1 /* 2 * QEMU USB EHCI Emulation 3 * 4 * Copyright(c) 2008 Emutex Ltd. (address@hidden) 5 * Copyright(c) 2011-2012 Red Hat, Inc. 6 * 7 * Red Hat Authors: 8 * Gerd Hoffmann <kraxel@redhat.com> 9 * Hans de Goede <hdegoede@redhat.com> 10 * 11 * EHCI project was started by Mark Burkley, with contributions by 12 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf, 13 * Jan Kiszka and Vincent Palatin contributed bugfixes. 14 * 15 * 16 * This library is free software; you can redistribute it and/or 17 * modify it under the terms of the GNU Lesser General Public 18 * License as published by the Free Software Foundation; either 19 * version 2 of the License, or(at your option) any later version. 20 * 21 * This library is distributed in the hope that it will be useful, 22 * but WITHOUT ANY WARRANTY; without even the implied warranty of 23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 24 * Lesser General Public License for more details. 25 * 26 * You should have received a copy of the GNU General Public License 27 * along with this program; if not, see <http://www.gnu.org/licenses/>. 28 */ 29 30 #include "hw/usb/hcd-ehci.h" 31 32 /* Capability Registers Base Address - section 2.2 */ 33 #define CAPLENGTH 0x0000 /* 1-byte, 0x0001 reserved */ 34 #define HCIVERSION 0x0002 /* 2-bytes, i/f version # */ 35 #define HCSPARAMS 0x0004 /* 4-bytes, structural params */ 36 #define HCCPARAMS 0x0008 /* 4-bytes, capability params */ 37 #define EECP HCCPARAMS + 1 38 #define HCSPPORTROUTE1 0x000c 39 #define HCSPPORTROUTE2 0x0010 40 41 #define USBCMD 0x0000 42 #define USBCMD_RUNSTOP (1 << 0) // run / Stop 43 #define USBCMD_HCRESET (1 << 1) // HC Reset 44 #define USBCMD_FLS (3 << 2) // Frame List Size 45 #define USBCMD_FLS_SH 2 // Frame List Size Shift 46 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable 47 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable 48 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell 49 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset 50 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count 51 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable 52 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control 53 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift 54 55 #define USBSTS 0x0004 56 #define USBSTS_RO_MASK 0x0000003f 57 #define USBSTS_INT (1 << 0) // USB Interrupt 58 #define USBSTS_ERRINT (1 << 1) // Error Interrupt 59 #define USBSTS_PCD (1 << 2) // Port Change Detect 60 #define USBSTS_FLR (1 << 3) // Frame List Rollover 61 #define USBSTS_HSE (1 << 4) // Host System Error 62 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance 63 #define USBSTS_HALT (1 << 12) // HC Halted 64 #define USBSTS_REC (1 << 13) // Reclamation 65 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status 66 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status 67 68 /* 69 * Interrupt enable bits correspond to the interrupt active bits in USBSTS 70 * so no need to redefine here. 71 */ 72 #define USBINTR 0x0008 73 #define USBINTR_MASK 0x0000003f 74 75 #define FRINDEX 0x000c 76 #define CTRLDSSEGMENT 0x0010 77 #define PERIODICLISTBASE 0x0014 78 #define ASYNCLISTADDR 0x0018 79 #define ASYNCLISTADDR_MASK 0xffffffe0 80 81 #define CONFIGFLAG 0x0040 82 83 /* 84 * Bits that are reserved or are read-only are masked out of values 85 * written to us by software 86 */ 87 #define PORTSC_RO_MASK 0x007001c0 88 #define PORTSC_RWC_MASK 0x0000002a 89 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable 90 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable 91 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable 92 #define PORTSC_PTC (15 << 16) // Port Test Control 93 #define PORTSC_PTC_SH 16 // Port Test Control shift 94 #define PORTSC_PIC (3 << 14) // Port Indicator Control 95 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift 96 #define PORTSC_POWNER (1 << 13) // Port Owner 97 #define PORTSC_PPOWER (1 << 12) // Port Power 98 #define PORTSC_LINESTAT (3 << 10) // Port Line Status 99 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift 100 #define PORTSC_PRESET (1 << 8) // Port Reset 101 #define PORTSC_SUSPEND (1 << 7) // Port Suspend 102 #define PORTSC_FPRES (1 << 6) // Force Port Resume 103 #define PORTSC_OCC (1 << 5) // Over Current Change 104 #define PORTSC_OCA (1 << 4) // Over Current Active 105 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change 106 #define PORTSC_PED (1 << 2) // Port Enable/Disable 107 #define PORTSC_CSC (1 << 1) // Connect Status Change 108 #define PORTSC_CONNECT (1 << 0) // Current Connect Status 109 110 #define FRAME_TIMER_FREQ 1000 111 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ) 112 #define UFRAME_TIMER_NS (FRAME_TIMER_NS / 8) 113 114 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints 115 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction 116 #define MAX_QH 100 // Max allowable queue heads in a chain 117 #define MIN_UFR_PER_TICK 24 /* Min frames to process when catching up */ 118 #define PERIODIC_ACTIVE 512 /* Micro-frames */ 119 120 /* Internal periodic / asynchronous schedule state machine states 121 */ 122 typedef enum { 123 EST_INACTIVE = 1000, 124 EST_ACTIVE, 125 EST_EXECUTING, 126 EST_SLEEPING, 127 /* The following states are internal to the state machine function 128 */ 129 EST_WAITLISTHEAD, 130 EST_FETCHENTRY, 131 EST_FETCHQH, 132 EST_FETCHITD, 133 EST_FETCHSITD, 134 EST_ADVANCEQUEUE, 135 EST_FETCHQTD, 136 EST_EXECUTE, 137 EST_WRITEBACK, 138 EST_HORIZONTALQH 139 } EHCI_STATES; 140 141 /* macros for accessing fields within next link pointer entry */ 142 #define NLPTR_GET(x) ((x) & 0xffffffe0) 143 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3) 144 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid 145 146 /* link pointer types */ 147 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor 148 #define NLPTR_TYPE_QH 1 // queue head 149 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor 150 #define NLPTR_TYPE_FSTN 3 // frame span traversal node 151 152 #define SET_LAST_RUN_CLOCK(s) \ 153 (s)->last_run_ns = qemu_get_clock_ns(vm_clock); 154 155 /* nifty macros from Arnon's EHCI version */ 156 #define get_field(data, field) \ 157 (((data) & field##_MASK) >> field##_SH) 158 159 #define set_field(data, newval, field) do { \ 160 uint32_t val = *data; \ 161 val &= ~ field##_MASK; \ 162 val |= ((newval) << field##_SH) & field##_MASK; \ 163 *data = val; \ 164 } while(0) 165 166 static const char *ehci_state_names[] = { 167 [EST_INACTIVE] = "INACTIVE", 168 [EST_ACTIVE] = "ACTIVE", 169 [EST_EXECUTING] = "EXECUTING", 170 [EST_SLEEPING] = "SLEEPING", 171 [EST_WAITLISTHEAD] = "WAITLISTHEAD", 172 [EST_FETCHENTRY] = "FETCH ENTRY", 173 [EST_FETCHQH] = "FETCH QH", 174 [EST_FETCHITD] = "FETCH ITD", 175 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE", 176 [EST_FETCHQTD] = "FETCH QTD", 177 [EST_EXECUTE] = "EXECUTE", 178 [EST_WRITEBACK] = "WRITEBACK", 179 [EST_HORIZONTALQH] = "HORIZONTALQH", 180 }; 181 182 static const char *ehci_mmio_names[] = { 183 [USBCMD] = "USBCMD", 184 [USBSTS] = "USBSTS", 185 [USBINTR] = "USBINTR", 186 [FRINDEX] = "FRINDEX", 187 [PERIODICLISTBASE] = "P-LIST BASE", 188 [ASYNCLISTADDR] = "A-LIST ADDR", 189 [CONFIGFLAG] = "CONFIGFLAG", 190 }; 191 192 static int ehci_state_executing(EHCIQueue *q); 193 static int ehci_state_writeback(EHCIQueue *q); 194 static int ehci_state_advqueue(EHCIQueue *q); 195 static int ehci_fill_queue(EHCIPacket *p); 196 static void ehci_free_packet(EHCIPacket *p); 197 198 static const char *nr2str(const char **n, size_t len, uint32_t nr) 199 { 200 if (nr < len && n[nr] != NULL) { 201 return n[nr]; 202 } else { 203 return "unknown"; 204 } 205 } 206 207 static const char *state2str(uint32_t state) 208 { 209 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state); 210 } 211 212 static const char *addr2str(hwaddr addr) 213 { 214 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr); 215 } 216 217 static void ehci_trace_usbsts(uint32_t mask, int state) 218 { 219 /* interrupts */ 220 if (mask & USBSTS_INT) { 221 trace_usb_ehci_usbsts("INT", state); 222 } 223 if (mask & USBSTS_ERRINT) { 224 trace_usb_ehci_usbsts("ERRINT", state); 225 } 226 if (mask & USBSTS_PCD) { 227 trace_usb_ehci_usbsts("PCD", state); 228 } 229 if (mask & USBSTS_FLR) { 230 trace_usb_ehci_usbsts("FLR", state); 231 } 232 if (mask & USBSTS_HSE) { 233 trace_usb_ehci_usbsts("HSE", state); 234 } 235 if (mask & USBSTS_IAA) { 236 trace_usb_ehci_usbsts("IAA", state); 237 } 238 239 /* status */ 240 if (mask & USBSTS_HALT) { 241 trace_usb_ehci_usbsts("HALT", state); 242 } 243 if (mask & USBSTS_REC) { 244 trace_usb_ehci_usbsts("REC", state); 245 } 246 if (mask & USBSTS_PSS) { 247 trace_usb_ehci_usbsts("PSS", state); 248 } 249 if (mask & USBSTS_ASS) { 250 trace_usb_ehci_usbsts("ASS", state); 251 } 252 } 253 254 static inline void ehci_set_usbsts(EHCIState *s, int mask) 255 { 256 if ((s->usbsts & mask) == mask) { 257 return; 258 } 259 ehci_trace_usbsts(mask, 1); 260 s->usbsts |= mask; 261 } 262 263 static inline void ehci_clear_usbsts(EHCIState *s, int mask) 264 { 265 if ((s->usbsts & mask) == 0) { 266 return; 267 } 268 ehci_trace_usbsts(mask, 0); 269 s->usbsts &= ~mask; 270 } 271 272 /* update irq line */ 273 static inline void ehci_update_irq(EHCIState *s) 274 { 275 int level = 0; 276 277 if ((s->usbsts & USBINTR_MASK) & s->usbintr) { 278 level = 1; 279 } 280 281 trace_usb_ehci_irq(level, s->frindex, s->usbsts, s->usbintr); 282 qemu_set_irq(s->irq, level); 283 } 284 285 /* flag interrupt condition */ 286 static inline void ehci_raise_irq(EHCIState *s, int intr) 287 { 288 if (intr & (USBSTS_PCD | USBSTS_FLR | USBSTS_HSE)) { 289 s->usbsts |= intr; 290 ehci_update_irq(s); 291 } else { 292 s->usbsts_pending |= intr; 293 } 294 } 295 296 /* 297 * Commit pending interrupts (added via ehci_raise_irq), 298 * at the rate allowed by "Interrupt Threshold Control". 