1 /* 2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics, 3 * USB2.0 OTG compliant core used in various chips. 4 * 5 * Copyright (C) 2008 Nokia Corporation 6 * Written by Andrzej Zaborowski <andrew@openedhand.com> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 or 11 * (at your option) version 3 of the License. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 * 21 * Only host-mode and non-DMA accesses are currently supported. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu-common.h" 25 #include "qemu/timer.h" 26 #include "hw/usb.h" 27 #include "hw/irq.h" 28 #include "hw/hw.h" 29 30 /* Common USB registers */ 31 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */ 32 #define MUSB_HDRC_POWER 0x01 /* 8-bit */ 33 34 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */ 35 #define MUSB_HDRC_INTRRX 0x04 36 #define MUSB_HDRC_INTRTXE 0x06 37 #define MUSB_HDRC_INTRRXE 0x08 38 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */ 39 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */ 40 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */ 41 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */ 42 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */ 43 44 /* Per-EP registers in indexed mode */ 45 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */ 46 47 /* EP FIFOs */ 48 #define MUSB_HDRC_FIFO 0x20 49 50 /* Additional Control Registers */ 51 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */ 52 53 /* These are indexed */ 54 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */ 55 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */ 56 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */ 57 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */ 58 59 /* Some more registers */ 60 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */ 61 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */ 62 63 /* Added in HDRC 1.9(?) & MHDRC 1.4 */ 64 /* ULPI pass-through */ 65 #define MUSB_HDRC_ULPI_VBUSCTL 0x70 66 #define MUSB_HDRC_ULPI_REGDATA 0x74 67 #define MUSB_HDRC_ULPI_REGADDR 0x75 68 #define MUSB_HDRC_ULPI_REGCTL 0x76 69 70 /* Extended config & PHY control */ 71 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */ 72 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */ 73 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */ 74 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */ 75 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */ 76 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */ 77 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */ 78 79 /* Per-EP BUSCTL registers */ 80 #define MUSB_HDRC_BUSCTL 0x80 81 82 /* Per-EP registers in flat mode */ 83 #define MUSB_HDRC_EP 0x100 84 85 /* offsets to registers in flat model */ 86 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */ 87 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */ 88 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */ 89 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */ 90 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */ 91 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */ 92 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */ 93 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */ 94 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */ 95 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */ 96 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */ 97 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */ 98 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */ 99 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */ 100 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */ 101 102 /* "Bus control" registers */ 103 #define MUSB_HDRC_TXFUNCADDR 0x00 104 #define MUSB_HDRC_TXHUBADDR 0x02 105 #define MUSB_HDRC_TXHUBPORT 0x03 106 107 #define MUSB_HDRC_RXFUNCADDR 0x04 108 #define MUSB_HDRC_RXHUBADDR 0x06 109 #define MUSB_HDRC_RXHUBPORT 0x07 110 111 /* 112 * MUSBHDRC Register bit masks 113 */ 114 115 /* POWER */ 116 #define MGC_M_POWER_ISOUPDATE 0x80 117 #define MGC_M_POWER_SOFTCONN 0x40 118 #define MGC_M_POWER_HSENAB 0x20 119 #define MGC_M_POWER_HSMODE 0x10 120 #define MGC_M_POWER_RESET 0x08 121 #define MGC_M_POWER_RESUME 0x04 122 #define MGC_M_POWER_SUSPENDM 0x02 123 #define MGC_M_POWER_ENSUSPEND 0x01 124 125 /* INTRUSB */ 126 #define MGC_M_INTR_SUSPEND 0x01 127 #define MGC_M_INTR_RESUME 0x02 128 #define MGC_M_INTR_RESET 0x04 129 #define MGC_M_INTR_BABBLE 0x04 130 #define MGC_M_INTR_SOF 0x08 131 #define MGC_M_INTR_CONNECT 0x10 132 #define MGC_M_INTR_DISCONNECT 0x20 133 #define MGC_M_INTR_SESSREQ 0x40 134 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */ 135 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */ 136 137 /* DEVCTL */ 138 #define MGC_M_DEVCTL_BDEVICE 0x80 139 #define MGC_M_DEVCTL_FSDEV 0x40 140 #define MGC_M_DEVCTL_LSDEV 0x20 141 #define MGC_M_DEVCTL_VBUS 0x18 142 #define MGC_S_DEVCTL_VBUS 3 143 #define MGC_M_DEVCTL_HM 0x04 144 #define MGC_M_DEVCTL_HR 0x02 145 #define MGC_M_DEVCTL_SESSION 0x01 146 147 /* TESTMODE */ 148 #define MGC_M_TEST_FORCE_HOST 0x80 149 #define MGC_M_TEST_FIFO_ACCESS 0x40 150 #define MGC_M_TEST_FORCE_FS 0x20 151 #define MGC_M_TEST_FORCE_HS 0x10 152 #define MGC_M_TEST_PACKET 0x08 153 #define MGC_M_TEST_K 0x04 154 #define MGC_M_TEST_J 0x02 155 #define MGC_M_TEST_SE0_NAK 0x01 156 157 /* CSR0 */ 158 #define MGC_M_CSR0_FLUSHFIFO 0x0100 159 #define MGC_M_CSR0_TXPKTRDY 0x0002 160 #define MGC_M_CSR0_RXPKTRDY 0x0001 161 162 /* CSR0 in Peripheral mode */ 163 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080 164 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040 165 #define