addr_t reg, unsigned size) 2497 { 2498 XHCIState *xhci = ptr; 2499 uint32_t ret; 2500 2501 switch (reg) { 2502 case 0x00: /* USBCMD */ 2503 ret = xhci->usbcmd; 2504 break; 2505 case 0x04: /* USBSTS */ 2506 ret = xhci->usbsts; 2507 break; 2508 case 0x08: /* PAGESIZE */ 2509 ret = 1; /* 4KiB */ 2510 break; 2511 case 0x14: /* DNCTRL */ 2512 ret = xhci->dnctrl; 2513 break; 2514 case 0x18: /* CRCR low */ 2515 ret = xhci->crcr_low & ~0xe; 2516 break; 2517 case 0x1c: /* CRCR high */ 2518 ret = xhci->crcr_high; 2519 break; 2520 case 0x30: /* DCBAAP low */ 2521 ret = xhci->dcbaap_low; 2522 break; 2523 case 0x34: /* DCBAAP high */ 2524 ret = xhci->dcbaap_high; 2525 break; 2526 case 0x38: /* CONFIG */ 2527 ret = xhci->config; 2528 break; 2529 default: 2530 fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", (int)reg); 2531 ret = 0; 2532 } 2533 2534 trace_usb_xhci_oper_read(reg, ret); 2535 return ret; 2536 } 2537 2538 static void xhci_oper_write(void *ptr, target_phys_addr_t reg, 2539 uint64_t val, unsigned size) 2540 { 2541 XHCIState *xhci = ptr; 2542 2543 trace_usb_xhci_oper_write(reg, val); 2544 2545 switch (reg) { 2546 case 0x00: /* USBCMD */ 2547 if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) { 2548 xhci_run(xhci); 2549 } else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) { 2550 xhci_stop(xhci); 2551 } 2552 xhci->usbcmd = val & 0xc0f; 2553 xhci_mfwrap_update(xhci); 2554 if (val & USBCMD_HCRST) { 2555 xhci_reset(&xhci->pci_dev.qdev); 2556 } 2557 xhci_intx_update(xhci); 2558 break; 2559 2560 case 0x04: /* USBSTS */ 2561 /* these bits are write-1-to-clear */ 2562 xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE)); 2563 xhci_intx_update(xhci); 2564 break; 2565 2566 case 0x14: /* DNCTRL */ 2567 xhci->dnctrl = val & 0xffff; 2568 break; 2569 case 0x18: /* CRCR low */ 2570 xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR); 2571 break; 2572 case 0x1c: /* CRCR high */ 2573 xhci->crcr_high = val; 2574 if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) { 2575 XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED}; 2576 xhci->crcr_low &= ~CRCR_CRR; 2577 xhci_event(xhci, &event, 0); 2578 DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low); 2579 } else { 2580 dma_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val); 2581 xhci_ring_init(xhci, &xhci->cmd_ring, base); 2582 } 2583 xhci->crcr_low &= ~(CRCR_CA | CRCR_CS); 2584 break; 2585 case 0x30: /* DCBAAP low */ 2586 xhci->dcbaap_low = val & 0xffffffc0; 2587 break; 2588 case 0x34: /* DCBAAP high */ 2589 xhci->dcbaap_high = val; 2590 break; 2591 case 0x38: /* CONFIG */ 2592 xhci->config = val & 0xff; 2593 break; 2594 default: 2595 fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", (int)reg); 2596 } 2597 } 2598 2599 static uint64_t xhci_runtime_read(void *ptr, target_phys_addr_t reg, 2600 unsigned size) 2601 { 2602 XHCIState *xhci = ptr; 2603 uint32_t ret = 0; 2604 2605 if (reg < 0x20) { 2606 switch (reg) { 2607 case 0x00: /* MFINDEX */ 2608 ret = xhci_mfindex_get(xhci) & 0x3fff; 2609 break; 2610 default: 2611 fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n", 2612 (int)reg); 2613 break; 2614 } 2615 } else { 2616 int v = (reg - 0x20) / 0x20; 2617 XHCIInterrupter *intr = &xhci->intr[v]; 2618 switch (reg & 0x1f) { 2619 case 0x00: /* IMAN */ 2620 ret = intr->iman; 2621 break; 2622 case 0x04: /* IMOD */ 2623 ret = intr->imod; 2624 break; 2625 case 0x08: /* ERSTSZ */ 2626 ret = intr->erstsz; 2627 break; 2628 case 0x10: /* ERSTBA low */ 2629 ret = intr->erstba_low; 2630 break; 2631 case 0x14: /* ERSTBA high */ 2632 ret = intr->erstba_high; 2633 break; 2634 case 0x18: /* ERDP low */ 2635 ret = intr->erdp_low; 2636 break; 2637 case 0x1c: /* ERDP high */ 2638 ret = intr->erdp_high; 2639 break; 2640 } 2641 } 2642 2643 trace_usb_xhci_runtime_read(reg, ret); 2644 return ret; 2645 } 2646 2647 static void xhci_runtime_write(void *ptr, target_phys_addr_t reg, 2648 uint64_t val, unsigned size) 2649 { 2650 XHCIState *xhci = ptr; 2651 int v = (reg - 0x20) / 0x20; 2652 XHCIInterrupter *intr = &xhci->intr[v]; 2653 trace_usb_xhci_runtime_write(reg, val); 2654 2655 if (reg < 0x20) { 2656 fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", (int)reg); 2657 return; 2658 } 2659 2660 switch (reg & 0x1f) { 2661 case 0x00: /* IMAN */ 2662 if (val & IMAN_IP) { 2663 intr->iman &= ~IMAN_IP; 2664 } 2665 intr->iman &= ~IMAN_IE; 2666 intr->iman |= val & IMAN_IE; 2667 if (v == 0) { 2668 xhci_intx_update(xhci); 2669 } 2670 xhci_msix_update(xhci, v); 2671 break; 2672 case 0x04: /* IMOD */ 2673 intr->imod = val; 2674 break; 2675 case 0x08: /* ERSTSZ */ 2676 intr->erstsz = val & 0xffff; 2677 break; 2678 case 0x10: /* ERSTBA low */ 2679 /* XXX NEC driver bug: it doesn't align this to 64 bytes 2680 intr->erstba_low = val & 0xffffffc0; */ 2681 intr->erstba_low = val & 0xfffffff0; 2682 break; 2683 case 0x14: /* ERSTBA high */ 2684 intr->erstba_high = val; 2685 xhci_er_reset(xhci, v); 2686 break; 2687 case 0x18: /* ERDP low */ 2688 if (val & ERDP_EHB) { 2689 intr->erdp_low &= ~ERDP_EHB; 2690 } 2691 intr->erdp_low = (val & ~ERDP_EHB) | (intr->erdp_low & ERDP_EHB); 2692 break; 2693 case 0x1c: /* ERDP high */ 2694 intr->erdp_high = val; 2695 xhci_events_update(xhci, v); 2696 break; 2697 default: 2698 fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", 2699 (int)reg); 2700 } 2701 } 2702 2703 static uint64_t xhci_doorbell_read(void *ptr, target_phys_addr_t reg, 2704 unsigned size) 2705 { 2706 /* doorbells always read as 0 */ 2707 trace_usb_xhci_doorbell_read(reg, 0); 2708 return 0; 2709 } 2710 2711 static void xhci_doorbell_write(void *ptr, target_phys_addr_t reg, 2712 uint64_t val, unsigned size) 2713 { 2714 XHCIState *xhci = ptr; 2715 2716 trace_usb_xhci_doorbell_write(reg, val); 2717 2718 if (!xhci_running(xhci)) { 2719 fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n"); 2720 return; 2721 } 2722 2723 reg >>= 2; 2724 2725 if (reg == 0) { 2726 if (val == 0) { 2727 xhci_process_commands(xhci); 2728 } else { 2729 fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n", 2730 (uint32_t)val); 2731 } 2732 } else { 2733 if (reg > MAXSLOTS) { 2734 fprintf(stderr, "xhci: bad doorbell %d\n", (int)reg); 2735 } else if (val > 31) { 2736 fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n", 2737 (int)reg, (uint32_t)val); 2738 } else { 2739 xhci_kick_ep(xhci, reg, val); 2740 } 2741 } 2742 } 2743 2744 static const MemoryRegionOps xhci_cap_ops = { 2745 .read = xhci_cap_read, 2746 .valid.min_access_size = 1, 2747 .valid.max_access_size = 4, 2748 .impl.min_access_size = 4, 2749 .impl.max_access_size = 4, 2750 .endianness = DEVICE_LITTLE_ENDIAN, 2751 }; 2752 2753 static const MemoryRegionOps xhci_oper_ops = { 2754 .read = xhci_oper_read, 2755 .write = xhci_oper_write, 2756 .valid.min_access_size = 4, 2757 .valid.max_access_size = 4, 2758 .endianness = DEVICE_LITTLE_ENDIAN, 2759 }; 2760 2761 static const MemoryRegionOps xhci_port_ops = { 2762 .read = xhci_port_read, 2763 .write = xhci_port_write, 2764 .valid.min_access_size = 4, 2765 .valid.max_access_size = 4, 2766 .endianness = DEVICE_LITTLE_ENDIAN, 2767 }; 2768 2769 static const MemoryRegionOps xhci_runtime_ops = { 2770 .read = xhci_runtime_read, 2771 .write = xhci_runtime_write, 2772 .valid.min_access_size = 4, 2773 .valid.max_access_size = 4, 2774 .endianness = DEVICE_LITTLE_ENDIAN, 2775 }; 2776 2777 static const MemoryRegionOps xhci_doorbell_ops = { 2778 .read = xhci_doorbell_read, 2779 .write = xhci_doorbell_write, 2780 .valid.min_access_size = 4, 2781 .valid.max_access_size = 4, 2782 .endianness = DEVICE_LITTLE_ENDIAN, 2783 }; 2784 2785 static void xhci_attach(USBPort *usbport) 2786 { 2787 XHCIState *xhci = usbport->opaque; 2788 XHCIPort *port = xhci_lookup_port(xhci, usbport); 2789 2790 xhci_update_port(xhci, port, 0); 2791 } 2792 2793 static void xhci_detach(USBPort *usbport) 2794 { 2795 XHCIState *xhci = usbport->opaque; 2796 XHCIPort *port = xhci_lookup_port(xhci, usbport); 2797 2798 xhci_update_port(xhci, port, 1); 2799 } 2800 2801 static void xhci_wakeup(USBPort *usbport) 2802 { 2803 XHCIState *xhci = usbport->opaque; 2804 XHCIPort *port = xhci_lookup_port(xhci, usbport); 2805 XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, 2806 port->portnr << 24}; 2807 uint32_t pls; 2808 2809 pls = (port->portsc >> PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK; 2810 if (pls != 3) { 2811 return; 2812 } 2813 port->portsc |= 0xf << PORTSC_PLS_SHIFT; 2814 if (port->portsc & PORTSC_PLC) { 2815 return; 2816 } 2817 port->portsc |= PORTSC_PLC; 2818 xhci_event(xhci, &ev, 0); 2819 } 2820 2821 static void xhci_complete(USBPort *port, USBPacket *packet) 2822 { 2823 XHCITransfer *xfer = container_of(packet, XHCITransfer, packet); 2824 2825 xhci_complete_packet(xfer, packet->result); 2826 xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid); 2827 } 2828 2829 static void xhci_child_detach(USBPort *uport, USBDevice *child) 2830 { 2831 USBBus *bus = usb_bus_from_device(child); 2832 XHCIState *xhci = container_of(bus, XHCIState, bus); 2833 int i; 2834 2835 for (i = 0; i < MAXSLOTS; i++) { 2836 if (xhci->slots[i].uport == uport) { 2837 xhci->slots[i].uport = NULL; 2838 } 2839 } 2840 } 2841 2842 static USBPortOps xhci_uport_ops = { 2843 .attach = xhci_attach, 2844 .detach = xhci_detach, 2845 .wakeup = xhci_wakeup, 2846 .complete = xhci_complete, 2847 .child_detach = xhci_child_detach, 2848 }; 2849 2850 static int xhci_find_slotid(XHCIState *xhci, USBDevice *dev) 2851 { 2852 XHCISlot *slot; 2853 int slotid; 2854 2855 for (slotid = 1; slotid <= MAXSLOTS; slotid++) { 2856 slot = &xhci->slots[slotid-1]; 2857 if (slot->devaddr == dev->addr) { 2858 return slotid; 2859 } 2860 } 2861 return 0; 2862 } 2863 2864 static int xhci_find_epid(USBEndpoint *ep) 2865 { 2866 if (ep->nr == 0) { 2867 return 1; 2868 } 2869 if (ep->pid == USB_TOKEN_IN) { 2870 return ep->nr * 2 + 1; 2871 } else { 2872 return ep->nr * 2; 2873 } 2874 } 2875 2876 static void xhci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep) 2877 { 2878 XHCIState *xhci = container_of(bus, XHCIState, bus); 2879 int slotid; 2880 2881 DPRINTF("%s\n", __func__); 2882 slotid = xhci_find_slotid(xhci, ep->dev); 2883 if (slotid == 0 || !xhci->slots[slotid-1].enabled) { 2884 DPRINTF("%s: oops, no slot for dev %d\n", __func__, ep->dev->addr); 2885 return; 2886 } 2887 xhci_kick_ep(xhci, slotid, xhci_find_epid(ep)); 2888 } 2889 2890 static USBBusOps xhci_bus_ops = { 2891 .wakeup_endpoint = xhci_wakeup_endpoint, 2892 }; 2893 2894 static void usb_xhci_init(XHCIState *xhci, DeviceState *dev) 2895 { 2896 XHCIPort *port; 2897 int i, usbports, speedmask; 2898 2899 xhci->usbsts = USBSTS_HCH; 2900 2901 if (xhci->numports_2 > MAXPORTS_2) { 2902 xhci->numports_2 = MAXPORTS_2; 2903 } 2904 if (xhci->numports_3 > MAXPORTS_3) { 2905 xhci->numports_3 = MAXPORTS_3; 2906 } 2907 usbports = MAX(xhci->numports_2, xhci->numports_3); 2908 xhci->numports = xhci->numports_2 + xhci->numports_3; 2909 2910 usb_bus_new(&xhci->bus, &xhci_bus_ops, &xhci->pci_dev.qdev); 2911 2912 for (i = 0; i < usbports; i++) { 2913 speedmask = 0; 2914 if (i < xhci->numports_2) { 2915 port = &xhci->ports[i]; 2916 port->portnr = i + 1; 2917 port->uport = &xhci->uports[i]; 2918 port->speedmask = 2919 USB_SPEED_MASK_LOW | 2920 USB_SPEED_MASK_FULL | 2921 USB_SPEED_MASK_HIGH; 2922 snprintf(port->name, sizeof(port->name), "usb2 port #%d", i+1); 2923 speedmask |= port->speedmask; 2924 } 2925 if (i < xhci->numports_3) { 2926 port = &xhci->ports[i + xhci->numports_2]; 2927 port->portnr = i + 1 + xhci->numports_2; 2928 port->uport = &xhci->uports[i]; 2929 port->speedmask = USB_SPEED_MASK_SUPER; 2930 snprintf(port->name, sizeof(port->name), "usb3 port #%d", i+1); 2931 speedmask |= port->speedmask; 2932 } 2933 usb_register_port(&xhci->bus, &xhci->uports[i], xhci, i, 2934 &xhci_uport_ops, speedmask); 2935 } 2936 } 2937 2938 static int usb_xhci_initfn(struct PCIDevice *dev) 2939 { 2940 int i, ret; 2941 2942 XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev); 2943 2944 xhci->pci_dev.config[PCI_CLASS_PROG] = 0x30; /* xHCI */ 2945 xhci->pci_dev.config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */ 2946 xhci->pci_dev.config[PCI_CACHE_LINE_SIZE] = 0x10; 2947 xhci->pci_dev.config[0x60] = 0x30; /* release number */ 2948 2949 usb_xhci_init(xhci, &dev->qdev); 