299 */ 300 static inline void ehci_commit_irq(EHCIState *s) 301 { 302 uint32_t itc; 303 304 if (!s->usbsts_pending) { 305 return; 306 } 307 if (s->usbsts_frindex > s->frindex) { 308 return; 309 } 310 311 itc = (s->usbcmd >> 16) & 0xff; 312 s->usbsts |= s->usbsts_pending; 313 s->usbsts_pending = 0; 314 s->usbsts_frindex = s->frindex + itc; 315 ehci_update_irq(s); 316 } 317 318 static void ehci_update_halt(EHCIState *s) 319 { 320 if (s->usbcmd & USBCMD_RUNSTOP) { 321 ehci_clear_usbsts(s, USBSTS_HALT); 322 } else { 323 if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) { 324 ehci_set_usbsts(s, USBSTS_HALT); 325 } 326 } 327 } 328 329 static void ehci_set_state(EHCIState *s, int async, int state) 330 { 331 if (async) { 332 trace_usb_ehci_state("async", state2str(state)); 333 s->astate = state; 334 if (s->astate == EST_INACTIVE) { 335 ehci_clear_usbsts(s, USBSTS_ASS); 336 ehci_update_halt(s); 337 } else { 338 ehci_set_usbsts(s, USBSTS_ASS); 339 } 340 } else { 341 trace_usb_ehci_state("periodic", state2str(state)); 342 s->pstate = state; 343 if (s->pstate == EST_INACTIVE) { 344 ehci_clear_usbsts(s, USBSTS_PSS); 345 ehci_update_halt(s); 346 } else { 347 ehci_set_usbsts(s, USBSTS_PSS); 348 } 349 } 350 } 351 352 static int ehci_get_state(EHCIState *s, int async) 353 { 354 return async ? s->astate : s->pstate; 355 } 356 357 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr) 358 { 359 if (async) { 360 s->a_fetch_addr = addr; 361 } else { 362 s->p_fetch_addr = addr; 363 } 364 } 365 366 static int ehci_get_fetch_addr(EHCIState *s, int async) 367 { 368 return async ? s->a_fetch_addr : s->p_fetch_addr; 369 } 370 371 static void ehci_trace_qh(EHCIQueue *q, hwaddr addr, EHCIqh *qh) 372 { 373 /* need three here due to argument count limits */ 374 trace_usb_ehci_qh_ptrs(q, addr, qh->next, 375 qh->current_qtd, qh->next_qtd, qh->altnext_qtd); 376 trace_usb_ehci_qh_fields(addr, 377 get_field(qh->epchar, QH_EPCHAR_RL), 378 get_field(qh->epchar, QH_EPCHAR_MPLEN), 379 get_field(qh->epchar, QH_EPCHAR_EPS), 380 get_field(qh->epchar, QH_EPCHAR_EP), 381 get_field(qh->epchar, QH_EPCHAR_DEVADDR)); 382 trace_usb_ehci_qh_bits(addr, 383 (bool)(qh->epchar & QH_EPCHAR_C), 384 (bool)(qh->epchar & QH_EPCHAR_H), 385 (bool)(qh->epchar & QH_EPCHAR_DTC), 386 (bool)(qh->epchar & QH_EPCHAR_I)); 387 } 388 389 static void ehci_trace_qtd(EHCIQueue *q, hwaddr addr, EHCIqtd *qtd) 390 { 391 /* need three here due to argument count limits */ 392 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext); 393 trace_usb_ehci_qtd_fields(addr, 394 get_field(qtd->token, QTD_TOKEN_TBYTES), 395 get_field(qtd->token, QTD_TOKEN_CPAGE), 396 get_field(qtd->token, QTD_TOKEN_CERR), 397 get_field(qtd->token, QTD_TOKEN_PID)); 398 trace_usb_ehci_qtd_bits(addr, 399 (bool)(qtd->token & QTD_TOKEN_IOC), 400 (bool)(qtd->token & QTD_TOKEN_ACTIVE), 401 (bool)(qtd->token & QTD_TOKEN_HALT), 402 (bool)(qtd->token & QTD_TOKEN_BABBLE), 403 (bool)(qtd->token & QTD_TOKEN_XACTERR)); 404 } 405 406 static void ehci_trace_itd(EHCIState *s, hwaddr addr, EHCIitd *itd) 407 { 408 trace_usb_ehci_itd(addr, itd->next, 409 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT), 410 get_field(itd->bufptr[2], ITD_BUFPTR_MULT), 411 get_field(itd->bufptr[0], ITD_BUFPTR_EP), 412 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR)); 413 } 414 415 static void ehci_trace_sitd(EHCIState *s, hwaddr addr, 416 EHCIsitd *sitd) 417 { 418 trace_usb_ehci_sitd(addr, sitd->next, 419 (bool)(sitd->results & SITD_RESULTS_ACTIVE)); 420 } 421 422 static void ehci_trace_guest_bug(EHCIState *s, const char *message) 423 { 424 trace_usb_ehci_guest_bug(message); 425 fprintf(stderr, "ehci warning: %s\n", message); 426 } 427 428 static inline bool ehci_enabled(EHCIState *s) 429 { 430 return s->usbcmd & USBCMD_RUNSTOP; 431 } 432 433 static inline bool ehci_async_enabled(EHCIState *s) 434 { 435 return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE); 436 } 437 438 static inline bool ehci_periodic_enabled(EHCIState *s) 439 { 440 return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE); 441 } 442 443 /* Get an array of dwords from main memory */ 444 static inline int get_dwords(EHCIState *ehci, uint32_t addr, 445 uint32_t *buf, int num) 446 { 447 int i; 448 449 if (!ehci->dma) { 450 ehci_raise_irq(ehci, USBSTS_HSE); 451 ehci->usbcmd &= ~USBCMD_RUNSTOP; 452 trace_usb_ehci_dma_error(); 453 return -1; 454 } 455 456 for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { 457 dma_memory_read(ehci->dma, addr, buf, sizeof(*buf)); 458 *buf = le32_to_cpu(*buf); 459 } 460 461 return num; 462 } 463 464 /* Put an array of dwords in to main memory */ 465 static inline int put_dwords(EHCIState *ehci, uint32_t addr, 466 uint32_t *buf, int num) 467 { 468 int i; 469 470 if (!ehci->dma) { 471 ehci_raise_irq(ehci, USBSTS_HSE); 472 ehci->usbcmd &= ~USBCMD_RUNSTOP; 473 trace_usb_ehci_dma_error(); 474 return -1; 475 } 476 477 for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { 478 uint32_t tmp = cpu_to_le32(*buf); 479 dma_memory_write(ehci->dma, addr, &tmp, sizeof(tmp)); 480 } 481 482 return num; 483 } 484 485 static int ehci_get_pid(EHCIqtd *qtd) 486 { 487 switch (get_field(qtd->token, QTD_TOKEN_PID)) { 488 case 0: 489 return USB_TOKEN_OUT; 490 case 1: 491 return USB_TOKEN_IN; 492 case 2: 493 return USB_TOKEN_SETUP; 494 default: 495 fprintf(stderr, "bad token\n"); 496 return 0; 497 } 498 } 499 500 static bool ehci_verify_qh(EHCIQueue *q, EHCIqh *qh) 501 { 502 uint32_t devaddr = get_field(qh->epchar, QH_EPCHAR_DEVADDR); 503 uint32_t endp = get_field(qh->epchar, QH_EPCHAR_EP); 504 if ((devaddr != get_field(q->qh.epchar, QH_EPCHAR_DEVADDR)) || 505 (endp != get_field(q->qh.epchar, QH_EPCHAR_EP)) || 506 (qh->current_qtd != q->qh.current_qtd) || 507 (q->async && qh->next_qtd != q->qh.next_qtd) || 508 (memcmp(&qh->altnext_qtd, &q->qh.altnext_qtd, 509 7 * sizeof(uint32_t)) != 0) || 510 (q->dev != NULL && q->dev->addr != devaddr)) { 511 return false; 512 } else { 513 return true; 514 } 515 } 516 517 static bool ehci_verify_qtd(EHCIPacket *p, EHCIqtd *qtd) 518 { 519 if (p->qtdaddr != p->queue->qtdaddr || 520 (p->queue->async && !NLPTR_TBIT(p->qtd.next) && 521 (p->qtd.next != qtd->next)) || 522 (!NLPTR_TBIT(p->qtd.altnext) && (p->qtd.altnext != qtd->altnext)) || 523 p->qtd.token != qtd->token || 524 p->qtd.bufptr[0] != qtd->bufptr[0]) { 525 return false; 526 } else { 527 return true; 528 } 529 } 530 531 static bool ehci_verify_pid(EHCIQueue *q, EHCIqtd *qtd) 532 { 533 int ep = get_field(q->qh.epchar, QH_EPCHAR_EP); 534 int pid = ehci_get_pid(qtd); 535 536 /* Note the pid changing is normal for ep 0 (the control ep) */ 537 if (q->last_pid && ep != 0 && pid != q->last_pid) { 538 return false; 539 } else { 540 return true; 541 } 542 } 543 544 /* Finish executing and writeback a packet outside of the regular 545 fetchqh -> fetchqtd -> execute -> writeback cycle */ 546 static void ehci_writeback_async_complete_packet(EHCIPacket *p) 547 { 548 EHCIQueue *q = p->queue; 549 EHCIqtd qtd; 550 EHCIqh qh; 551 int state; 552 553 /* Verify the qh + qtd, like we do when going through fetchqh & fetchqtd */ 554 get_dwords(q->ehci, NLPTR_GET(q->qhaddr), 555 (uint32_t *) &qh, sizeof(EHCIqh) >> 2); 556 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), 557 (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2); 558 if (!ehci_verify_qh(q, &qh) || !ehci_verify_qtd(p, &qtd)) { 559 p->async = EHCI_ASYNC_INITIALIZED; 560 ehci_free_packet(p); 561 return; 562 } 563 564 state = ehci_get_state(q->ehci, q->async); 565 ehci_state_executing(q); 566 ehci_state_writeback(q); /* Frees the packet! */ 567 if (!(q->qh.token & QTD_TOKEN_HALT)) { 568 ehci_state_advqueue(q); 569 } 570 ehci_set_state(q->ehci, q->async, state); 571 } 572 573 /* packet management */ 574 575 static EHCIPacket *ehci_alloc_packet(EHCIQueue *q) 576 { 577 EHCIPacket *p; 578 579 p = g_new0(EHCIPacket, 1); 580 p->queue = q; 581 usb_packet_init(&p->packet); 582 QTAILQ_INSERT_TAIL(&q->packets, p, next); 583 trace_usb_ehci_packet_action(p->queue, p, "alloc"); 584 return p; 585 } 586 587 static void ehci_free_packet(EHCIPacket *p) 588 { 589 if (p->async == EHCI_ASYNC_FINISHED && 590 !