MGC_M_CSR0_P_SENDSTALL 0x0020 166 #define MGC_M_CSR0_P_SETUPEND 0x0010 167 #define MGC_M_CSR0_P_DATAEND 0x0008 168 #define MGC_M_CSR0_P_SENTSTALL 0x0004 169 170 /* CSR0 in Host mode */ 171 #define MGC_M_CSR0_H_NO_PING 0x0800 172 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */ 173 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */ 174 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080 175 #define MGC_M_CSR0_H_STATUSPKT 0x0040 176 #define MGC_M_CSR0_H_REQPKT 0x0020 177 #define MGC_M_CSR0_H_ERROR 0x0010 178 #define MGC_M_CSR0_H_SETUPPKT 0x0008 179 #define MGC_M_CSR0_H_RXSTALL 0x0004 180 181 /* CONFIGDATA */ 182 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */ 183 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */ 184 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20 185 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */ 186 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */ 187 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */ 188 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */ 189 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */ 190 191 /* TXCSR in Peripheral and Host mode */ 192 #define MGC_M_TXCSR_AUTOSET 0x8000 193 #define MGC_M_TXCSR_ISO 0x4000 194 #define MGC_M_TXCSR_MODE 0x2000 195 #define MGC_M_TXCSR_DMAENAB 0x1000 196 #define MGC_M_TXCSR_FRCDATATOG 0x0800 197 #define MGC_M_TXCSR_DMAMODE 0x0400 198 #define MGC_M_TXCSR_CLRDATATOG 0x0040 199 #define MGC_M_TXCSR_FLUSHFIFO 0x0008 200 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002 201 #define MGC_M_TXCSR_TXPKTRDY 0x0001 202 203 /* TXCSR in Peripheral mode */ 204 #define MGC_M_TXCSR_P_INCOMPTX 0x0080 205 #define MGC_M_TXCSR_P_SENTSTALL 0x0020 206 #define MGC_M_TXCSR_P_SENDSTALL 0x0010 207 #define MGC_M_TXCSR_P_UNDERRUN 0x0004 208 209 /* TXCSR in Host mode */ 210 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200 211 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100 212 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080 213 #define MGC_M_TXCSR_H_RXSTALL 0x0020 214 #define MGC_M_TXCSR_H_ERROR 0x0004 215 216 /* RXCSR in Peripheral and Host mode */ 217 #define MGC_M_RXCSR_AUTOCLEAR 0x8000 218 #define MGC_M_RXCSR_DMAENAB 0x2000 219 #define MGC_M_RXCSR_DISNYET 0x1000 220 #define MGC_M_RXCSR_DMAMODE 0x0800 221 #define MGC_M_RXCSR_INCOMPRX 0x0100 222 #define MGC_M_RXCSR_CLRDATATOG 0x0080 223 #define MGC_M_RXCSR_FLUSHFIFO 0x0010 224 #define MGC_M_RXCSR_DATAERROR 0x0008 225 #define MGC_M_RXCSR_FIFOFULL 0x0002 226 #define MGC_M_RXCSR_RXPKTRDY 0x0001 227 228 /* RXCSR in Peripheral mode */ 229 #define MGC_M_RXCSR_P_ISO 0x4000 230 #define MGC_M_RXCSR_P_SENTSTALL 0x0040 231 #define MGC_M_RXCSR_P_SENDSTALL 0x0020 232 #define MGC_M_RXCSR_P_OVERRUN 0x0004 233 234 /* RXCSR in Host mode */ 235 #define MGC_M_RXCSR_H_AUTOREQ 0x4000 236 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400 237 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200 238 #define MGC_M_RXCSR_H_RXSTALL 0x0040 239 #define MGC_M_RXCSR_H_REQPKT 0x0020 240 #define MGC_M_RXCSR_H_ERROR 0x0004 241 242 /* HUBADDR */ 243 #define MGC_M_HUBADDR_MULTI_TT 0x80 244 245 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */ 246 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02 247 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01 248 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08 249 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04 250 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02 251 #define MGC_M_ULPI_REGCTL_REG 0x01 252 253 /* #define MUSB_DEBUG */ 254 255 #ifdef MUSB_DEBUG 256 #define TRACE(fmt, ...) fprintf(stderr, "%s@%d: " fmt "\n", __func__, \ 257 __LINE__, ##__VA_ARGS__) 258 #else 259 #define TRACE(...) 260 #endif 261 262 263 static void musb_attach(USBPort *port); 264 static void musb_detach(USBPort *port); 265 static void musb_child_detach(USBPort *port, USBDevice *child); 266 static void musb_schedule_cb(USBPort *port, USBPacket *p); 267 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev); 268 269 static USBPortOps musb_port_ops = { 270 .attach = musb_attach, 271 .detach = musb_detach, 272 .child_detach = musb_child_detach, 273 .complete = musb_schedule_cb, 274 }; 275 276 static USBBusOps musb_bus_ops = { 277 }; 278 279 typedef struct MUSBPacket MUSBPacket; 280 typedef struct MUSBEndPoint MUSBEndPoint; 281 282 struct MUSBPacket { 283 USBPacket p; 284 MUSBEndPoint *ep; 285 int dir; 286 }; 287 288 struct MUSBEndPoint { 289 uint16_t faddr[2]; 290 uint8_t haddr[2]; 291 uint8_t hport[2]; 292 uint16_t csr[2]; 293 uint16_t maxp[2]; 294 uint16_t rxcount; 295 uint8_t type[2]; 296 uint8_t interval[2]; 297 uint8_t config; 298 uint8_t fifosize; 299 int timeout[2]; /* Always in microframes */ 300 301 uint8_t *buf[2]; 302 int fifolen[2]; 303 int fifostart[2]; 304 int fifoaddr[2]; 305 MUSBPacket packey[2]; 306 int status[2]; 307 int ext_size[2]; 308 309 /* For callbacks' use */ 310 int epnum; 311 int interrupt[2]; 312 MUSBState *musb; 313 USBCallback *delayed_cb[2]; 314 QEMUTimer *intv_timer[2]; 315 }; 316 317 struct MUSBState { 318 qemu_irq irqs[musb_irq_max]; 319 USBBus bus; 320 USBPort port; 321 322 int idx; 323 uint8_t devctl; 324 uint8_t power; 325 uint8_t faddr; 326 327 uint8_t intr; 328 uint8_t mask; 329 uint16_t tx_intr; 330 uint16_t tx_mask; 331 uint16_t rx_intr; 332 uint16_t rx_mask; 333 334 int setup_len; 335 int session; 336 337 uint8_t buf[0x8000]; 338 339 /* Duplicating the world since 2008!... probably we should have 32 340 * logical, single endpoints instead. */ 341 MUSBEndPoint ep[16]; 342 }; 343 344 void musb_reset(MUSBState *s) 345 { 346 int i; 347 348 s->faddr = 0x00; 349 s->devctl = 0; 350 s->power = MGC_M_POWER_HSENAB; 351 s->tx_intr = 0x0000; 352 s->rx_intr = 0x0000; 353 s->tx_mask = 0xffff; 354 s->rx_mask = 0xffff; 355 s->intr = 0x00; 356 s->mask = 0x06; 357 s->idx = 0; 358 359 s->setup_len = 0; 360 s->session = 0; 361 memset(s->buf, 0, sizeof(s->buf)); 362 363 /* TODO: _DW */ 364 s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO; 365 for (i = 0; i < 16; i ++) { 366 s->ep[i].fifosize = 64; 367 s->ep[i].maxp[0] = 0x40; 368 s->ep[i].maxp[1] = 0x40; 369 s->ep[i].musb = s; 370 s->ep[i].epnum = i; 371 usb_packet_init(&s->ep[i].packey[0].p); 372 usb_packet_init(&s->ep[i].packey[1].p); 373 } 374 } 375 376 struct MUSBState *musb_init(DeviceState *parent_device, int gpio_base) 377 { 378 MUSBState *s = g_malloc0(sizeof(*s)); 379 int i; 380 381 for (i = 0; i < musb_irq_max; i++) { 382 s->irqs[i] = qdev_get_gpio_in(parent_device, gpio_base + i); 383 } 384 385 musb_reset(s); 386 387 usb_bus_new(&s->bus, sizeof(s->bus), &musb_bus_ops, parent_device); 388 usb_register_port(&s->bus, &s->port, s, 0, &musb_port_ops, 389 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL); 390 391 return s; 392 } 393 394 static void musb_vbus_set(MUSBState *s, int level) 395 { 396 if (level) 397 s->devctl |= 3 << MGC_S_DEVCTL_VBUS; 398 else 399 s->devctl &= ~MGC_M_DEVCTL_VBUS; 400 401 qemu_set_irq(s->irqs[musb_set_vbus], level); 402 } 403 404 static void musb_intr_set(MUSBState *s, int line, int level) 405 { 406 if (!level) { 407 s->intr &= ~(1 << line); 408 qemu_irq_lower(s->irqs[line]); 409 } else if (s->mask & (1 << line)) { 410 s->intr |= 1 << line; 411 qemu_irq_raise(s->irqs[line]); 412 } 413 } 414 415 static void musb_tx_intr_set(MUSBState *s, int line, int level) 416 { 417 if (!level) { 418 s->tx_intr &= ~(1 << line); 419 if (!s->tx_intr) 420 qemu_irq_lower(s->irqs[musb_irq_tx]); 421 } else if (s->tx_mask & (1 << line)) { 422 s->tx_intr |= 1 << line; 423 qemu_irq_raise(s->irqs[musb_irq_tx]); 424 } 425 } 426 427 static void musb_rx_intr_set(MUSBState *s, int line, int level) 428 { 429 if (line) { 430 if (!level) { 431 s->rx_intr &= ~(1 << line); 432 if (!s->rx_intr) 433 qemu_irq_lower(s->irqs[musb_irq_rx]); 434 } else if (s->rx_mask & (1 << line)) { 435 s->rx_intr |= 1 << line; 436 qemu_irq_raise(s->irqs[musb_irq_rx]); 437 } 438 } else 439 musb_tx_intr_set(s, line, level); 440 } 441 442 uint32_t musb_core_intr_get(MUSBState *s) 443 { 444 return (s->rx_intr << 15) | s->tx_intr; 445 } 446 447 void musb_core_intr_clear(MUSBState *s, uint32_t mask) 448 { 449 if (s->rx_intr) { 450 s->rx_intr &= mask >> 15; 451 if (!s->rx_intr) 452 qemu_irq_lower(s->irqs[musb_irq_rx]); 453 } 454 455 if (s->tx_intr) { 456 s->tx_intr &= mask & 0xffff; 457 if (!s->tx_intr) 458 qemu_irq_lower(s->irqs[musb_irq_tx]); 459 } 460 } 461 462 void musb_set_size(MUSBState *s, int epnum, int size, int is_tx) 463 { 464 s->ep[epnum].ext_size[!is_tx] = size; 465 s->ep[epnum].fifostart[0] = 0; 466 s->ep[epnum].fifostart[1] = 0; 467 s->ep[epnum].fifolen[0] = 0; 468 s->ep[epnum].fifolen[1] = 0; 469 } 470 471 static void musb_session_update(MUSBState *s, int prev_dev, int prev_sess) 472 { 473 int detect_prev = prev_dev && prev_sess; 474 int detect = !!s->port.dev && s->session; 475 476 if (detect && !detect_prev) { 477 /* Let's skip the ID pin sense and VBUS sense formalities and 478 * and signal a successful SRP directly. This should work at least 479 * for the Linux driver stack. */ 480 musb_intr_set(s, musb_irq_connect, 1); 481 482 if (s->port.dev->speed == USB_SPEED_LOW) { 483 s->devctl &= ~MGC_M_DEVCTL_FSDEV; 484 s->devctl |= MGC_M_DEVCTL_LSDEV; 485 } else { 486 s->devctl |= MGC_M_DEVCTL_FSDEV; 487 s->devctl &= ~MGC_M_DEVCTL_LSDEV; 488 } 489 490 /* A-mode? */ 491 s->devctl &= ~MGC_M_DEVCTL_BDEVICE; 492 493 /* Host-mode bit? */ 494 s->devctl |= MGC_M_DEVCTL_HM; 495 #if 1 496 musb_vbus_set(s, 1); 497 #endif 498 } else if (!detect && detect_prev) { 499 #if 1 500 musb_vbus_set(s, 0); 501 #endif 502 } 503 } 504 505 /* Attach or detach a device on our only port. */ 506 static void musb_attach(USBPort *port) 507 { 508 MUSBState *s = (MUSBState *) port->opaque; 509 510 musb_intr_set(s, musb_irq_vbus_request, 1); 511 musb_session_update(s, 0, s->session); 512 } 513 514 static void musb_detach(USBPort *port) 515 { 516 MUSBState *s = (MUSBState *) port->opaque; 517 518 musb_async_cancel_device(s, port->dev); 519 520 musb_intr_set(s, musb_irq_disconnect, 1); 521 musb_session_update(s, 1, s->session); 522 } 523 524 static void musb_child_detach(USBPort *port, USBDevice *child) 525 { 526 MUSBState *s = (MUSBState *) port->opaque; 527 528 musb_async_cancel_device(s, child); 529 } 530 531 static void musb_cb_tick0(void *opaque) 532 { 533 MUSBEndPoint *ep = (MUSBEndPoint *) opaque; 534 535 ep->delayed_cb[0](&ep->packey[0].p, opaque); 536 } 537 538 static void musb_cb_tick1(void *opaque) 539 { 540 MUSBEndPoint *ep = (MUSBEndPoint *) opaque; 541 542 ep->delayed_cb[1](&ep->packey[1].p, opaque); 543 } 544 545 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0) 546 547 static void musb_schedule_cb(USBPort *port, USBPacket *packey) 548 { 549 MUSBPacket *p = container_of(packey, MUSBPacket, p); 550 MUSBEndPoint *ep = p->ep; 551 int dir = p->dir; 552 int timeout = 0; 553 554 if (ep->status[dir] == USB_RET_NAK) 555 timeout = ep->timeout[dir]; 556 else if (ep->interrupt[dir]) 557 timeout = 8; 558 else { 559 musb_cb_tick(ep); 560 return; 561 } 562 563 if (!ep->intv_timer[dir]) 564 ep->intv_timer[dir] = timer_new_ns(QEMU_CLOCK_VIRTUAL, musb_cb_tick, ep); 565 566 timer_mod(ep->intv_timer[dir], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 