xref: /openbmc/qemu/hw/usb/hcd-ehci.c (revision 651682dcf54c4f2e07904bd822a97895900f6d8a)
1 /*
2  * QEMU USB EHCI Emulation
3  *
4  * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5  *
6  * EHCI project was started by Mark Burkley, with contributions by
7  * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8  * Jan Kiszka and Vincent Palatin contributed bugfixes.
9  *
10  *
11  * This library is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2 of the License, or(at your option) any later version.
15  *
16  * This library is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "hw/hw.h"
26 #include "qemu-timer.h"
27 #include "hw/usb.h"
28 #include "hw/pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32 
33 #define EHCI_DEBUG   0
34 
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40 
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR   (-99)
43 
44 #define MMIO_SIZE        0x1000
45 
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE       0x0000
48 #define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
49 #define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
50 #define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
51 #define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
52 #define EECP             HCCPARAMS + 1
53 #define HCSPPORTROUTE1   CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2   CAPREGBASE + 0x0010
55 
56 #define OPREGBASE        0x0020        // Operational Registers Base Address
57 
58 #define USBCMD           OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
60 #define USBCMD_HCRESET   (1 << 1)      // HC Reset
61 #define USBCMD_FLS       (3 << 2)      // Frame List Size
62 #define USBCMD_FLS_SH    2             // Frame List Size Shift
63 #define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
64 #define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
65 #define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
67 #define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
68 #define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
69 #define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
70 #define USBCMD_ITC_SH    16            // Int Threshold Control Shift
71 
72 #define USBSTS           OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK   0x0000003f
74 #define USBSTS_INT       (1 << 0)      // USB Interrupt
75 #define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
76 #define USBSTS_PCD       (1 << 2)      // Port Change Detect
77 #define USBSTS_FLR       (1 << 3)      // Frame List Rollover
78 #define USBSTS_HSE       (1 << 4)      // Host System Error
79 #define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
80 #define USBSTS_HALT      (1 << 12)     // HC Halted
81 #define USBSTS_REC       (1 << 13)     // Reclamation
82 #define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
83 #define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
84 
85 /*
86  *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
87  *  so no need to redefine here.
88  */
89 #define USBINTR              OPREGBASE + 0x0008
90 #define USBINTR_MASK         0x0000003f
91 
92 #define FRINDEX              OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT        OPREGBASE + 0x0010
94 #define PERIODICLISTBASE     OPREGBASE + 0x0014
95 #define ASYNCLISTADDR        OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK   0xffffffe0
97 
98 #define CONFIGFLAG           OPREGBASE + 0x0040
99 
100 #define PORTSC               (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN         PORTSC
102 #define PORTSC_END           (PORTSC + 4 * NB_PORTS)
103 /*
104  * Bits that are reserved or are read-only are masked out of values
105  * written to us by software
106  */
107 #define PORTSC_RO_MASK       0x007001c0
108 #define PORTSC_RWC_MASK      0x0000002a
109 #define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
110 #define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
112 #define PORTSC_PTC           (15 << 16)   // Port Test Control
113 #define PORTSC_PTC_SH        16           // Port Test Control shift
114 #define PORTSC_PIC           (3 << 14)    // Port Indicator Control