(p->queue->qh.token & QTD_TOKEN_HALT)) { 591 ehci_writeback_async_complete_packet(p); 592 return; 593 } 594 trace_usb_ehci_packet_action(p->queue, p, "free"); 595 if (p->async == EHCI_ASYNC_INFLIGHT) { 596 usb_cancel_packet(&p->packet); 597 } 598 if (p->async == EHCI_ASYNC_FINISHED && 599 p->packet.status == USB_RET_SUCCESS) { 600 fprintf(stderr, 601 "EHCI: Dropping completed packet from halted %s ep %02X\n", 602 (p->pid == USB_TOKEN_IN) ? "in" : "out", 603 get_field(p->queue->qh.epchar, QH_EPCHAR_EP)); 604 } 605 if (p->async != EHCI_ASYNC_NONE) { 606 usb_packet_unmap(&p->packet, &p->sgl); 607 qemu_sglist_destroy(&p->sgl); 608 } 609 QTAILQ_REMOVE(&p->queue->packets, p, next); 610 usb_packet_cleanup(&p->packet); 611 g_free(p); 612 } 613 614 /* queue management */ 615 616 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async) 617 { 618 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 619 EHCIQueue *q; 620 621 q = g_malloc0(sizeof(*q)); 622 q->ehci = ehci; 623 q->qhaddr = addr; 624 q->async = async; 625 QTAILQ_INIT(&q->packets); 626 QTAILQ_INSERT_HEAD(head, q, next); 627 trace_usb_ehci_queue_action(q, "alloc"); 628 return q; 629 } 630 631 static void ehci_queue_stopped(EHCIQueue *q) 632 { 633 int endp = get_field(q->qh.epchar, QH_EPCHAR_EP); 634 635 if (!q->last_pid || !q->dev) { 636 return; 637 } 638 639 usb_device_ep_stopped(q->dev, usb_ep_get(q->dev, q->last_pid, endp)); 640 } 641 642 static int ehci_cancel_queue(EHCIQueue *q) 643 { 644 EHCIPacket *p; 645 int packets = 0; 646 647 p = QTAILQ_FIRST(&q->packets); 648 if (p == NULL) { 649 goto leave; 650 } 651 652 trace_usb_ehci_queue_action(q, "cancel"); 653 do { 654 ehci_free_packet(p); 655 packets++; 656 } while ((p = QTAILQ_FIRST(&q->packets)) != NULL); 657 658 leave: 659 ehci_queue_stopped(q); 660 return packets; 661 } 662 663 static int ehci_reset_queue(EHCIQueue *q) 664 { 665 int packets; 666 667 trace_usb_ehci_queue_action(q, "reset"); 668 packets = ehci_cancel_queue(q); 669 q->dev = NULL; 670 q->qtdaddr = 0; 671 q->last_pid = 0; 672 return packets; 673 } 674 675 static void ehci_free_queue(EHCIQueue *q, const char *warn) 676 { 677 EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues; 678 int cancelled; 679 680 trace_usb_ehci_queue_action(q, "free"); 681 cancelled = ehci_cancel_queue(q); 682 if (warn && cancelled > 0) { 683 ehci_trace_guest_bug(q->ehci, warn); 684 } 685 QTAILQ_REMOVE(head, q, next); 686 g_free(q); 687 } 688 689 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr, 690 int async) 691 { 692 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 693 EHCIQueue *q; 694 695 QTAILQ_FOREACH(q, head, next) { 696 if (addr == q->qhaddr) { 697 return q; 698 } 699 } 700 return NULL; 701 } 702 703 static void ehci_queues_rip_unused(EHCIState *ehci, int async) 704 { 705 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 706 const char *warn = async ? "guest unlinked busy QH" : NULL; 707 uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4; 708 EHCIQueue *q, *tmp; 709 710 QTAILQ_FOREACH_SAFE(q, head, next, tmp) { 711 if (q->seen) { 712 q->seen = 0; 713 q->ts = ehci->last_run_ns; 714 continue; 715 } 716 if (ehci->last_run_ns < q->ts + maxage) { 717 continue; 718 } 719 ehci_free_queue(q, warn); 720 } 721 } 722 723 static void ehci_queues_rip_unseen(EHCIState *ehci, int async) 724 { 725 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 726 EHCIQueue *q, *tmp; 727 728 QTAILQ_FOREACH_SAFE(q, head, next, tmp) { 729 if (!q->seen) { 730 ehci_free_queue(q, NULL); 731 } 732 } 733 } 734 735 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async) 736 { 737 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 738 EHCIQueue *q, *tmp; 739 740 QTAILQ_FOREACH_SAFE(q, head, next, tmp) { 741 if (q->dev != dev) { 742 continue; 743 } 744 ehci_free_queue(q, NULL); 745 } 746 } 747 748 static void ehci_queues_rip_all(EHCIState *ehci, int async) 749 { 750 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 751 const char *warn = async ? "guest stopped busy async schedule" : NULL; 752 EHCIQueue *q, *tmp; 753 754 QTAILQ_FOREACH_SAFE(q, head, next, tmp) { 755 ehci_free_queue(q, warn); 756 } 757 } 758 759 /* Attach or detach a device on root hub */ 760 761 static void ehci_attach(USBPort *port) 762 { 763 EHCIState *s = port->opaque; 764 uint32_t *portsc = &s->portsc[port->index]; 765 const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci"; 766 767 trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc); 768 769 if (*portsc & PORTSC_POWNER) { 770 USBPort *companion = s->companion_ports[port->index]; 771 companion->dev = port->dev; 772 companion->ops->attach(companion); 773 return; 774 } 775 776 *portsc |= PORTSC_CONNECT; 777 *portsc |= PORTSC_CSC; 778 779 ehci_raise_irq(s, USBSTS_PCD); 780 } 781 782 static void ehci_detach(USBPort *port) 783 { 784 EHCIState *s = port->opaque; 785 uint32_t *portsc = &s->portsc[port->index]; 786 const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci"; 787 788 trace_usb_ehci_port_detach(port->index, owner); 789 790 if (*portsc & PORTSC_POWNER) { 791 USBPort *companion = s->companion_ports[port->index]; 792 companion->ops->detach(companion); 793 companion->dev = NULL; 794 /* 795 * EHCI spec 4.2.2: "When a disconnect occurs... On the event, 796 * the port ownership is returned immediately to the EHCI controller." 797 */ 798 *portsc &= ~PORTSC_POWNER; 799 return; 800 } 801 802 ehci_queues_rip_device(s, port->dev, 0); 803 ehci_queues_rip_device(s, port->dev, 1); 804 805 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED); 806 *portsc |= PORTSC_CSC; 807 808 ehci_raise_irq(s, USBSTS_PCD); 809 } 810 811 static void ehci_child_detach(USBPort *port, USBDevice *child) 812 { 813 EHCIState *s = port->opaque; 814 uint32_t portsc = s->portsc[port->index]; 815 816 if (portsc & PORTSC_POWNER) { 817 USBPort *companion = s->companion_ports[port->index]; 818 companion->ops->child_detach(companion, child); 819 return; 820 } 821 822 ehci_queues_rip_device(s, child, 0); 823 ehci_queues_rip_device(s, child, 1); 824 } 825 826 static void ehci_wakeup(USBPort *port) 827 { 828 EHCIState *s = port->opaque; 829 uint32_t portsc = s->portsc[port->index]; 830 831 if (portsc & PORTSC_POWNER) { 832 USBPort *companion = s->companion_ports[port->index]; 833 if (companion->ops->wakeup) { 834 companion->ops->wakeup(companion); 835 } 836 return; 837 } 838 839 qemu_bh_schedule(s->async_bh); 840 } 841 842 static int ehci_register_companion(USBBus *bus, USBPort *ports[], 843 uint32_t portcount, uint32_t firstport) 844 { 845 EHCIState *s = container_of(bus, EHCIState, bus); 846 uint32_t i; 847 848 if (firstport + portcount > NB_PORTS) { 849 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport", 850 "firstport on masterbus"); 851 error_printf_unless_qmp( 852 "firstport value of %u makes companion take ports %u - %u, which " 853 "is outside of the valid range of 0 - %u\n", firstport, firstport, 854 firstport + portcount - 1, NB_PORTS - 1); 855 return -1; 856 } 857 858 for (i = 0; i < portcount; i++) { 859 if (s->companion_ports[firstport + i]) { 860 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus", 861 "an USB masterbus"); 862 error_printf_unless_qmp( 863 "port %u on masterbus %s already has a companion assigned\n", 864 firstport + i, bus->qbus.name); 865 return -1; 866 } 867 } 868 869 for (i = 0; i < portcount; i++) { 870 s->companion_ports[firstport + i] = ports[i]; 871 s->ports[firstport + i].speedmask |= 872 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL; 873 /* Ensure devs attached before the initial reset go to the companion */ 874 s->portsc[firstport + i] = PORTSC_POWNER; 875 } 876 877 s->companion_count++; 878 s->caps[0x05] = (s->companion_count << 4) | portcount; 879 880 return 0; 881 } 882 883 static void ehci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep, 884 unsigned int stream) 885 { 886 EHCIState *s = container_of(bus, EHCIState, bus); 887 uint32_t portsc = s->portsc[ep->dev->port->index]; 888 889 if (portsc & PORTSC_POWNER) { 890 return; 891 } 892 893 s->periodic_sched_active = PERIODIC_ACTIVE; 894 qemu_bh_schedule(s->async_bh); 895 } 896 897 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr) 898 { 899 USBDevice *dev; 900 USBPort *port; 901 int i; 902 903 for (i = 0; i < NB_PORTS; i++) { 904 port = &ehci->ports[i]; 905 if (!(ehci->portsc[i] & PORTSC_PED)) { 906 DPRINTF("Port %d not enabled\n", i); 907 continue; 908 } 909 dev = usb_find_device(port, addr); 910 if (dev != NULL) { 911 return dev; 912 } 913 } 914 return NULL; 915 } 916 917 /* 4.1 host controller initialization */ 918 static void ehci_reset(void *opaque) 919 { 920 EHCIState *s = opaque; 921 int i; 922 USBDevice *devs[NB_PORTS]; 923 924 trace_usb_ehci_reset(); 925 926 /* 927 * Do the detach before touching portsc, so that it correctly gets send to 928 * us or to our companion based on PORTSC_POWNER before the reset. 