567 muldiv64(timeout, NANOSECONDS_PER_SECOND, 8000)); 568 } 569 570 static int musb_timeout(int ttype, int speed, int val) 571 { 572 #if 1 573 return val << 3; 574 #endif 575 576 switch (ttype) { 577 case USB_ENDPOINT_XFER_CONTROL: 578 if (val < 2) 579 return 0; 580 else if (speed == USB_SPEED_HIGH) 581 return 1 << (val - 1); 582 else 583 return 8 << (val - 1); 584 585 case USB_ENDPOINT_XFER_INT: 586 if (speed == USB_SPEED_HIGH) 587 if (val < 2) 588 return 0; 589 else 590 return 1 << (val - 1); 591 else 592 return val << 3; 593 594 case USB_ENDPOINT_XFER_BULK: 595 case USB_ENDPOINT_XFER_ISOC: 596 if (val < 2) 597 return 0; 598 else if (speed == USB_SPEED_HIGH) 599 return 1 << (val - 1); 600 else 601 return 8 << (val - 1); 602 /* TODO: what with low-speed Bulk and Isochronous? */ 603 } 604 605 hw_error("bad interval\n"); 606 } 607 608 static void musb_packet(MUSBState *s, MUSBEndPoint *ep, 609 int epnum, int pid, int len, USBCallback cb, int dir) 610 { 611 USBDevice *dev; 612 USBEndpoint *uep; 613 int idx = epnum && dir; 614 int id; 615 int ttype; 616 617 /* ep->type[0,1] contains: 618 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow) 619 * in bits 5:4 the transfer type (BULK / INT) 620 * in bits 3:0 the EP num 621 */ 622 ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0; 623 624 ep->timeout[dir] = musb_timeout(ttype, 625 ep->type[idx] >> 6, ep->interval[idx]); 626 ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT; 627 ep->delayed_cb[dir] = cb; 628 629 /* A wild guess on the FADDR semantics... */ 630 dev = usb_find_device(&s->port, ep->faddr[idx]); 631 uep = usb_ep_get(dev, pid, ep->type[idx] & 0xf); 632 id = pid; 633 if (uep) { 634 id |= (dev->addr << 16) | (uep->nr << 8); 635 } 636 usb_packet_setup(&ep->packey[dir].p, pid, uep, 0, id, false, true); 637 usb_packet_addbuf(&ep->packey[dir].p, ep->buf[idx], len); 638 ep->packey[dir].ep = ep; 639 ep->packey[dir].dir = dir; 640 641 usb_handle_packet(dev, &ep->packey[dir].p); 642 643 if (ep->packey[dir].p.status == USB_RET_ASYNC) { 644 usb_device_flush_ep_queue(dev, uep); 645 ep->status[dir] = len; 646 return; 647 } 648 649 if (ep->packey[dir].p.status == USB_RET_SUCCESS) { 650 ep->status[dir] = ep->packey[dir].p.actual_length; 651 } else { 652 ep->status[dir] = ep->packey[dir].p.status; 653 } 654 musb_schedule_cb(&s->port, &ep->packey[dir].p); 655 } 656 657 static void musb_tx_packet_complete(USBPacket *packey, void *opaque) 658 { 659 /* Unfortunately we can't use packey->devep because that's the remote 660 * endpoint number and may be different than our local. */ 661 MUSBEndPoint *ep = (MUSBEndPoint *) opaque; 662 int epnum = ep->epnum; 663 MUSBState *s = ep->musb; 664 665 ep->fifostart[0] = 0; 666 ep->fifolen[0] = 0; 667 #ifdef CLEAR_NAK 668 if (ep->status[0] != USB_RET_NAK) { 669 #endif 670 if (epnum) 671 ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY); 672 else 673 ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY; 674 #ifdef CLEAR_NAK 675 } 676 #endif 677 678 /* Clear all of the error bits first */ 679 if (epnum) 680 ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL | 681 MGC_M_TXCSR_H_NAKTIMEOUT); 682 else 683 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL | 684 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING); 685 686 if (ep->status[0] == USB_RET_STALL) { 687 /* Command not supported by target! */ 688 ep->status[0] = 0; 689 690 if (epnum) 691 ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL; 692 else 693 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL; 694 } 695 696 if (ep->status[0] == USB_RET_NAK) { 697 ep->status[0] = 0; 698 699 /* NAK timeouts are only generated in Bulk transfers and 700 * Data-errors in Isochronous. */ 701 if (ep->interrupt[0]) { 702 return; 703 } 704 705 if (epnum) 706 ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT; 707 else 708 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT; 709 } 710 711 if (ep->status[0] < 0) { 712 if (ep->status[0] == USB_RET_BABBLE) 713 musb_intr_set(s, musb_irq_rst_babble, 1); 714 715 /* Pretend we've tried three times already and failed (in 716 * case of USB_TOKEN_SETUP). */ 717 if (epnum) 718 ep->csr[0] |= MGC_M_TXCSR_H_ERROR; 719 else 720 ep->csr[0] |= MGC_M_CSR0_H_ERROR; 721 722 musb_tx_intr_set(s, epnum, 1); 723 return; 724 } 725 /* TODO: check len for over/underruns of an OUT packet? */ 726 727 #ifdef SETUPLEN_HACK 728 if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP) 729 s->setup_len = ep->packey[0].data[6]; 730 #endif 731 732 /* In DMA mode: if no error, assert DMA request for this EP, 733 * and skip the interrupt. */ 734 musb_tx_intr_set(s, epnum, 1); 735 } 736 737 static void musb_rx_packet_complete(USBPacket *packey, void *opaque) 738 { 739 /* Unfortunately we can't use packey->devep because that's the remote 740 * endpoint number and may be different than our local. */ 741 MUSBEndPoint *ep = (MUSBEndPoint *) opaque; 742 int epnum = ep->epnum; 743 MUSBState *s = ep->musb; 744 745 ep->fifostart[1] = 0; 746 ep->fifolen[1] = 0; 747 748 #ifdef CLEAR_NAK 749 if (ep->status[1] != USB_RET_NAK) { 750 #endif 751 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT; 752 if (!epnum) 753 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT; 754 #ifdef CLEAR_NAK 755 } 756 #endif 757 758 /* Clear all of the imaginable error bits first */ 759 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL | 760 MGC_M_RXCSR_DATAERROR); 761 if (!epnum) 762 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL | 763 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING); 764 765 if (ep->status[1] == USB_RET_STALL) { 766 