2950 2951 xhci->mfwrap_timer = qemu_new_timer_ns(vm_clock, xhci_mfwrap_timer, xhci); 2952 2953 xhci->irq = xhci->pci_dev.irq[0]; 2954 2955 memory_region_init(&xhci->mem, "xhci", LEN_REGS); 2956 memory_region_init_io(&xhci->mem_cap, &xhci_cap_ops, xhci, 2957 "capabilities", LEN_CAP); 2958 memory_region_init_io(&xhci->mem_oper, &xhci_oper_ops, xhci, 2959 "operational", 0x400); 2960 memory_region_init_io(&xhci->mem_runtime, &xhci_runtime_ops, xhci, 2961 "runtime", LEN_RUNTIME); 2962 memory_region_init_io(&xhci->mem_doorbell, &xhci_doorbell_ops, xhci, 2963 "doorbell", LEN_DOORBELL); 2964 2965 memory_region_add_subregion(&xhci->mem, 0, &xhci->mem_cap); 2966 memory_region_add_subregion(&xhci->mem, OFF_OPER, &xhci->mem_oper); 2967 memory_region_add_subregion(&xhci->mem, OFF_RUNTIME, &xhci->mem_runtime); 2968 memory_region_add_subregion(&xhci->mem, OFF_DOORBELL, &xhci->mem_doorbell); 2969 2970 for (i = 0; i < xhci->numports; i++) { 2971 XHCIPort *port = &xhci->ports[i]; 2972 uint32_t offset = OFF_OPER + 0x400 + 0x10 * i; 2973 port->xhci = xhci; 2974 memory_region_init_io(&port->mem, &xhci_port_ops, port, 2975 port->name, 0x10); 2976 memory_region_add_subregion(&xhci->mem, offset, &port->mem); 2977 } 2978 2979 pci_register_bar(&xhci->pci_dev, 0, 2980 PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64, 2981 &xhci->mem); 2982 2983 ret = pcie_cap_init(&xhci->pci_dev, 0xa0, PCI_EXP_TYPE_ENDPOINT, 0); 2984 assert(ret >= 0); 2985 2986 if (xhci->flags & (1 << XHCI_FLAG_USE_MSI)) { 2987 msi_init(&xhci->pci_dev, 0x70, MAXINTRS, true, false); 2988 } 2989 if (xhci->flags & (1 << XHCI_FLAG_USE_MSI_X)) { 2990 msix_init(&xhci->pci_dev, MAXINTRS, 2991 &xhci->mem, 0, OFF_MSIX_TABLE, 2992 &xhci->mem, 0, OFF_MSIX_PBA, 2993 0x90); 2994 } 2995 2996 return 0; 2997 } 2998 2999 static const VMStateDescription vmstate_xhci = { 3000 .name = "xhci", 3001 .unmigratable = 1, 3002 }; 3003 3004 static Property xhci_properties[] = { 3005 DEFINE_PROP_BIT("msi", XHCIState, flags, XHCI_FLAG_USE_MSI, true), 3006 DEFINE_PROP_BIT("msix", XHCIState, flags, XHCI_FLAG_USE_MSI_X, true), 3007 DEFINE_PROP_UINT32("p2", XHCIState, numports_2, 4), 3008 DEFINE_PROP_UINT32("p3", XHCIState, numports_3, 4), 3009 DEFINE_PROP_END_OF_LIST(), 3010 }; 3011 3012 static void xhci_class_init(ObjectClass *klass, void *data) 3013 { 3014 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 3015 DeviceClass *dc = DEVICE_CLASS(klass); 3016 3017 dc->vmsd = &vmstate_xhci; 3018 dc->props = xhci_properties; 3019 dc->reset = xhci_reset; 3020 k->init = usb_xhci_initfn; 3021 k->vendor_id = PCI_VENDOR_ID_NEC; 3022 k->device_id = PCI_DEVICE_ID_NEC_UPD720200; 3023 k->class_id = PCI_CLASS_SERIAL_USB; 3024 k->revision = 0x03; 3025 k->is_express = 1; 3026 } 3027 3028 static TypeInfo xhci_info = { 3029 .name = "nec-usb-xhci", 3030 .parent = TYPE_PCI_DEVICE, 3031 .instance_size = sizeof(XHCIState), 3032 .class_init = xhci_class_init, 3033 }; 3034 3035 static void xhci_register_types(void) 3036 { 3037 type_register_static(&xhci_info); 3038 } 3039 3040 type_init(xhci_register_types) 3041