929 */ 930 for(i = 0; i < NB_PORTS; i++) { 931 devs[i] = s->ports[i].dev; 932 if (devs[i] && devs[i]->attached) { 933 usb_detach(&s->ports[i]); 934 } 935 } 936 937 memset(&s->opreg, 0x00, sizeof(s->opreg)); 938 memset(&s->portsc, 0x00, sizeof(s->portsc)); 939 940 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH; 941 s->usbsts = USBSTS_HALT; 942 s->usbsts_pending = 0; 943 s->usbsts_frindex = 0; 944 945 s->astate = EST_INACTIVE; 946 s->pstate = EST_INACTIVE; 947 948 for(i = 0; i < NB_PORTS; i++) { 949 if (s->companion_ports[i]) { 950 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER; 951 } else { 952 s->portsc[i] = PORTSC_PPOWER; 953 } 954 if (devs[i] && devs[i]->attached) { 955 usb_attach(&s->ports[i]); 956 usb_device_reset(devs[i]); 957 } 958 } 959 ehci_queues_rip_all(s, 0); 960 ehci_queues_rip_all(s, 1); 961 qemu_del_timer(s->frame_timer); 962 qemu_bh_cancel(s->async_bh); 963 } 964 965 static uint64_t ehci_caps_read(void *ptr, hwaddr addr, 966 unsigned size) 967 { 968 EHCIState *s = ptr; 969 return s->caps[addr]; 970 } 971 972 static uint64_t ehci_opreg_read(void *ptr, hwaddr addr, 973 unsigned size) 974 { 975 EHCIState *s = ptr; 976 uint32_t val; 977 978 switch (addr) { 979 case FRINDEX: 980 /* Round down to mult of 8, else it can go backwards on migration */ 981 val = s->frindex & ~7; 982 break; 983 default: 984 val = s->opreg[addr >> 2]; 985 } 986 987 trace_usb_ehci_opreg_read(addr + s->opregbase, addr2str(addr), val); 988 return val; 989 } 990 991 static uint64_t ehci_port_read(void *ptr, hwaddr addr, 992 unsigned size) 993 { 994 EHCIState *s = ptr; 995 uint32_t val; 996 997 val = s->portsc[addr >> 2]; 998 trace_usb_ehci_portsc_read(addr + PORTSC_BEGIN, addr >> 2, val); 999 return val; 1000 } 1001 1002 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner) 1003 { 1004 USBDevice *dev = s->ports[port].dev; 1005 uint32_t *portsc = &s->portsc[port]; 1006 uint32_t orig; 1007 1008 if (s->companion_ports[port] == NULL) 1009 return; 1010 1011 owner = owner & PORTSC_POWNER; 1012 orig = *portsc & PORTSC_POWNER; 1013 1014 if (!(owner ^ orig)) { 1015 return; 1016 } 1017 1018 if (dev && dev->attached) { 1019 usb_detach(&s->ports[port]); 1020 } 1021 1022 *portsc &= ~PORTSC_POWNER; 1023 *portsc |= owner; 1024 1025 if (dev && dev->attached) { 1026 usb_attach(&s->ports[port]); 1027 } 1028 } 1029 1030 static void ehci_port_write(void *ptr, hwaddr addr, 1031 uint64_t val, unsigned size) 1032 { 1033 EHCIState *s = ptr; 1034 int port = addr >> 2; 1035 uint32_t *portsc = &s->portsc[port]; 1036 uint32_t old = *portsc; 1037 USBDevice *dev = s->ports[port].dev; 1038 1039 trace_usb_ehci_portsc_write(addr + PORTSC_BEGIN, addr >> 2, val); 1040 1041 /* Clear rwc bits */ 1042 *portsc &= ~(val & PORTSC_RWC_MASK); 1043 /* The guest may clear, but not set the PED bit */ 1044 *portsc &= val | ~PORTSC_PED; 1045 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */ 1046 handle_port_owner_write(s, port, val); 1047 /* And finally apply RO_MASK */ 1048 val &= PORTSC_RO_MASK; 1049 1050 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) { 1051 trace_usb_ehci_port_reset(port, 1); 1052 } 1053 1054 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) { 1055 trace_usb_ehci_port_reset(port, 0); 1056 if (dev && dev->attached) { 1057 usb_port_reset(&s->ports[port]); 1058 *portsc &= ~PORTSC_CSC; 1059 } 1060 1061 /* 1062 * Table 2.16 Set the enable bit(and enable bit change) to indicate 1063 * to SW that this port has a high speed device attached 1064 */ 1065 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) { 1066 val |= PORTSC_PED; 1067 } 1068 } 1069 1070 *portsc &= ~PORTSC_RO_MASK; 1071 *portsc |= val; 1072 trace_usb_ehci_portsc_change(addr + PORTSC_BEGIN, addr >> 2, *portsc, old); 1073 } 1074 1075 static void ehci_opreg_write(void *ptr, hwaddr addr, 1076 uint64_t val, unsigned size) 1077 { 1078 EHCIState *s = ptr; 1079 uint32_t *mmio = s->opreg + (addr >> 2); 1080 uint32_t old = *mmio; 1081 int i; 1082 1083 trace_usb_ehci_opreg_write(addr + s->opregbase, addr2str(addr), val); 1084 1085 switch (addr) { 1086 case USBCMD: 1087 if (val & USBCMD_HCRESET) { 1088 ehci_reset(s); 1089 val = s->usbcmd; 1090 break; 1091 } 1092 1093 /* not supporting dynamic frame list size at the moment */ 1094 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) { 1095 fprintf(stderr, "attempt to set frame list size -- value %d\n", 1096 (int)val & USBCMD_FLS); 1097 val &= ~USBCMD_FLS; 1098 } 1099 1100 if (val & USBCMD_IAAD) { 1101 /* 1102 * Process IAAD immediately, otherwise the Linux IAAD watchdog may 1103 * trigger and re-use a qh without us seeing the unlink. 1104 */ 1105 s->async_stepdown = 0; 1106 qemu_bh_schedule(s->async_bh); 1107 trace_usb_ehci_doorbell_ring(); 1108 } 1109 1110 if (((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & val) != 1111 ((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & s->usbcmd)) { 1112 if (s->pstate == EST_INACTIVE) { 1113 SET_LAST_RUN_CLOCK(s); 1114 } 1115 s->usbcmd = val; /* Set usbcmd for ehci_update_halt() */ 1116 ehci_update_halt(s); 1117 s->async_stepdown = 0; 1118 qemu_bh_schedule(s->async_bh); 1119 } 1120 break; 1121 1122 case USBSTS: 1123 val &= USBSTS_RO_MASK; // bits 6 through 31 are RO 1124 ehci_clear_usbsts(s, val); // bits 0 through 5 are R/WC 1125 val = s->usbsts; 1126 ehci_update_irq(s); 1127 break; 1128 1129 case USBINTR: 1130 val &= USBINTR_MASK; 1131 if (ehci_enabled(s) && (USBSTS_FLR & val)) { 1132 qemu_bh_schedule(s->async_bh); 1133 } 1134 break; 1135 1136 case FRINDEX: 1137 val &= 0x00003fff; /* frindex is 14bits */ 1138 s->usbsts_frindex = val; 1139 break; 1140 1141 case CONFIGFLAG: 1142 val &= 0x1; 1143 if (val) { 1144 for(i = 0; i < NB_PORTS; i++) 1145 handle_port_owner_write(s, i, 0); 1146 } 1147 break; 1148 1149 case PERIODICLISTBASE: 1150 if (ehci_periodic_enabled(s)) { 1151 fprintf(stderr, 1152 "ehci: PERIODIC list base register set while periodic schedule\n" 1153 " is enabled and HC is enabled\n"); 1154 } 1155 break; 1156 1157 case ASYNCLISTADDR: 1158 if (ehci_async_enabled(s)) { 1159 fprintf(stderr, 1160 "ehci: ASYNC list address register set while async schedule\n" 1161 " is enabled and HC is enabled\n"); 1162 } 1163 break; 1164 } 1165 1166 *mmio = val; 1167 trace_usb_ehci_opreg_change(addr + s->opregbase, addr2str(addr), 1168 *mmio, old); 1169 } 1170 1171 /* 1172 * Write the qh back to guest physical memory. This step isn't 1173 * in the EHCI spec but we need to do it since we don't share 1174 * physical memory with our guest VM. 1175 * 1176 * The first three dwords are read-only for the EHCI, so skip them 1177 * when writing back the qh. 1178 */ 1179 static void ehci_flush_qh(EHCIQueue *q) 1180 { 1181 uint32_t *qh = (uint32_t *) &q->qh; 1182 uint32_t dwords = sizeof(EHCIqh) >> 2; 1183 uint32_t addr = NLPTR_GET(q->qhaddr); 1184 1185 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3); 1186 } 1187 1188 // 4.10.2 1189 1190 static int ehci_qh_do_overlay(EHCIQueue *q) 1191 { 1192 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 1193 int i; 1194 int dtoggle; 1195 int ping; 1196 int eps; 1197 int reload; 1198 1199 assert(p != NULL); 1200 assert(p->qtdaddr == q->qtdaddr); 1201 1202 // remember values in fields to preserve in qh after overlay 1203 1204 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE; 1205 ping = q->qh.token & QTD_TOKEN_PING; 1206 1207 q->qh.current_qtd = p->qtdaddr; 1208 q->qh.next_qtd = p->qtd.next; 1209 q->qh.altnext_qtd = p->qtd.altnext; 1210 q->qh.token = p->qtd.token; 1211 1212 1213 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS); 1214 if (eps == EHCI_QH_EPS_HIGH) { 1215 q->qh.token &= ~QTD_TOKEN_PING; 1216 q->qh.token |= ping; 1217 } 1218 1219 reload = get_field(q->qh.epchar, QH_EPCHAR_RL); 1220 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT); 1221 1222 for (i = 0; i < 5; i++) { 1223 q->qh.bufptr[i] = p->qtd.bufptr[i]; 1224 } 1225 1226 if (!(q->qh.epchar & QH_EPCHAR_DTC)) { 1227 // preserve QH DT bit 1228 q->qh.token &= ~QTD_TOKEN_DTOGGLE; 1229 q->qh.token |= dtoggle; 1230 } 1231 1232 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK; 1233 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK; 1234 1235 ehci_flush_qh(q); 1236 1237 return 0; 1238 } 1239 1240 static int ehci_init_transfer(EHCIPacket *p) 1241 { 1242 uint32_t cpage, offset, bytes, plen; 1243 dma_addr_t page; 1244 1245 cpage = get_field(p->qtd.token, QTD_TOKEN_CPAGE); 1246 bytes = get_field(p->qtd.token, QTD_TOKEN_TBYTES); 1247 offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK; 1248 qemu_sglist_init(&p->sgl, 5, p->queue->ehci->dma); 1249 1250 while (bytes > 0) { 1251 if (cpage > 4) { 1252 fprintf(stderr, "cpage out of range (%d)\n", cpage); 1253 return -1; 1254 } 1255 1256 page = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK; 1257 page += offset; 1258 plen = bytes; 1259 if (plen > 4096 - offset) { 1260 plen = 4096 - offset; 1261 offset = 0; 1262 cpage++; 1263 } 1264 1265 qemu_sglist_add(&p->sgl, page, plen); 1266 bytes -= plen; 1267 } 1268 return 0; 1269 } 1270 1271 static void ehci_finish_transfer(EHCIQueue *q, int len) 1272 { 1273 uint32_t cpage, offset; 1274 1275 if (len > 0) { 1276 /* update cpage & offset */ 1277 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE); 1278 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK; 1279 1280 offset += len; 1281 cpage += offset >> QTD_BUFPTR_SH; 