ep->status[1] = 0; 767 768 ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL; 769 if (!epnum) 770 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL; 771 } 772 773 if (ep->status[1] == USB_RET_NAK) { 774 ep->status[1] = 0; 775 776 /* NAK timeouts are only generated in Bulk transfers and 777 * Data-errors in Isochronous. */ 778 if (ep->interrupt[1]) { 779 musb_packet(s, ep, epnum, USB_TOKEN_IN, 780 packey->iov.size, musb_rx_packet_complete, 1); 781 return; 782 } 783 784 ep->csr[1] |= MGC_M_RXCSR_DATAERROR; 785 if (!epnum) 786 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT; 787 } 788 789 if (ep->status[1] < 0) { 790 if (ep->status[1] == USB_RET_BABBLE) { 791 musb_intr_set(s, musb_irq_rst_babble, 1); 792 return; 793 } 794 795 /* Pretend we've tried three times already and failed (in 796 * case of a control transfer). */ 797 ep->csr[1] |= MGC_M_RXCSR_H_ERROR; 798 if (!epnum) 799 ep->csr[0] |= MGC_M_CSR0_H_ERROR; 800 801 musb_rx_intr_set(s, epnum, 1); 802 return; 803 } 804 /* TODO: check len for over/underruns of an OUT packet? */ 805 /* TODO: perhaps make use of e->ext_size[1] here. */ 806 807 if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) { 808 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY; 809 if (!epnum) 810 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY; 811 812 ep->rxcount = ep->status[1]; /* XXX: MIN(packey->len, ep->maxp[1]); */ 813 /* In DMA mode: assert DMA request for this EP */ 814 } 815 816 /* Only if DMA has not been asserted */ 817 musb_rx_intr_set(s, epnum, 1); 818 } 819 820 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev) 821 { 822 int ep, dir; 823 824 for (ep = 0; ep < 16; ep++) { 825 for (dir = 0; dir < 2; dir++) { 826 if (!usb_packet_is_inflight(&s->ep[ep].packey[dir].p) || 827 s->ep[ep].packey[dir].p.ep->dev != dev) { 828 continue; 829 } 830 usb_cancel_packet(&s->ep[ep].packey[dir].p); 831 /* status updates needed here? */ 832 } 833 } 834 } 835 836 static void musb_tx_rdy(MUSBState *s, int epnum) 837 { 838 MUSBEndPoint *ep = s->ep + epnum; 839 int pid; 840 int total, valid = 0; 841 TRACE("start %d, len %d", ep->fifostart[0], ep->fifolen[0] ); 842 ep->fifostart[0] += ep->fifolen[0]; 843 ep->fifolen[0] = 0; 844 845 /* XXX: how's the total size of the packet retrieved exactly in 846 * the generic case? */ 847 total = ep->maxp[0] & 0x3ff; 848 849 if (ep->ext_size[0]) { 850 total = ep->ext_size[0]; 851 ep->ext_size[0] = 0; 852 valid = 1; 853 } 854 855 /* If the packet is not fully ready yet, wait for a next segment. */ 856 if (epnum && (ep->fifostart[0]) < total) 857 return; 858 859 if (!valid) 860 total = ep->fifostart[0]; 861 862 pid = USB_TOKEN_OUT; 863 if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) { 864 pid = USB_TOKEN_SETUP; 865 if (total != 8) { 866 TRACE("illegal SETUPPKT length of %i bytes", total); 867 } 868 /* Controller should retry SETUP packets three times on errors 869 * but it doesn't make sense for us to do that. */ 870 } 871 872 musb_packet(s, ep, epnum, pid, total, musb_tx_packet_complete, 0); 873 } 874 875 static void musb_rx_req(MUSBState *s, int epnum) 876 { 877 MUSBEndPoint *ep = s->ep + epnum; 878 int total; 879 880 /* If we already have a packet, which didn't fit into the 881 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */ 882 if (ep->packey[1].p.pid == USB_TOKEN_IN && ep->status[1] >= 0 && 883 (ep->fifostart[1]) + ep->rxcount < 884 ep->packey[1].p.iov.size) { 885 TRACE("0x%08x, %d", ep->fifostart[1], ep->rxcount ); 886 ep->fifostart[1] += ep->rxcount; 887 ep->fifolen[1] = 0; 888 889 ep->rxcount = MIN(ep->packey[0].p.iov.size - (ep->fifostart[1]), 890 ep->maxp[1]); 891 892 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT; 893 if (!epnum) 894 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT; 895 896 /* Clear all of the error bits first */ 897 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL | 898 MGC_M_RXCSR_DATAERROR); 899 if (!epnum) 900 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL | 901 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING); 902 903 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY; 904 if (!epnum) 905 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY; 906 musb_rx_intr_set(s, epnum, 1); 907 return; 908 } 909 910 /* The driver sets maxp[1] to 64 or less because it knows the hardware 911 * FIFO is this deep. Bigger packets get split in 912 * usb_generic_handle_packet but we can also do the splitting locally 913 * for performance. It turns out we can also have a bigger FIFO and 914 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals 915 * OK with single packets of even 32KB and we avoid splitting, however 916 * usb_msd.c sometimes sends a packet bigger than what Linux expects 917 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting 918 * hides this overrun from Linux. Up to 4096 everything is fine 919 * though. Currently this is disabled. 