115 #define PORTSC_PIC_SH        14           // Port Indicator Control Shift
116 #define PORTSC_POWNER        (1 << 13)    // Port Owner
117 #define PORTSC_PPOWER        (1 << 12)    // Port Power
118 #define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
119 #define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
120 #define PORTSC_PRESET        (1 << 8)     // Port Reset
121 #define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
122 #define PORTSC_FPRES         (1 << 6)     // Force Port Resume
123 #define PORTSC_OCC           (1 << 5)     // Over Current Change
124 #define PORTSC_OCA           (1 << 4)     // Over Current Active
125 #define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
126 #define PORTSC_PED           (1 << 2)     // Port Enable/Disable
127 #define PORTSC_CSC           (1 << 1)     // Connect Status Change
128 #define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
129 
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
132 
133 #define NB_MAXINTRATE    8        // Max rate at which controller issues ints
134 #define NB_PORTS         6        // Number of downstream ports
135 #define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
136 #define MAX_QH           100      // Max allowable queue heads in a chain
137 
138 /*  Internal periodic / asynchronous schedule state machine states
139  */
140 typedef enum {
141     EST_INACTIVE = 1000,
142     EST_ACTIVE,
143     EST_EXECUTING,
144     EST_SLEEPING,
145     /*  The following states are internal to the state machine function
146     */
147     EST_WAITLISTHEAD,
148     EST_FETCHENTRY,
149     EST_FETCHQH,
150     EST_FETCHITD,
151     EST_FETCHSITD,
152     EST_ADVANCEQUEUE,
153     EST_FETCHQTD,
154     EST_EXECUTE,
155     EST_WRITEBACK,
156     EST_HORIZONTALQH
157 } EHCI_STATES;
158 
159 /* macros for accessing fields within next link pointer entry */
160 #define NLPTR_GET(x)             ((x) & 0xffffffe0)
161 #define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
162 #define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
163 
164 /* link pointer types */
165 #define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
166 #define NLPTR_TYPE_QH            1     // queue head
167 #define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
168 #define NLPTR_TYPE_FSTN          3     // frame span traversal node
169 
170 
171 /*  EHCI spec version 1.0 Section 3.3
172  */
173 typedef struct EHCIitd {
174     uint32_t next;
175 
176     uint32_t transact[8];
177 #define ITD_XACT_ACTIVE          (1 << 31)
178 #define ITD_XACT_DBERROR         (1 << 30)
179 #define ITD_XACT_BABBLE          (1 << 29)
180 #define ITD_XACT_XACTERR         (1 << 28)
181 #define ITD_XACT_LENGTH_MASK     0x0fff0000
182 #define ITD_XACT_LENGTH_SH       16
183 #define ITD_XACT_IOC             (1 << 15)
184 #define ITD_XACT_PGSEL_MASK      0x00007000
185 #define ITD_XACT_PGSEL_SH        12
186 #define ITD_XACT_OFFSET_MASK     0x00000fff
187 
188     uint32_t bufptr[7];
189 #define ITD_BUFPTR_MASK          0xfffff000
190 #define ITD_BUFPTR_SH            12
191 #define ITD_BUFPTR_EP_MASK       0x00000f00
192 #define ITD_BUFPTR_EP_SH         8
193 #define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
194 #define ITD_BUFPTR_DEVADDR_SH    0
195 #define ITD_BUFPTR_DIRECTION     (1 << 11)
196 #define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
197 #define ITD_BUFPTR_MAXPKT_SH     0
198 #define ITD_BUFPTR_MULT_MASK     0x00000003
199 #define ITD_BUFPTR_MULT_SH       0
200 } EHCIitd;
201 
202 /*  EHCI spec version 1.0 Section 3.4
203  */
204 typedef struct EHCIsitd {
205     uint32_t next;                  // Standard next link pointer
206     uint32_t epchar;
207 #define SITD_EPCHAR_IO              (1 << 31)
208 #define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
209 #define SITD_EPCHAR_PORTNUM_SH      24
210 #define SITD_EPCHAR_HUBADD_MASK     0x007f0000
211 #define SITD_EPCHAR_HUBADDR_SH      16
212 #define SITD_EPCHAR_EPNUM_MASK      0x00000f00
213 #define SITD_EPCHAR_EPNUM_SH        8
214 #define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