1282 offset &= ~QTD_BUFPTR_MASK; 1283 1284 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE); 1285 q->qh.bufptr[0] &= QTD_BUFPTR_MASK; 1286 q->qh.bufptr[0] |= offset; 1287 } 1288 } 1289 1290 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet) 1291 { 1292 EHCIPacket *p; 1293 EHCIState *s = port->opaque; 1294 uint32_t portsc = s->portsc[port->index]; 1295 1296 if (portsc & PORTSC_POWNER) { 1297 USBPort *companion = s->companion_ports[port->index]; 1298 companion->ops->complete(companion, packet); 1299 return; 1300 } 1301 1302 p = container_of(packet, EHCIPacket, packet); 1303 assert(p->async == EHCI_ASYNC_INFLIGHT); 1304 1305 if (packet->status == USB_RET_REMOVE_FROM_QUEUE) { 1306 trace_usb_ehci_packet_action(p->queue, p, "remove"); 1307 ehci_free_packet(p); 1308 return; 1309 } 1310 1311 trace_usb_ehci_packet_action(p->queue, p, "wakeup"); 1312 p->async = EHCI_ASYNC_FINISHED; 1313 1314 if (!p->queue->async) { 1315 s->periodic_sched_active = PERIODIC_ACTIVE; 1316 } 1317 qemu_bh_schedule(s->async_bh); 1318 } 1319 1320 static void ehci_execute_complete(EHCIQueue *q) 1321 { 1322 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 1323 uint32_t tbytes; 1324 1325 assert(p != NULL); 1326 assert(p->qtdaddr == q->qtdaddr); 1327 assert(p->async == EHCI_ASYNC_INITIALIZED || 1328 p->async == EHCI_ASYNC_FINISHED); 1329 1330 DPRINTF("execute_complete: qhaddr 0x%x, next 0x%x, qtdaddr 0x%x, " 1331 "status %d, actual_length %d\n", 1332 q->qhaddr, q->qh.next, q->qtdaddr, 1333 p->packet.status, p->packet.actual_length); 1334 1335 switch (p->packet.status) { 1336 case USB_RET_SUCCESS: 1337 break; 1338 case USB_RET_IOERROR: 1339 case USB_RET_NODEV: 1340 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR); 1341 set_field(&q->qh.token, 0, QTD_TOKEN_CERR); 1342 ehci_raise_irq(q->ehci, USBSTS_ERRINT); 1343 break; 1344 case USB_RET_STALL: 1345 q->qh.token |= QTD_TOKEN_HALT; 1346 ehci_raise_irq(q->ehci, USBSTS_ERRINT); 1347 break; 1348 case USB_RET_NAK: 1349 set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT); 1350 return; /* We're not done yet with this transaction */ 1351 case USB_RET_BABBLE: 1352 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE); 1353 ehci_raise_irq(q->ehci, USBSTS_ERRINT); 1354 break; 1355 default: 1356 /* should not be triggerable */ 1357 fprintf(stderr, "USB invalid response %d\n", p->packet.status); 1358 assert(0); 1359 break; 1360 } 1361 1362 /* TODO check 4.12 for splits */ 1363 tbytes = get_field(q->qh.token, QTD_TOKEN_TBYTES); 1364 if (tbytes && p->pid == USB_TOKEN_IN) { 1365 tbytes -= p->packet.actual_length; 1366 if (tbytes) { 1367 /* 4.15.1.2 must raise int on a short input packet */ 1368 ehci_raise_irq(q->ehci, USBSTS_INT); 1369 if (q->async) { 1370 q->ehci->int_req_by_async = true; 1371 } 1372 } 1373 } else { 1374 tbytes = 0; 1375 } 1376 DPRINTF("updating tbytes to %d\n", tbytes); 1377 set_field(&q->qh.token, tbytes, QTD_TOKEN_TBYTES); 1378 1379 ehci_finish_transfer(q, p->packet.actual_length); 1380 usb_packet_unmap(&p->packet, &p->sgl); 1381 qemu_sglist_destroy(&p->sgl); 1382 p->async = EHCI_ASYNC_NONE; 1383 1384 q->qh.token ^= QTD_TOKEN_DTOGGLE; 1385 q->qh.token &= ~QTD_TOKEN_ACTIVE; 1386 1387 if (q->qh.token & QTD_TOKEN_IOC) { 1388 ehci_raise_irq(q->ehci, USBSTS_INT); 1389 if (q->async) { 1390 q->ehci->int_req_by_async = true; 1391 } 1392 } 1393 } 1394 1395 /* 4.10.3 returns "again" */ 1396 static int ehci_execute(EHCIPacket *p, const char *action) 1397 { 1398 USBEndpoint *ep; 1399 int endp; 1400 bool spd; 1401 1402 assert(p->async == EHCI_ASYNC_NONE || 1403 p->async == EHCI_ASYNC_INITIALIZED); 1404 1405 if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) { 1406 fprintf(stderr, "Attempting to execute inactive qtd\n"); 1407 return -1; 1408 } 1409 1410 if (get_field(p->qtd.token, QTD_TOKEN_TBYTES) > BUFF_SIZE) { 1411 ehci_trace_guest_bug(p->queue->ehci, 1412 "guest requested more bytes than allowed"); 1413 return -1; 1414 } 1415 1416 if (!ehci_verify_pid(p->queue, &p->qtd)) { 1417 ehci_queue_stopped(p->queue); /* Mark the ep in the prev dir stopped */ 1418 } 1419 p->pid = ehci_get_pid(&p->qtd); 1420 p->queue->last_pid = p->pid; 1421 endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP); 1422 ep = usb_ep_get(p->queue->dev, p->pid, endp); 1423 1424 if (p->async == EHCI_ASYNC_NONE) { 1425 if (ehci_init_transfer(p) != 0) { 1426 return -1; 1427 } 1428 1429 spd = (p->pid == USB_TOKEN_IN && NLPTR_TBIT(p->qtd.altnext) == 0); 1430 usb_packet_setup(&p->packet, p->pid, ep, 0, p->qtdaddr, spd, 1431 (p->qtd.token & QTD_TOKEN_IOC) != 0); 1432 usb_packet_map(&p->packet, &p->sgl); 1433 p->async = EHCI_ASYNC_INITIALIZED; 1434 } 1435 1436 trace_usb_ehci_packet_action(p->queue, p, action); 1437 usb_handle_packet(p->queue->dev, &p->packet); 1438 DPRINTF("submit: qh 0x%x next 0x%x qtd 0x%x pid 0x%x len %zd endp 0x%x " 1439 "status %d actual_length %d\n", p->queue->qhaddr, p->qtd.next, 1440 p->qtdaddr, p->pid, p->packet.iov.size, endp, p->packet.status, 1441 p->packet.actual_length); 1442 1443 if (p->packet.actual_length > BUFF_SIZE) { 1444 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n"); 1445 return -1; 1446 } 1447 1448 return 1; 1449 } 1450 1451 /* 4.7.2 1452 */ 1453 1454 static int ehci_process_itd(EHCIState *ehci, 1455 EHCIitd *itd, 1456 uint32_t addr) 1457 { 1458 USBDevice *dev; 1459 USBEndpoint *ep; 1460 uint32_t i, len, pid, dir, devaddr, endp; 1461 uint32_t pg, off, ptr1, ptr2, max, mult; 1462 1463 ehci->periodic_sched_active = PERIODIC_ACTIVE; 1464 1465 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION); 1466 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR); 1467 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP); 1468 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT); 1469 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT); 1470 1471 for(i = 0; i < 8; i++) { 1472 if (itd->transact[i] & ITD_XACT_ACTIVE) { 1473 pg = get_field(itd->transact[i], ITD_XACT_PGSEL); 1474 off = itd->transact[i] & ITD_XACT_OFFSET_MASK; 1475 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK); 1476 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK); 1477 len = get_field(itd->transact[i], ITD_XACT_LENGTH); 1478 1479 if (len > max * mult) { 1480 len = max * mult; 1481 } 1482 1483 if (len > BUFF_SIZE) { 1484 return -1; 1485 } 1486 1487 qemu_sglist_init(&ehci->isgl, 2, ehci->dma); 1488 if (off + len > 4096) { 1489 /* transfer crosses page border */ 1490 uint32_t len2 = off + len - 4096; 1491 uint32_t len1 = len - len2; 1492 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1); 1493 qemu_sglist_add(&ehci->isgl, ptr2, len2); 1494 } else { 1495 qemu_sglist_add(&ehci->isgl, ptr1 + off, len); 1496 } 1497 1498 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT; 1499 1500 dev = ehci_find_device(ehci, devaddr); 1501 ep = usb_ep_get(dev, pid, endp); 1502 if (ep && ep->type == USB_ENDPOINT_XFER_ISOC) { 1503 usb_packet_setup(&ehci->ipacket, pid, ep, 0, addr, false, 1504 (itd->transact[i] & ITD_XACT_IOC) != 0); 1505 usb_packet_map(&ehci->ipacket, &ehci->isgl); 1506 usb_handle_packet(dev, &ehci->ipacket); 1507 usb_packet_unmap(&ehci->ipacket, &ehci->isgl); 1508 } else { 1509 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n"); 1510 ehci->ipacket.status = USB_RET_NAK; 1511 ehci->ipacket.actual_length = 0; 1512 } 1513 qemu_sglist_destroy(&ehci->isgl); 1514 1515 switch (ehci->ipacket.status) { 1516 case USB_RET_SUCCESS: 1517 break; 1518 default: 1519 fprintf(stderr, "Unexpected iso usb result: %d\n", 1520 ehci->ipacket.status); 1521 /* Fall through */ 1522 case USB_RET_IOERROR: 1523 case USB_RET_NODEV: 1524 /* 3.3.2: XACTERR is only allowed on IN transactions */ 1525 if (dir) { 1526 itd->transact[i] |= ITD_XACT_XACTERR; 1527 ehci_raise_irq(ehci, USBSTS_ERRINT); 1528 } 1529 break; 1530 case USB_RET_BABBLE: 1531 itd->transact[i] |= ITD_XACT_BABBLE; 1532 ehci_raise_irq(ehci, USBSTS_ERRINT); 1533 break; 1534 case USB_RET_NAK: 1535 /* no data for us, so do a zero-length transfer */ 1536 ehci->ipacket.actual_length = 0; 1537 break; 1538 } 1539 if (!dir) { 1540 set_field(&itd->transact[i], len - ehci->ipacket.actual_length, 1541 ITD_XACT_LENGTH); /* OUT */ 1542 } else { 1543 set_field(&itd->transact[i], ehci->ipacket.actual_length, 1544 ITD_XACT_LENGTH); /* IN */ 1545 } 1546 if (itd->transact[i] & ITD_XACT_IOC) { 1547 ehci_raise_irq(ehci, USBSTS_INT); 1548 } 1549 itd->transact[i] &= ~ITD_XACT_ACTIVE; 1550 } 1551 } 1552 return 0; 1553 } 1554 1555 1556 /* This state is the entry point for asynchronous schedule 1557 * processing. Entry here consitutes a EHCI start event state (4.8.5) 1558 */ 1559 static int ehci_state_waitlisthead(EHCIState *ehci, int async) 1560 { 1561 EHCIqh qh; 1562 int i = 0; 1563 int again = 0; 1564 uint32_t entry = ehci->asynclistaddr; 1565 1566 /* set reclamation flag at start event (4.8.6) */ 1567 if (async) { 1568 ehci_set_usbsts(ehci, USBSTS_REC); 1569 } 1570 1571 ehci_queues_rip_unused(ehci, async); 1572 1573 /* Find the head of the list (4.9.1.1) */ 1574 for(i = 0; i < MAX_QH; i++) { 1575 if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh, 1576 sizeof(EHCIqh) >> 2) < 0) { 1577 return 0; 1578 } 1579 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh); 1580 1581 if (qh.epchar & QH_EPCHAR_H) { 1582 if (async) { 1583 entry |= (NLPTR_TYPE_QH << 1); 1584 } 1585 1586 ehci_set_fetch_addr(ehci, async, entry); 1587 ehci_set_state(ehci, async, EST_FETCHENTRY); 1588 again = 1; 1589 goto out; 1590 } 1591 1592 entry = qh.next; 1593 if (entry == ehci->asynclistaddr) { 1594 break; 1595 } 1596 } 1597 1598 /* no head found for list. */ 1599 1600 ehci_set_state(ehci, async, EST_ACTIVE); 1601 1602 out: 1603 return again; 1604 } 1605 1606 1607 /* This state is the entry point for periodic schedule processing as 1608 * well as being a continuation state for async processing. 