920 * 921 * XXX: mind ep->fifosize. */ 922 total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf)); 923 924 #ifdef SETUPLEN_HACK 925 /* Why should *we* do that instead of Linux? */ 926 if (!epnum) { 927 if (ep->packey[0].p.devaddr == 2) { 928 total = MIN(s->setup_len, 8); 929 } else { 930 total = MIN(s->setup_len, 64); 931 } 932 s->setup_len -= total; 933 } 934 #endif 935 936 musb_packet(s, ep, epnum, USB_TOKEN_IN, total, musb_rx_packet_complete, 1); 937 } 938 939 static uint8_t musb_read_fifo(MUSBEndPoint *ep) 940 { 941 uint8_t value; 942 if (ep->fifolen[1] >= 64) { 943 /* We have a FIFO underrun */ 944 TRACE("EP%d FIFO is now empty, stop reading", ep->epnum); 945 return 0x00000000; 946 } 947 /* In DMA mode clear RXPKTRDY and set REQPKT automatically 948 * (if AUTOREQ is set) */ 949 950 ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL; 951 value=ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++]; 952 TRACE("EP%d 0x%02x, %d", ep->epnum, value, ep->fifolen[1] ); 953 return value; 954 } 955 956 static void musb_write_fifo(MUSBEndPoint *ep, uint8_t value) 957 { 958 TRACE("EP%d = %02x", ep->epnum, value); 959 if (ep->fifolen[0] >= 64) { 960 /* We have a FIFO overrun */ 961 TRACE("EP%d FIFO exceeded 64 bytes, stop feeding data", ep->epnum); 962 return; 963 } 964 965 ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value; 966 ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY; 967 } 968 969 static void musb_ep_frame_cancel(MUSBEndPoint *ep, int dir) 970 { 971 if (ep->intv_timer[dir]) 972 timer_del(ep->intv_timer[dir]); 973 } 974 975 /* Bus control */ 976 static uint8_t musb_busctl_readb(void *opaque, int ep, int addr) 977 { 978 MUSBState *s = (MUSBState *) opaque; 979 980 switch (addr) { 981 /* For USB2.0 HS hubs only */ 982 case MUSB_HDRC_TXHUBADDR: 983 return s->ep[ep].haddr[0]; 984 case MUSB_HDRC_TXHUBPORT: 985 return s->ep[ep].hport[0]; 986 case MUSB_HDRC_RXHUBADDR: 987 return s->ep[ep].haddr[1]; 988 case MUSB_HDRC_RXHUBPORT: 989 return s->ep[ep].hport[1]; 990 991 default: 992 TRACE("unknown register 0x%02x", addr); 993 return 0x00; 994 }; 995 } 996 997 static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value) 998 { 999 MUSBState *s = (MUSBState *) opaque; 1000 1001 switch (addr) { 1002 case MUSB_HDRC_TXFUNCADDR: 1003 s->ep[ep].faddr[0] = value; 1004 break; 1005 case MUSB_HDRC_RXFUNCADDR: 1006 s->ep[ep].faddr[1] = value; 1007 break; 1008 case MUSB_HDRC_TXHUBADDR: 1009 s->ep[ep].haddr[0] = value; 1010 break; 1011 case MUSB_HDRC_TXHUBPORT: 1012 s->ep[ep].hport[0] = value; 1013 break; 1014 case MUSB_HDRC_RXHUBADDR: 1015 s->ep[ep].haddr[1] = value; 1016 break; 1017 case MUSB_HDRC_RXHUBPORT: 1018 s->ep[ep].hport[1] = value; 1019 break; 1020 1021 default: 1022 TRACE("unknown register 0x%02x", addr); 1023 break; 1024 }; 1025 } 1026 1027 static uint16_t musb_busctl_readh(void *opaque, int ep, int addr) 1028 { 1029 MUSBState *s = (MUSBState *) opaque; 1030 1031 switch (addr) { 1032 case MUSB_HDRC_TXFUNCADDR: 1033 return s->ep[ep].faddr[0]; 1034 case MUSB_HDRC_RXFUNCADDR: 1035 return s->ep[ep].faddr[1]; 1036 1037 default: 1038 return musb_busctl_readb(s, ep, addr) | 1039 (musb_busctl_readb(s, ep, addr | 1) << 8); 1040 }; 1041 } 1042 1043 static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value) 1044 { 1045 MUSBState *s = (MUSBState *) opaque; 1046 1047 switch (addr) { 1048 case MUSB_HDRC_TXFUNCADDR: 1049 s->ep[ep].faddr[0] = value; 1050 break; 1051 case MUSB_HDRC_RXFUNCADDR: 1052 s->ep[ep].faddr[1] = value; 1053 break; 1054 1055 default: 1056 musb_busctl_writeb(s, ep, addr, value & 0xff); 1057 musb_busctl_writeb(s, ep, addr | 1, value >> 8); 1058 }; 1059 } 1060 1061 /* Endpoint control */ 1062 static uint8_t musb_ep_readb(void *opaque, int ep, int addr) 1063 { 1064 MUSBState *s = (MUSBState *) opaque; 1065 1066 switch (addr) { 1067 case MUSB_HDRC_TXTYPE: 1068 return s->ep[ep].type[0]; 1069 case MUSB_HDRC_TXINTERVAL: 1070 return s->ep[ep].interval[0]; 1071 case MUSB_HDRC_RXTYPE: 1072 return s->ep[ep].type[1]; 1073 case MUSB_HDRC_RXINTERVAL: 1074 return s->ep[ep].interval[1]; 1075 case (MUSB_HDRC_FIFOSIZE & ~1): 1076 return 0x00; 1077 case MUSB_HDRC_FIFOSIZE: 1078 return ep ? s->ep[ep].fifosize : s->ep[ep].config; 1079 case MUSB_HDRC_RXCOUNT: 1080 return s->ep[ep].rxcount; 1081 1082 default: 1083 TRACE("unknown register 0x%02x", addr); 1084 return 0x00; 1085 }; 1086 } 1087 1088 static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value) 1089 { 1090 MUSBState *s = (MUSBState *) opaque; 1091 1092 switch (addr) { 1093 case MUSB_HDRC_TXTYPE: 1094 s->ep[ep].type[0] = value; 1095 break; 1096 case MUSB_HDRC_TXINTERVAL: 1097 s->ep[ep].interval[0] = value; 1098 musb_ep_frame_cancel(&s->ep[ep], 0); 1099 break; 1100 case MUSB_HDRC_RXTYPE: 1101 s->ep[ep].type[1] = value; 1102 break; 1103 case MUSB_HDRC_RXINTERVAL: 1104 s->ep[ep].interval[1] = value; 1105 musb_ep_frame_cancel(&s->ep[ep], 1); 1106 break; 1107 case (MUSB_HDRC_FIFOSIZE & ~1): 1108 break; 1109 case MUSB_HDRC_FIFOSIZE: 1110 TRACE("somebody messes with fifosize (now %i bytes)", value); 1111 s->ep[ep].fifosize = value; 1112 break; 1113 default: 1114 TRACE("unknown register 0x%02x", addr); 1115 break; 1116 }; 1117 } 1118 1119 static uint16_t musb_ep_readh(void *opaque, int ep, int addr) 1120 { 1121 MUSBState *s = (MUSBState *) opaque; 1122 uint16_t ret; 1123 1124 switch (addr) { 1125 case MUSB_HDRC_TXMAXP: 1126 return s->ep[ep].maxp[0]; 1127 case MUSB_HDRC_TXCSR: 1128 return s->ep[ep].csr[0]; 1129 case MUSB_HDRC_RXMAXP: 1130 return s->ep[ep].maxp[1]; 1131 case MUSB_HDRC_RXCSR: 1132 ret = s->ep[ep].csr[1]; 1133 1134 /* TODO: This and other bits probably depend on 1135 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */ 1136 if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR) 1137 s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY; 1138 1139 return ret; 1140 case MUSB_HDRC_RXCOUNT: 1141 return s->ep[ep].rxcount; 1142 1143 default: 1144 return musb_ep_readb(s, ep, addr) | 1145 (musb_ep_readb(s, ep, addr | 1) << 8); 1146 }; 1147 } 1148 1149 static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value) 1150 { 1151 MUSBState *s = (MUSBState *) opaque; 1152 1153 switch (addr) { 1154 case MUSB_HDRC_TXMAXP: 1155 s->ep[ep].maxp[0] = value; 1156 break; 1157 case MUSB_HDRC_TXCSR: 1158 if (ep) { 1159 s->ep[ep].csr[0] &= value & 0xa6; 1160 s->ep[ep].csr[0] |= value & 0xff59; 1161 } else { 1162 s->ep[ep].csr[0] &= value & 0x85; 1163 s->ep[ep].csr[0] |= value & 0xf7a; 1164 } 1165 1166 musb_ep_frame_cancel(&s->ep[ep], 0); 1167 1168 if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) || 1169 (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) { 1170 s->ep[ep].fifolen[0] = 0; 1171 s->ep[ep].fifostart[0] = 0; 1172 if (ep) 1173 s->ep[ep].csr[0] &= 1174 ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY); 1175 else 1176 s->ep[ep].csr[0] &= 1177 ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY); 1178 } 1179 if ( 1180 (ep && 1181 #ifdef CLEAR_NAK 1182 (value & MGC_M_TXCSR_TXPKTRDY) && 1183 !