215 
216     uint32_t uframe;
217 #define SITD_UFRAME_CMASK_MASK      0x0000ff00
218 #define SITD_UFRAME_CMASK_SH        8
219 #define SITD_UFRAME_SMASK_MASK      0x000000ff
220 
221     uint32_t results;
222 #define SITD_RESULTS_IOC              (1 << 31)
223 #define SITD_RESULTS_PGSEL            (1 << 30)
224 #define SITD_RESULTS_TBYTES_MASK      0x03ff0000
225 #define SITD_RESULTS_TYBYTES_SH       16
226 #define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
227 #define SITD_RESULTS_CPROGMASK_SH     8
228 #define SITD_RESULTS_ACTIVE           (1 << 7)
229 #define SITD_RESULTS_ERR              (1 << 6)
230 #define SITD_RESULTS_DBERR            (1 << 5)
231 #define SITD_RESULTS_BABBLE           (1 << 4)
232 #define SITD_RESULTS_XACTERR          (1 << 3)
233 #define SITD_RESULTS_MISSEDUF         (1 << 2)
234 #define SITD_RESULTS_SPLITXSTATE      (1 << 1)
235 
236     uint32_t bufptr[2];
237 #define SITD_BUFPTR_MASK              0xfffff000
238 #define SITD_BUFPTR_CURROFF_MASK      0x00000fff
239 #define SITD_BUFPTR_TPOS_MASK         0x00000018
240 #define SITD_BUFPTR_TPOS_SH           3
241 #define SITD_BUFPTR_TCNT_MASK         0x00000007
242 
243     uint32_t backptr;                 // Standard next link pointer
244 } EHCIsitd;
245 
246 /*  EHCI spec version 1.0 Section 3.5
247  */
248 typedef struct EHCIqtd {
249     uint32_t next;                    // Standard next link pointer
250     uint32_t altnext;                 // Standard next link pointer
251     uint32_t token;
252 #define QTD_TOKEN_DTOGGLE             (1 << 31)
253 #define QTD_TOKEN_TBYTES_MASK         0x7fff0000
254 #define QTD_TOKEN_TBYTES_SH           16
255 #define QTD_TOKEN_IOC                 (1 << 15)
256 #define QTD_TOKEN_CPAGE_MASK          0x00007000
257 #define QTD_TOKEN_CPAGE_SH            12
258 #define QTD_TOKEN_CERR_MASK           0x00000c00
259 #define QTD_TOKEN_CERR_SH             10
260 #define QTD_TOKEN_PID_MASK            0x00000300
261 #define QTD_TOKEN_PID_SH              8
262 #define QTD_TOKEN_ACTIVE              (1 << 7)
263 #define QTD_TOKEN_HALT                (1 << 6)
264 #define QTD_TOKEN_DBERR               (1 << 5)
265 #define QTD_TOKEN_BABBLE              (1 << 4)
266 #define QTD_TOKEN_XACTERR             (1 << 3)
267 #define QTD_TOKEN_MISSEDUF            (1 << 2)
268 #define QTD_TOKEN_SPLITXSTATE         (1 << 1)
269 #define QTD_TOKEN_PING                (1 << 0)
270 
271     uint32_t bufptr[5];               // Standard buffer pointer
272 #define QTD_BUFPTR_MASK               0xfffff000
273 #define QTD_BUFPTR_SH                 12
274 } EHCIqtd;
275 
276 /*  EHCI spec version 1.0 Section 3.6
277  */
278 typedef struct EHCIqh {
279     uint32_t next;                    // Standard next link pointer
280 
281     /* endpoint characteristics */
282     uint32_t epchar;
283 #define QH_EPCHAR_RL_MASK             0xf0000000
284 #define QH_EPCHAR_RL_SH               28
285 #define QH_EPCHAR_C                   (1 << 27)
286 #define QH_EPCHAR_MPLEN_MASK          0x07FF0000
287 #define QH_EPCHAR_MPLEN_SH            16
288 #define QH_EPCHAR_H                   (1 << 15)
289 #define QH_EPCHAR_DTC                 (1 << 14)
290 #define QH_EPCHAR_EPS_MASK            0x00003000
291 #define QH_EPCHAR_EPS_SH              12
292 #define EHCI_QH_EPS_FULL              0
293 #define EHCI_QH_EPS_LOW               1
294 #define EHCI_QH_EPS_HIGH              2
295 #define EHCI_QH_EPS_RESERVED          3
296 
297 #define QH_EPCHAR_EP_MASK             0x00000f00
298 #define QH_EPCHAR_EP_SH               8
299 #define QH_EPCHAR_I                   (1 << 7)
300 #define QH_EPCHAR_DEVADDR_MASK        0x0000007f
301 #define QH_EPCHAR_DEVADDR_SH          0
302 
303     /* endpoint capabilities */
304     uint32_t epcap;
305 #define QH_EPCAP_MULT_MASK            0xc0000000
306 #define QH_EPCAP_MULT_SH              30
307 #define QH_EPCAP_PORTNUM_MASK         0x3f800000
308 #define QH_EPCAP_PORTNUM_SH           23
309 #define QH_EPCAP_HUBADDR_MASK         0x007f0000
310 #define QH_EPCAP_HUBADDR_SH           16
311 #define QH_EPCAP_CMASK_MASK           0x0000ff00
312 #define QH_EPCAP_CMASK_SH             8