1609 */ 1610 static int ehci_state_fetchentry(EHCIState *ehci, int async) 1611 { 1612 int again = 0; 1613 uint32_t entry = ehci_get_fetch_addr(ehci, async); 1614 1615 if (NLPTR_TBIT(entry)) { 1616 ehci_set_state(ehci, async, EST_ACTIVE); 1617 goto out; 1618 } 1619 1620 /* section 4.8, only QH in async schedule */ 1621 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) { 1622 fprintf(stderr, "non queue head request in async schedule\n"); 1623 return -1; 1624 } 1625 1626 switch (NLPTR_TYPE_GET(entry)) { 1627 case NLPTR_TYPE_QH: 1628 ehci_set_state(ehci, async, EST_FETCHQH); 1629 again = 1; 1630 break; 1631 1632 case NLPTR_TYPE_ITD: 1633 ehci_set_state(ehci, async, EST_FETCHITD); 1634 again = 1; 1635 break; 1636 1637 case NLPTR_TYPE_STITD: 1638 ehci_set_state(ehci, async, EST_FETCHSITD); 1639 again = 1; 1640 break; 1641 1642 default: 1643 /* TODO: handle FSTN type */ 1644 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d " 1645 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry)); 1646 return -1; 1647 } 1648 1649 out: 1650 return again; 1651 } 1652 1653 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async) 1654 { 1655 uint32_t entry; 1656 EHCIQueue *q; 1657 EHCIqh qh; 1658 1659 entry = ehci_get_fetch_addr(ehci, async); 1660 q = ehci_find_queue_by_qh(ehci, entry, async); 1661 if (NULL == q) { 1662 q = ehci_alloc_queue(ehci, entry, async); 1663 } 1664 1665 q->seen++; 1666 if (q->seen > 1) { 1667 /* we are going in circles -- stop processing */ 1668 ehci_set_state(ehci, async, EST_ACTIVE); 1669 q = NULL; 1670 goto out; 1671 } 1672 1673 if (get_dwords(ehci, NLPTR_GET(q->qhaddr), 1674 (uint32_t *) &qh, sizeof(EHCIqh) >> 2) < 0) { 1675 q = NULL; 1676 goto out; 1677 } 1678 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &qh); 1679 1680 /* 1681 * The overlay area of the qh should never be changed by the guest, 1682 * except when idle, in which case the reset is a nop. 1683 */ 1684 if (!ehci_verify_qh(q, &qh)) { 1685 if (ehci_reset_queue(q) > 0) { 1686 ehci_trace_guest_bug(ehci, "guest updated active QH"); 1687 } 1688 } 1689 q->qh = qh; 1690 1691 q->transact_ctr = get_field(q->qh.epcap, QH_EPCAP_MULT); 1692 if (q->transact_ctr == 0) { /* Guest bug in some versions of windows */ 1693 q->transact_ctr = 4; 1694 } 1695 1696 if (q->dev == NULL) { 1697 q->dev = ehci_find_device(q->ehci, 1698 get_field(q->qh.epchar, QH_EPCHAR_DEVADDR)); 1699 } 1700 1701 if (async && (q->qh.epchar & QH_EPCHAR_H)) { 1702 1703 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */ 1704 if (ehci->usbsts & USBSTS_REC) { 1705 ehci_clear_usbsts(ehci, USBSTS_REC); 1706 } else { 1707 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset" 1708 " - done processing\n", q->qhaddr); 1709 ehci_set_state(ehci, async, EST_ACTIVE); 1710 q = NULL; 1711 goto out; 1712 } 1713 } 1714 1715 #if EHCI_DEBUG 1716 if (q->qhaddr != q->qh.next) { 1717 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n", 1718 q->qhaddr, 1719 q->qh.epchar & QH_EPCHAR_H, 1720 q->qh.token & QTD_TOKEN_HALT, 1721 q->qh.token & QTD_TOKEN_ACTIVE, 1722 q->qh.next); 1723 } 1724 #endif 1725 1726 if (q->qh.token & QTD_TOKEN_HALT) { 1727 ehci_set_state(ehci, async, EST_HORIZONTALQH); 1728 1729 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && 1730 (NLPTR_TBIT(q->qh.current_qtd) == 0)) { 1731 q->qtdaddr = q->qh.current_qtd; 1732 ehci_set_state(ehci, async, EST_FETCHQTD); 1733 1734 } else { 1735 /* EHCI spec version 1.0 Section 4.10.2 */ 1736 ehci_set_state(ehci, async, EST_ADVANCEQUEUE); 1737 } 1738 1739 out: 1740 return q; 1741 } 1742 1743 static int ehci_state_fetchitd(EHCIState *ehci, int async) 1744 { 1745 uint32_t entry; 1746 EHCIitd itd; 1747 1748 assert(!async); 1749 entry = ehci_get_fetch_addr(ehci, async); 1750 1751 if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd, 1752 sizeof(EHCIitd) >> 2) < 0) { 1753 return -1; 1754 } 1755 ehci_trace_itd(ehci, entry, &itd); 1756 1757 if (ehci_process_itd(ehci, &itd, entry) != 0) { 1758 return -1; 1759 } 1760 1761 put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd, 1762 sizeof(EHCIitd) >> 2); 1763 ehci_set_fetch_addr(ehci, async, itd.next); 1764 ehci_set_state(ehci, async, EST_FETCHENTRY); 1765 1766 return 1; 1767 } 1768 1769 static int ehci_state_fetchsitd(EHCIState *ehci, int async) 1770 { 1771 uint32_t entry; 1772 EHCIsitd sitd; 1773 1774 assert(!async); 1775 entry = ehci_get_fetch_addr(ehci, async); 1776 1777 if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd, 1778 sizeof(EHCIsitd) >> 2) < 0) { 1779 return 0; 1780 } 1781 ehci_trace_sitd(ehci, entry, &sitd); 1782 1783 if (!(sitd.results & SITD_RESULTS_ACTIVE)) { 1784 /* siTD is not active, nothing to do */; 1785 } else { 1786 /* TODO: split transfers are not implemented */ 1787 fprintf(stderr, "WARNING: Skipping active siTD\n"); 1788 } 1789 1790 ehci_set_fetch_addr(ehci, async, sitd.next); 1791 ehci_set_state(ehci, async, EST_FETCHENTRY); 1792 return 1; 1793 } 1794 1795 /* Section 4.10.2 - paragraph 3 */ 1796 static int ehci_state_advqueue(EHCIQueue *q) 1797 { 1798 #if 0 1799 /* TO-DO: 4.10.2 - paragraph 2 1800 * if I-bit is set to 1 and QH is not active 1801 * go to horizontal QH 1802 */ 1803 if (I-bit set) { 1804 ehci_set_state(ehci, async, EST_HORIZONTALQH); 1805 goto out; 1806 } 1807 #endif 1808 1809 /* 1810 * want data and alt-next qTD is valid 1811 */ 1812 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) && 1813 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) { 1814 q->qtdaddr = q->qh.altnext_qtd; 1815 ehci_set_state(q->ehci, q->async, EST_FETCHQTD); 1816 1817 /* 1818 * next qTD is valid 1819 */ 1820 } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) { 1821 q->qtdaddr = q->qh.next_qtd; 1822 ehci_set_state(q->ehci, q->async, EST_FETCHQTD); 1823 1824 /* 1825 * no valid qTD, try next QH 1826 */ 1827 } else { 1828 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1829 } 1830 1831 return 1; 1832 } 1833 1834 /* Section 4.10.2 - paragraph 4 */ 1835 static int ehci_state_fetchqtd(EHCIQueue *q) 1836 { 1837 EHCIqtd qtd; 1838 EHCIPacket *p; 1839 int again = 1; 1840 1841 if (get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd, 1842 sizeof(EHCIqtd) >> 2) < 0) { 1843 return 0; 1844 } 1845 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd); 1846 1847 p = QTAILQ_FIRST(&q->packets); 1848 if (p != NULL) { 1849 if (!ehci_verify_qtd(p, &qtd)) { 1850 ehci_cancel_queue(q); 1851 if (qtd.token & QTD_TOKEN_ACTIVE) { 1852 ehci_trace_guest_bug(q->ehci, "guest updated active qTD"); 1853 } 1854 p = NULL; 1855 } else { 1856 p->qtd = qtd; 1857 ehci_qh_do_overlay(q); 1858 } 1859 } 1860 1861 if (!(qtd.token & QTD_TOKEN_ACTIVE)) { 1862 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1863 } else if (p != NULL) { 1864 switch (p->async) { 1865 case EHCI_ASYNC_NONE: 1866 case EHCI_ASYNC_INITIALIZED: 1867 /* Not yet executed (MULT), or previously nacked (int) packet */ 1868 ehci_set_state(q->ehci, q->async, EST_EXECUTE); 1869 break; 1870 case EHCI_ASYNC_INFLIGHT: 1871 /* Check if the guest has added new tds to the queue */ 1872 again = ehci_fill_queue(QTAILQ_LAST(&q->packets, pkts_head)); 1873 /* Unfinished async handled packet, go horizontal */ 1874 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1875 break; 1876 case EHCI_ASYNC_FINISHED: 1877 /* Complete executing of the packet */ 1878 ehci_set_state(q->ehci, q->async, EST_EXECUTING); 1879 break; 1880 } 1881 } else { 1882 p = ehci_alloc_packet(q); 1883 p->qtdaddr = q->qtdaddr; 1884 p->qtd = qtd; 1885 ehci_set_state(q->ehci, q->async, EST_EXECUTE); 1886 } 1887 1888 return again; 1889 } 1890 1891 static int ehci_state_horizqh(EHCIQueue *q) 1892 { 1893 int again = 0; 1894 1895 if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) { 1896 ehci_set_fetch_addr(q->ehci, q->async, q->qh.next); 1897 ehci_set_state(q->ehci, q->async, EST_FETCHENTRY); 1898 again = 1; 1899 } else { 1900 ehci_set_state(q->ehci, q->async, EST_ACTIVE); 1901 } 1902 1903 return again; 1904 } 1905 1906 /* Returns "again" */ 1907 static int ehci_fill_queue(EHCIPacket *p) 1908 { 1909 USBEndpoint *ep = p->packet.ep; 1910 EHCIQueue *q = p->queue; 1911 EHCIqtd qtd = p->qtd; 1912 uint32_t qtdaddr; 1913 1914 for (;;) { 1915 if (NLPTR_TBIT(qtd.next) != 0) { 1916 break; 1917 } 1918 qtdaddr = qtd.next; 1919 /* 1920 * Detect circular td lists, Windows creates these, counting on the 1921 * active bit going low after execution to make the queue stop. 1922 */ 1923 QTAILQ_FOREACH(p, &q->packets, next) { 1924 if (p->qtdaddr == qtdaddr) { 1925 goto leave; 1926 } 1927 } 1928 if (get_dwords(q->ehci, NLPTR_GET(qtdaddr), 1929 (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2) < 0) { 1930 return -1; 1931 } 1932 ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd); 1933 if (!