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) || 1184 #else 1185 (value & MGC_M_TXCSR_TXPKTRDY)) || 1186 #endif 1187 (!ep && 1188 #ifdef CLEAR_NAK 1189 (value & MGC_M_CSR0_TXPKTRDY) && 1190 !(value & MGC_M_CSR0_H_NAKTIMEOUT))) 1191 #else 1192 (value & MGC_M_CSR0_TXPKTRDY))) 1193 #endif 1194 musb_tx_rdy(s, ep); 1195 if (!ep && 1196 (value & MGC_M_CSR0_H_REQPKT) && 1197 #ifdef CLEAR_NAK 1198 !(value & (MGC_M_CSR0_H_NAKTIMEOUT | 1199 MGC_M_CSR0_RXPKTRDY))) 1200 #else 1201 !(value & MGC_M_CSR0_RXPKTRDY)) 1202 #endif 1203 musb_rx_req(s, ep); 1204 break; 1205 1206 case MUSB_HDRC_RXMAXP: 1207 s->ep[ep].maxp[1] = value; 1208 break; 1209 case MUSB_HDRC_RXCSR: 1210 /* (DMA mode only) */ 1211 if ( 1212 (value & MGC_M_RXCSR_H_AUTOREQ) && 1213 !(value & MGC_M_RXCSR_RXPKTRDY) && 1214 (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY)) 1215 value |= MGC_M_RXCSR_H_REQPKT; 1216 1217 s->ep[ep].csr[1] &= 0x102 | (value & 0x4d); 1218 s->ep[ep].csr[1] |= value & 0xfeb0; 1219 1220 musb_ep_frame_cancel(&s->ep[ep], 1); 1221 1222 if (value & MGC_M_RXCSR_FLUSHFIFO) { 1223 s->ep[ep].fifolen[1] = 0; 1224 s->ep[ep].fifostart[1] = 0; 1225 s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY); 1226 /* If double buffering and we have two packets ready, flush 1227 * only the first one and set up the fifo at the second packet. */ 1228 } 1229 #ifdef CLEAR_NAK 1230 if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR)) 1231 #else 1232 if (value & MGC_M_RXCSR_H_REQPKT) 1233 #endif 1234 musb_rx_req(s, ep); 1235 break; 1236 case MUSB_HDRC_RXCOUNT: 1237 s->ep[ep].rxcount = value; 1238 break; 1239 1240 default: 1241 musb_ep_writeb(s, ep, addr, value & 0xff); 1242 musb_ep_writeb(s, ep, addr | 1, value >> 8); 1243 }; 1244 } 1245 1246 /* Generic control */ 1247 static uint32_t musb_readb(void *opaque, hwaddr addr) 1248 { 1249 MUSBState *s = (MUSBState *) opaque; 1250 int ep, i; 1251 uint8_t ret; 1252 1253 switch (addr) { 1254 case MUSB_HDRC_FADDR: 1255 return s->faddr; 1256 case MUSB_HDRC_POWER: 1257 return s->power; 1258 case MUSB_HDRC_INTRUSB: 1259 ret = s->intr; 1260 for (i = 0; i < sizeof(ret) * 8; i ++) 1261 if (ret & (1 << i)) 1262 musb_intr_set(s, i, 0); 1263 return ret; 1264 case MUSB_HDRC_INTRUSBE: 1265 return s->mask; 1266 case MUSB_HDRC_INDEX: 1267 return s->idx; 1268 case MUSB_HDRC_TESTMODE: 1269 return 0x00; 1270 1271 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): 1272 return musb_ep_readb(s, s->idx, addr & 0xf); 1273 1274 case MUSB_HDRC_DEVCTL: 1275 return s->devctl; 1276 1277 case MUSB_HDRC_TXFIFOSZ: 1278 case MUSB_HDRC_RXFIFOSZ: 1279 case MUSB_HDRC_VCTRL: 1280 /* TODO */ 1281 return 0x00; 1282 1283 case MUSB_HDRC_HWVERS: 1284 return (1 << 10) | 400; 1285 1286 case (MUSB_HDRC_VCTRL | 1): 1287 case (MUSB_HDRC_HWVERS | 1): 1288 case (MUSB_HDRC_DEVCTL | 1): 1289 return 0x00; 1290 1291 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): 1292 ep = (addr >> 3) & 0xf; 1293 return musb_busctl_readb(s, ep, addr & 0x7); 1294 1295 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): 1296 ep = (addr >> 4) & 0xf; 1297 return musb_ep_readb(s, ep, addr & 0xf); 1298 1299 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): 1300 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; 1301 return musb_read_fifo(s->ep + ep); 1302 1303 default: 1304 TRACE("unknown register 0x%02x", (int) addr); 1305 return 0x00; 1306 }; 1307 } 1308 1309 static void musb_writeb(void *opaque, hwaddr addr, uint32_t value) 1310 { 1311 MUSBState *s = (MUSBState *) opaque; 1312 int ep; 1313 1314 switch (addr) { 1315 case MUSB_HDRC_FADDR: 1316 s->faddr = value & 0x7f; 1317 break; 1318 case MUSB_HDRC_POWER: 1319 s->power = (value & 0xef) | (s->power & 0x10); 1320 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */ 1321 if ((value & MGC_M_POWER_RESET) && s->port.dev) { 1322 usb_device_reset(s->port.dev); 1323 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */ 1324 if ((value & MGC_M_POWER_HSENAB) && 1325 s->port.dev->speed == USB_SPEED_HIGH) 1326 s->power |= MGC_M_POWER_HSMODE; /* Success */ 1327 /* Restart frame counting. */ 1328 } 1329 if (value & MGC_M_POWER_SUSPENDM) { 1330 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND 1331 * is set, also go into low power mode. Frame counting stops. */ 1332 /* XXX: Cleared when the interrupt register is read */ 1333 } 1334 if (value & MGC_M_POWER_RESUME) { 1335 /* Wait 20ms and signal resuming on the bus. Frame counting 1336 * restarts. */ 1337 } 1338 break; 1339 case MUSB_HDRC_INTRUSB: 1340 break; 1341 case MUSB_HDRC_INTRUSBE: 1342 s->mask = value & 0xff; 1343 break; 1344 case MUSB_HDRC_INDEX: 1345 s->idx = value & 0xf; 1346 break; 1347 case MUSB_HDRC_TESTMODE: 1348 break; 1349 1350 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): 1351 musb_ep_writeb(s, s->idx, addr & 0xf, value); 1352 break; 1353 1354 case MUSB_HDRC_DEVCTL: 1355 s->session = !!(value & MGC_M_DEVCTL_SESSION); 1356 musb_session_update(s, 1357 !!s->port.dev, 1358 !!(s->devctl & MGC_M_DEVCTL_SESSION)); 1359 1360 /* It seems this is the only R/W bit in this register? */ 1361 s->devctl &= ~MGC_M_DEVCTL_SESSION; 1362 s->devctl |= value & MGC_M_DEVCTL_SESSION; 1363 break; 1364 1365 case MUSB_HDRC_TXFIFOSZ: 1366 case MUSB_HDRC_RXFIFOSZ: 1367 case MUSB_HDRC_VCTRL: 1368 /* TODO */ 1369 break; 1370 1371 case (MUSB_HDRC_VCTRL | 1): 1372 case (MUSB_HDRC_DEVCTL | 1): 1373 break; 1374 1375 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): 1376 ep = (addr >> 3) & 0xf; 1377 musb_busctl_writeb(s, ep, addr & 0x7, value); 1378 break; 1379 1380 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): 1381 ep = (addr >> 4) & 0xf; 1382 musb_ep_writeb(s, ep, addr & 0xf, value); 1383 break; 1384 1385 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): 1386 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; 1387 musb_write_fifo(s->ep + ep, value & 0xff); 1388 break; 1389 1390 default: 1391 TRACE("unknown register 0x%02x", (int) addr); 1392 break; 1393 }; 1394 } 1395 1396 static uint32_t musb_readh(void *opaque, hwaddr addr) 1397 { 1398 MUSBState *s = (MUSBState *) opaque; 1399 int ep, i; 1400 uint16_t ret; 1401 1402 switch (addr) { 1403 case MUSB_HDRC_INTRTX: 1404 ret = s->tx_intr; 1405 /* Auto clear */ 1406 for (i = 0; i < sizeof(ret) * 8; i ++) 1407 if (ret & (1 << i)) 1408 musb_tx_intr_set(s, i, 0); 1409 return ret; 1410 case MUSB_HDRC_INTRRX: 1411 ret = s->rx_intr; 1412 /* Auto clear */ 1413 for (i = 0; i < sizeof(ret) * 8; i ++) 1414 if (ret & (1 << i)) 1415 musb_rx_intr_set(s, i, 0); 1416 return ret; 1417 case MUSB_HDRC_INTRTXE: 1418 return s->tx_mask; 1419 case MUSB_HDRC_INTRRXE: 1420 return s->rx_mask; 1421 1422 case MUSB_HDRC_FRAME: 1423 /* TODO */ 1424 return 0x0000; 1425 case MUSB_HDRC_TXFIFOADDR: 1426 return s->ep[s->idx].fifoaddr[0]; 1427 case MUSB_HDRC_RXFIFOADDR: 1428 return s->ep[s->idx].fifoaddr[1]; 1429 1430 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): 1431 return musb_ep_readh(s, s->idx, addr & 0xf); 1432 1433 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): 1434 ep = (addr >> 3) & 0xf; 1435 return musb_busctl_readh(s, ep, addr & 0x7); 1436 1437 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): 1438 ep = (addr >> 4) & 0xf; 1439 return musb_ep_readh(s, ep, addr & 0xf); 1440 1441 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): 1442 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; 1443 return (musb_read_fifo(s->ep + ep) | musb_read_fifo(s->ep + ep) << 8); 1444 1445 default: 1446 return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8); 1447 }; 1448 } 1449 1450 static void musb_writeh(void *opaque, hwaddr addr, uint32_t value) 1451 { 1452 MUSBState *s = (MUSBState *) opaque; 1453 int ep; 1454 1455 switch (addr) { 1456 case MUSB_HDRC_INTRTXE: 1457 s->tx_mask = value; 1458 /* XXX: the masks seem to apply on the raising edge like with 1459 * edge-triggered interrupts, thus no need to update. I may be 1460 * wrong though. */ 1461 break; 1462 case MUSB_HDRC_INTRRXE: 1463 s->rx_mask = value; 1464 break; 1465 1466 case MUSB_HDRC_FRAME: 1467 /* TODO */ 1468 break; 1469 case MUSB_HDRC_TXFIFOADDR: 1470 s->ep[s->idx].fifoaddr[0] = value; 1471 s->ep[s->idx].buf[0] = 1472 s->buf + ((value << 3) & 0x7ff ); 1473 break; 1474 case MUSB_HDRC_RXFIFOADDR: 1475 s->ep[s->idx].fifoaddr[1] = value; 1476 s->ep[s->idx].buf[1] = 1477 s->buf + ((value << 3) & 0x7ff); 1478 break; 1479 1480 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): 1481 musb_ep_writeh(s, s->idx, addr & 0xf, value); 1482 break; 1483 1484 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): 1485 ep = (addr >> 3) & 0xf; 1486 musb_busctl_writeh(s, ep, addr & 0x7, value); 1487 break; 1488 1489 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): 1490 ep = (addr >> 4) & 0xf; 1491 musb_ep_writeh(s, ep, addr & 0xf, value); 1492 break; 1493 1494 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): 1495 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; 1496 musb_write_fifo(s->ep + ep, value & 0xff); 1497 musb_write_fifo(s->ep + ep, (value >> 8) & 0xff); 1498 break; 1499 1500 default: 1501 musb_writeb(s, addr, value & 0xff); 1502 musb_writeb(s, addr | 1, value >> 8); 1503 }; 1504 } 1505 1506 static uint32_t musb_readw(void *opaque, hwaddr addr) 1507 { 1508 MUSBState *s = (MUSBState *) opaque; 1509 int ep; 1510 1511 switch (addr) { 1512 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): 1513 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; 1514 return ( musb_read_fifo(s->ep + ep) | 1515 musb_read_fifo(s->ep + ep) << 8 | 1516 musb_read_fifo(s->ep + ep) << 16 | 1517 musb_read_fifo(s->ep + ep) << 24 ); 1518 default: 1519 TRACE("unknown register 0x%02x", (int) addr); 1520 return 0x00000000; 1521 }; 1522 } 1523 1524 static void musb_writew(void *opaque, hwaddr addr, uint32_t value) 1525 { 1526 MUSBState *s = (MUSBState *) opaque; 1527 int ep; 1528 1529 switch (addr) { 1530 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): 1531 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; 1532 musb_write_fifo(s->ep + ep, value & 0xff); 1533 musb_write_fifo(s->ep + ep, (value >> 8 ) & 0xff); 1534 musb_write_fifo(s->ep + ep, (value >> 16) & 0xff); 1535 musb_write_fifo(s->ep + ep, (value >> 24) & 0xff); 1536 break; 1537 default: 1538 TRACE("unknown register 0x%02x", (int) addr); 1539 break; 1540 }; 1541 } 1542 1543 CPUReadMemoryFunc * const musb_read[] = { 1544 musb_readb, 1545 musb_readh, 1546 musb_readw, 1547 }; 1548 1549 CPUWriteMemoryFunc * const musb_write[] = { 1550 musb_writeb, 1551 musb_writeh, 1552 musb_writew, 1553 }; 1554