(qtd.token & QTD_TOKEN_ACTIVE)) { 1934 break; 1935 } 1936 if (!ehci_verify_pid(q, &qtd)) { 1937 ehci_trace_guest_bug(q->ehci, "guest queued token with wrong pid"); 1938 break; 1939 } 1940 p = ehci_alloc_packet(q); 1941 p->qtdaddr = qtdaddr; 1942 p->qtd = qtd; 1943 if (ehci_execute(p, "queue") == -1) { 1944 return -1; 1945 } 1946 assert(p->packet.status == USB_RET_ASYNC); 1947 p->async = EHCI_ASYNC_INFLIGHT; 1948 } 1949 leave: 1950 usb_device_flush_ep_queue(ep->dev, ep); 1951 return 1; 1952 } 1953 1954 static int ehci_state_execute(EHCIQueue *q) 1955 { 1956 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 1957 int again = 0; 1958 1959 assert(p != NULL); 1960 assert(p->qtdaddr == q->qtdaddr); 1961 1962 if (ehci_qh_do_overlay(q) != 0) { 1963 return -1; 1964 } 1965 1966 // TODO verify enough time remains in the uframe as in 4.4.1.1 1967 // TODO write back ptr to async list when done or out of time 1968 1969 /* 4.10.3, bottom of page 82, go horizontal on transaction counter == 0 */ 1970 if (!q->async && q->transact_ctr == 0) { 1971 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1972 again = 1; 1973 goto out; 1974 } 1975 1976 if (q->async) { 1977 ehci_set_usbsts(q->ehci, USBSTS_REC); 1978 } 1979 1980 again = ehci_execute(p, "process"); 1981 if (again == -1) { 1982 goto out; 1983 } 1984 if (p->packet.status == USB_RET_ASYNC) { 1985 ehci_flush_qh(q); 1986 trace_usb_ehci_packet_action(p->queue, p, "async"); 1987 p->async = EHCI_ASYNC_INFLIGHT; 1988 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1989 if (q->async) { 1990 again = ehci_fill_queue(p); 1991 } else { 1992 again = 1; 1993 } 1994 goto out; 1995 } 1996 1997 ehci_set_state(q->ehci, q->async, EST_EXECUTING); 1998 again = 1; 1999 2000 out: 2001 return again; 2002 } 2003 2004 static int ehci_state_executing(EHCIQueue *q) 2005 { 2006 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 2007 2008 assert(p != NULL); 2009 assert(p->qtdaddr == q->qtdaddr); 2010 2011 ehci_execute_complete(q); 2012 2013 /* 4.10.3 */ 2014 if (!q->async && q->transact_ctr > 0) { 2015 q->transact_ctr--; 2016 } 2017 2018 /* 4.10.5 */ 2019 if (p->packet.status == USB_RET_NAK) { 2020 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 2021 } else { 2022 ehci_set_state(q->ehci, q->async, EST_WRITEBACK); 2023 } 2024 2025 ehci_flush_qh(q); 2026 return 1; 2027 } 2028 2029 2030 static int ehci_state_writeback(EHCIQueue *q) 2031 { 2032 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 2033 uint32_t *qtd, addr; 2034 int again = 0; 2035 2036 /* Write back the QTD from the QH area */ 2037 assert(p != NULL); 2038 assert(p->qtdaddr == q->qtdaddr); 2039 2040 ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd); 2041 qtd = (uint32_t *) &q->qh.next_qtd; 2042 addr = NLPTR_GET(p->qtdaddr); 2043 put_dwords(q->ehci, addr + 2 * sizeof(uint32_t), qtd + 2, 2); 2044 ehci_free_packet(p); 2045 2046 /* 2047 * EHCI specs say go horizontal here. 2048 * 2049 * We can also advance the queue here for performance reasons. We 2050 * need to take care to only take that shortcut in case we've 2051 * processed the qtd just written back without errors, i.e. halt 2052 * bit is clear. 2053 */ 2054 if (q->qh.token & QTD_TOKEN_HALT) { 2055 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 2056 again = 1; 2057 } else { 2058 ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE); 2059 again = 1; 2060 } 2061 return again; 2062 } 2063 2064 /* 2065 * This is the state machine that is common to both async and periodic 2066 */ 2067 2068 static void ehci_advance_state(EHCIState *ehci, int async) 2069 { 2070 EHCIQueue *q = NULL; 2071 int again; 2072 2073 do { 2074 switch(ehci_get_state(ehci, async)) { 2075 case EST_WAITLISTHEAD: 2076 again = ehci_state_waitlisthead(ehci, async); 2077 break; 2078 2079 case EST_FETCHENTRY: 2080 again = ehci_state_fetchentry(ehci, async); 2081 break; 2082 2083 case EST_FETCHQH: 2084 q = ehci_state_fetchqh(ehci, async); 2085 if (q != NULL) { 2086 assert(q->async == async); 2087 again = 1; 2088 } else { 2089 again = 0; 2090 } 2091 break; 2092 2093 case EST_FETCHITD: 2094 again = ehci_state_fetchitd(ehci, async); 2095 break; 2096 2097 case EST_FETCHSITD: 2098 again = ehci_state_fetchsitd(ehci, async); 2099 break; 2100 2101 case EST_ADVANCEQUEUE: 2102 assert(q != NULL); 2103 again = ehci_state_advqueue(q); 2104 break; 2105 2106 case EST_FETCHQTD: 2107 assert(q != NULL); 2108 again = ehci_state_fetchqtd(q); 2109 break; 2110 2111 case EST_HORIZONTALQH: 2112 assert(q != NULL); 2113 again = ehci_state_horizqh(q); 2114 break; 2115 2116 case EST_EXECUTE: 2117 assert(q != NULL); 2118 again = ehci_state_execute(q); 2119 if (async) { 2120 ehci->async_stepdown = 0; 2121 } 2122 break; 2123 2124 case EST_EXECUTING: 2125 assert(q != NULL); 2126 if (async) { 2127 ehci->async_stepdown = 0; 2128 } 2129 again = ehci_state_executing(q); 2130 break; 2131 2132 case EST_WRITEBACK: 2133 assert(q != NULL); 2134 again = ehci_state_writeback(q); 2135 if (!async) { 2136 ehci->periodic_sched_active = PERIODIC_ACTIVE; 2137 } 2138 break; 2139 2140 default: 2141 fprintf(stderr, "Bad state!\n"); 2142 again = -1; 2143 assert(0); 2144 break; 2145 } 2146 2147 if (again < 0) { 2148 fprintf(stderr, "processing error - resetting ehci HC\n"); 2149 ehci_reset(ehci); 2150 again = 0; 2151 } 2152 } 2153 while (again); 2154 } 2155 2156 static void ehci_advance_async_state(EHCIState *ehci) 2157 { 2158 const int async = 1; 2159 2160 switch(ehci_get_state(ehci, async)) { 2161 case EST_INACTIVE: 2162 if (!ehci_async_enabled(ehci)) { 2163 break; 2164 } 2165 ehci_set_state(ehci, async, EST_ACTIVE); 2166 // No break, fall through to ACTIVE 2167 2168 case EST_ACTIVE: 2169 if (!ehci_async_enabled(ehci)) { 2170 ehci_queues_rip_all(ehci, async); 2171 ehci_set_state(ehci, async, EST_INACTIVE); 2172 break; 2173 } 2174 2175 /* make sure guest has acknowledged the doorbell interrupt */ 2176 /* TO-DO: is this really needed? */ 2177 if (ehci->usbsts & USBSTS_IAA) { 2178 DPRINTF("IAA status bit still set.\n"); 2179 break; 2180 } 2181 2182 /* check that address register has been set */ 2183 if (ehci->asynclistaddr == 0) { 2184 break; 2185 } 2186 2187 ehci_set_state(ehci, async, EST_WAITLISTHEAD); 2188 ehci_advance_state(ehci, async); 2189 2190 /* If the doorbell is set, the guest wants to make a change to the 2191 * schedule. The host controller needs to release cached data. 2192 * (section 4.8.2) 2193 */ 2194 if (ehci->usbcmd & USBCMD_IAAD) { 2195 /* Remove all unseen qhs from the async qhs queue */ 2196 ehci_queues_rip_unseen(ehci, async); 2197 trace_usb_ehci_doorbell_ack(); 2198 ehci->usbcmd &= ~USBCMD_IAAD; 2199 ehci_raise_irq(ehci, USBSTS_IAA); 2200 } 2201 break; 2202 2203 default: 2204 /* this should only be due to a developer mistake */ 2205 fprintf(stderr, "ehci: Bad asynchronous state %d. " 2206 "Resetting to active\n", ehci->astate); 2207 assert(0); 2208 } 2209 } 2210 2211 static void ehci_advance_periodic_state(EHCIState *ehci) 2212 { 2213 uint32_t entry; 2214 uint32_t list; 2215 const int async = 0; 2216 2217 // 4.6 2218 2219 switch(ehci_get_state(ehci, async)) { 2220 case EST_INACTIVE: 2221 if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) { 2222 ehci_set_state(ehci, async, EST_ACTIVE); 2223 // No break, fall through to ACTIVE 2224 } else 2225 break; 2226 2227 case EST_ACTIVE: 2228 if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) { 2229 ehci_queues_rip_all(ehci, async); 2230 ehci_set_state(ehci, async, EST_INACTIVE); 2231 break; 2232 } 2233 2234 list = ehci->periodiclistbase & 0xfffff000; 2235 /* check that register has been set */ 2236 if (list == 0) { 2237 break; 2238 } 2239 list |= ((ehci->frindex & 0x1ff8) >> 1); 2240 2241 if (get_dwords(ehci, list, &entry, 1) < 0) { 2242 break; 2243 } 2244 2245 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n", 2246 ehci->frindex / 8, list, entry); 2247 ehci_set_fetch_addr(ehci, async,entry); 2248 ehci_set_state(ehci, async, EST_FETCHENTRY); 2249 ehci_advance_state(ehci, async); 2250 ehci_queues_rip_unused(ehci, async); 2251 break; 2252 2253 default: 2254 /* this should only be due to a developer mistake */ 2255 fprintf(stderr, "ehci: Bad periodic state %d. " 2256 "Resetting to active\n", ehci->pstate); 2257 assert(0); 2258 } 2259 } 2260 2261 static void ehci_update_frindex(EHCIState *ehci, int uframes) 2262 { 2263 int i; 2264 2265 if (!ehci_enabled(ehci) && ehci->pstate == EST_INACTIVE) { 2266 return; 2267 } 2268 2269 for (i = 0; i < uframes; i++) { 2270 ehci->frindex++; 2271 2272 if (ehci->frindex == 0x00002000) { 2273 ehci_raise_irq(ehci, USBSTS_FLR); 2274 } 2275 2276 if (ehci->frindex == 0x00004000) { 2277 ehci_raise_irq(ehci, USBSTS_FLR); 2278 ehci->frindex = 0; 2279 if (ehci->usbsts_frindex >= 0x00004000) { 2280 ehci->usbsts_frindex -= 0x00004000; 2281 } else { 2282 ehci->usbsts_frindex = 0; 2283 } 2284 } 2285 } 2286 } 2287 2288 static void ehci_frame_timer(void *opaque) 2289 { 2290 EHCIState *ehci = opaque; 2291 int need_timer = 0; 2292 int64_t expire_time, t_now; 2293 uint64_t ns_elapsed; 2294 int uframes, skipped_uframes; 2295 int i; 2296 2297 t_now = qemu_get_clock_ns(vm_clock); 2298 ns_elapsed = t_now - ehci->last_run_ns; 2299 uframes = ns_elapsed / UFRAME_TIMER_NS; 2300 2301 if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) { 2302 need_timer++; 2303 2304 if (uframes > (ehci->maxframes * 8)) { 2305 skipped_uframes = uframes - (ehci->maxframes * 8); 2306 ehci_update_frindex(ehci, skipped_uframes); 2307 ehci->last_run_ns += UFRAME_TIMER_NS * skipped_uframes; 2308 uframes -= skipped_uframes; 2309 DPRINTF("WARNING - EHCI skipped %d uframes\n", skipped_uframes); 2310 } 2311 2312 for (i = 0; i < uframes; i++) { 2313 /* 2314 * If we're running behind schedule, we should not catch up 2315 * too fast, as that will make some guests unhappy: 2316 * 1) We must process a minimum of MIN_UFR_PER_TICK frames, 2317 * otherwise we will never catch up 2318 * 2) Process frames until the guest has requested an irq (IOC) 2319 */ 2320 if (i >= MIN_UFR_PER_TICK) { 2321 ehci_commit_irq(ehci); 2322 if ((ehci->usbsts & USBINTR_MASK) & ehci->usbintr) { 2323 break; 2324 } 2325 } 2326 if (ehci->periodic_sched_active) { 2327 ehci->periodic_sched_active--; 2328 } 2329 ehci_update_frindex(ehci, 1); 2330 if ((ehci->frindex & 7) == 0) { 2331 ehci_advance_periodic_state(ehci); 2332 } 2333 ehci->last_run_ns += UFRAME_TIMER_NS; 2334 } 2335 } else { 2336 ehci->periodic_sched_active = 0; 2337 ehci_update_frindex(ehci, uframes); 2338 ehci->last_run_ns += UFRAME_TIMER_NS * uframes; 2339 } 2340 2341 if (ehci->periodic_sched_active) { 2342 ehci->async_stepdown = 0; 2343 } else if (ehci->async_stepdown < ehci->maxframes / 2) { 2344 ehci->async_stepdown++; 2345 } 2346 2347 /* Async is not inside loop since it executes everything it can once 2348 * called 2349 */ 2350 if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) { 2351 need_timer++; 2352 ehci_advance_async_state(ehci); 2353 } 2354 2355 ehci_commit_irq(ehci); 2356 if (ehci->usbsts_pending) { 2357 need_timer++; 2358 ehci->async_stepdown = 0; 2359 } 2360 2361 if (ehci_enabled(ehci) && (ehci->usbintr & USBSTS_FLR)) { 2362 need_timer++; 2363 } 2364 2365 if (need_timer) { 2366 /* If we've raised int, we speed up the timer, so that we quickly 2367 * notice any new packets queued up in response */ 2368 if (ehci->int_req_by_async && (ehci->usbsts & USBSTS_INT)) { 2369 expire_time = t_now + get_ticks_per_sec() / (FRAME_TIMER_FREQ * 4); 2370 ehci->int_req_by_async = false; 2371 } else { 2372 expire_time = t_now + (get_ticks_per_sec() 2373 * (ehci->async_stepdown+1) / FRAME_TIMER_FREQ); 2374 } 2375 qemu_mod_timer(ehci->frame_timer, expire_time); 2376 } 2377 } 2378 2379 static const MemoryRegionOps ehci_mmio_caps_ops = { 2380 .read = ehci_caps_read, 2381 .valid.min_access_size = 1, 2382 .valid.max_access_size = 4, 2383 .impl.min_access_size = 1, 2384 .impl.max_access_size = 1, 2385 .endianness = DEVICE_LITTLE_ENDIAN, 2386 }; 2387 2388 static const MemoryRegionOps ehci_mmio_opreg_ops = { 2389 .read = ehci_opreg_read, 2390 .write = ehci_opreg_write, 2391 .valid.min_access_size = 4, 2392 .valid.max_access_size = 4, 2393 .endianness = DEVICE_LITTLE_ENDIAN, 2394 }; 2395 2396 static const MemoryRegionOps ehci_mmio_port_ops = { 2397 .read = ehci_port_read, 2398 .write = ehci_port_write, 2399 .valid.min_access_size = 4, 2400 .valid.max_access_size = 4, 2401 .endianness = DEVICE_LITTLE_ENDIAN, 2402 }; 2403 2404 static USBPortOps ehci_port_ops = { 2405 .attach = ehci_attach, 2406 .detach = ehci_detach, 2407 .child_detach = ehci_child_detach, 2408 .wakeup = ehci_wakeup, 2409 .complete = ehci_async_complete_packet, 2410 }; 2411 2412 static USBBusOps ehci_bus_ops = { 2413 .register_companion = ehci_register_companion, 2414 .wakeup_endpoint = ehci_wakeup_endpoint, 2415 }; 2416 2417 static void usb_ehci_pre_save(void *opaque) 2418 { 2419 EHCIState *ehci = opaque; 2420 uint32_t new_frindex; 2421 2422 /* Round down frindex to a multiple of 8 for migration compatibility */ 2423 new_frindex = ehci->frindex & ~7; 2424 ehci->last_run_ns -= (ehci->frindex - new_frindex) * UFRAME_TIMER_NS; 2425 ehci->frindex = new_frindex; 2426 } 2427 2428 static int usb_ehci_post_load(void *opaque, int version_id) 2429 { 2430 EHCIState *s = opaque; 2431 int i; 2432 2433 for (i = 0; i < NB_PORTS; i++) { 2434 USBPort *companion = s->companion_ports[i]; 2435 if (companion == NULL) { 2436 continue; 2437 } 2438 if (s->portsc[i] & PORTSC_POWNER) { 2439 companion->dev = s->ports[i].dev; 2440 } else { 2441 companion->dev = NULL; 2442 } 2443 } 2444 2445 return 0; 2446 } 2447 2448 static void usb_ehci_vm_state_change(void *opaque, int running, RunState state) 2449 { 2450 EHCIState *ehci = opaque; 2451 2452 /* 2453 * We don't migrate the EHCIQueue-s, instead we rebuild them for the 2454 * schedule in guest memory. We must do the rebuilt ASAP, so that 2455 * USB-devices which have async handled packages have a packet in the 2456 * ep queue to match the completion with. 2457 */ 2458 if (state == RUN_STATE_RUNNING) { 2459 ehci_advance_async_state(ehci); 2460 } 2461 2462 /* 2463 * The schedule rebuilt from guest memory could cause the migration dest 2464 * to miss a QH unlink, and fail to cancel packets, since the unlinked QH 2465 * will never have existed on the destination. Therefor we must flush the 2466 * async schedule on savevm to catch any not yet noticed unlinks. 2467 */ 2468 if (state == RUN_STATE_SAVE_VM) { 2469 ehci_advance_async_state(ehci); 2470 ehci_queues_rip_unseen(ehci, 1); 2471 } 2472 } 2473 2474 const VMStateDescription vmstate_ehci = { 2475 .name = "ehci-core", 2476 .version_id = 2, 2477 .minimum_version_id = 1, 2478 .pre_save = usb_ehci_pre_save, 2479 .post_load = usb_ehci_post_load, 2480 .fields = (VMStateField[]) { 2481 /* mmio registers */ 2482 VMSTATE_UINT32(usbcmd, EHCIState), 2483 VMSTATE_UINT32(usbsts, EHCIState), 2484 VMSTATE_UINT32_V(usbsts_pending, EHCIState, 2), 2485 VMSTATE_UINT32_V(usbsts_frindex, EHCIState, 2), 2486 VMSTATE_UINT32(usbintr, EHCIState), 2487 VMSTATE_UINT32(frindex, EHCIState), 2488 VMSTATE_UINT32(ctrldssegment, EHCIState), 2489 VMSTATE_UINT32(periodiclistbase, EHCIState), 2490 VMSTATE_UINT32(asynclistaddr, EHCIState), 2491 VMSTATE_UINT32(configflag, EHCIState), 2492 VMSTATE_UINT32(portsc[0], EHCIState), 2493 VMSTATE_UINT32(portsc[1], EHCIState), 2494 VMSTATE_UINT32(portsc[2], EHCIState), 2495 VMSTATE_UINT32(portsc[3], EHCIState), 2496 VMSTATE_UINT32(portsc[4], EHCIState), 2497 VMSTATE_UINT32(portsc[5], EHCIState), 2498 /* frame timer */ 2499 VMSTATE_TIMER(frame_timer, EHCIState), 2500 VMSTATE_UINT64(last_run_ns, EHCIState), 2501 VMSTATE_UINT32(async_stepdown, EHCIState), 2502 /* schedule state */ 2503 VMSTATE_UINT32(astate, EHCIState), 2504 VMSTATE_UINT32(pstate, EHCIState), 2505 VMSTATE_UINT32(a_fetch_addr, EHCIState), 2506 VMSTATE_UINT32(p_fetch_addr, EHCIState), 2507 VMSTATE_END_OF_LIST() 2508 } 2509 }; 2510 2511 void usb_ehci_initfn(EHCIState *s, DeviceState *dev) 2512 { 2513 int i; 2514 2515 /* 2.2 host controller interface version */ 2516 s->caps[0x00] = (uint8_t)(s->opregbase - s->capsbase); 2517 s->caps[0x01] = 0x00; 2518 s->caps[0x02] = 0x00; 2519 s->caps[0x03] = 0x01; /* HC version */ 2520 s->caps[0x04] = NB_PORTS; /* Number of downstream ports */ 2521 s->caps[0x05] = 0x00; /* No companion ports at present */ 2522 s->caps[0x06] = 0x00; 2523 s->caps[0x07] = 0x00; 2524 s->caps[0x08] = 0x80; /* We can cache whole frame, no 64-bit */ 2525 s->caps[0x0a] = 0x00; 2526 s->caps[0x0b] = 0x00; 2527 2528 usb_bus_new(&s->bus, &ehci_bus_ops, dev); 2529 for(i = 0; i < NB_PORTS; i++) { 2530 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops, 2531 USB_SPEED_MASK_HIGH); 2532 s->ports[i].dev = 0; 2533 } 2534 2535 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s); 2536 s->async_bh = qemu_bh_new(ehci_frame_timer, s); 2537 QTAILQ_INIT(&s->aqueues); 2538 QTAILQ_INIT(&s->pqueues); 2539 usb_packet_init(&s->ipacket); 2540 2541 qemu_register_reset(ehci_reset, s); 2542 qemu_add_vm_change_state_handler(usb_ehci_vm_state_change, s); 2543 2544 memory_region_init(&s->mem, "ehci", MMIO_SIZE); 2545 memory_region_init_io(&s->mem_caps, &ehci_mmio_caps_ops, s, 2546 "capabilities", CAPA_SIZE); 2547 memory_region_init_io(&s->mem_opreg, &ehci_mmio_opreg_ops, s, 2548 "operational", PORTSC_BEGIN); 2549 memory_region_init_io(&s->mem_ports, &ehci_mmio_port_ops, s, 2550 "ports", PORTSC_END - PORTSC_BEGIN); 2551 2552 memory_region_add_subregion(&s->mem, s->capsbase, &s->mem_caps); 2553 memory_region_add_subregion(&s->mem, s->opregbase, &s->mem_opreg); 2554 memory_region_add_subregion(&s->mem, s->opregbase + PORTSC_BEGIN, 2555 &s->mem_ports); 2556 } 2557 2558 /* 2559 * vim: expandtab ts=4 2560 */ 2561