313 #define QH_EPCAP_SMASK_MASK           0x000000ff
314 #define QH_EPCAP_SMASK_SH             0
315 
316     uint32_t current_qtd;             // Standard next link pointer
317     uint32_t next_qtd;                // Standard next link pointer
318     uint32_t altnext_qtd;
319 #define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
320 #define QH_ALTNEXT_NAKCNT_SH          1
321 
322     uint32_t token;                   // Same as QTD token
323     uint32_t bufptr[5];               // Standard buffer pointer
324 #define BUFPTR_CPROGMASK_MASK         0x000000ff
325 #define BUFPTR_FRAMETAG_MASK          0x0000001f
326 #define BUFPTR_SBYTES_MASK            0x00000fe0
327 #define BUFPTR_SBYTES_SH              5
328 } EHCIqh;
329 
330 /*  EHCI spec version 1.0 Section 3.7
331  */
332 typedef struct EHCIfstn {
333     uint32_t next;                    // Standard next link pointer
334     uint32_t backptr;                 // Standard next link pointer
335 } EHCIfstn;
336 
337 typedef struct EHCIPacket EHCIPacket;
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340 
341 enum async_state {
342     EHCI_ASYNC_NONE = 0,
343     EHCI_ASYNC_INFLIGHT,
344     EHCI_ASYNC_FINISHED,
345 };
346 
347 struct EHCIPacket {
348     EHCIQueue *queue;
349     QTAILQ_ENTRY(EHCIPacket) next;
350 
351     EHCIqtd qtd;           /* copy of current QTD (being worked on) */
352     uint32_t qtdaddr;      /* address QTD read from                 */
353 
354     USBPacket packet;
355     QEMUSGList sgl;
356     int pid;
357     uint32_t tbytes;
358     enum async_state async;
359     int usb_status;
360 };
361 
362 struct EHCIQueue {
363     EHCIState *ehci;
364     QTAILQ_ENTRY(EHCIQueue) next;
365     uint32_t seen;
366     uint64_t ts;
367     int async;
368     int revalidate;
369 
370     /* cached data from guest - needs to be flushed
371      * when guest removes an entry (doorbell, handshake sequence)
372      */
373     EHCIqh qh;             /* copy of current QH (being worked on) */
374     uint32_t qhaddr;       /* address QH read from                 */
375     uint32_t qtdaddr;      /* address QTD read from                */
376     USBDevice *dev;
377     QTAILQ_HEAD(, EHCIPacket) packets;
378 };
379 
380 typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
381 
382 struct EHCIState {
383     PCIDevice dev;
384     USBBus bus;
385     qemu_irq irq;
386     MemoryRegion mem;
387     int companion_count;
388 
389     /* properties */
390     uint32_t maxframes;
391 
392     /*
393      *  EHCI spec version 1.0 Section 2.3
394      *  Host Controller Operational Registers
395      */
396     union {
397         uint8_t mmio[MMIO_SIZE];
398         struct {
399             uint8_t cap[OPREGBASE];
400             uint32_t usbcmd;
401             uint32_t usbsts;
402             uint32_t usbintr;
403             uint32_t frindex;
404             uint32_t ctrldssegment;
405             uint32_t periodiclistbase;
406             uint32_t asynclistaddr;
407             uint32_t notused[9];
408             uint32_t configflag;
409             uint32_t portsc[NB_PORTS];
410         };
411     };
412 
413     /*
414      *  Internal states, shadow registers, etc
415      */
416     QEMUTimer *frame_timer;
417     QEMUBH *async_bh;
418     uint32_t astate;         /* Current state in asynchronous schedule */
419     uint32_t pstate;         /* Current state in periodic schedule     */
420     USBPort ports[NB_PORTS];
421     USBPort *companion_ports[NB_PORTS];
422     uint32_t usbsts_pending;
423     uint32_t usbsts_frindex;
424     EHCIQueueHead aqueues;
425     EHCIQueueHead pqueues;
426 
427     /* which address to look at next */
428     uint32_t a_fetch_addr;
429     uint32_t p_fetch_addr;
430 
431     USBPacket ipacket;
432     QEMUSGList isgl;
433 
434     uint64_t last_run_ns;
435     uint32_t async_stepdown;
436 };
437 
438 #define SET_LAST_RUN_CLOCK(s) \
439     (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
440 
441 /* nifty macros from Arnon's EHCI version  */
442 #define get_field(data, field) \
443     (((data) & field##_MASK) >> field##_SH)
444 
445 #define set_field(data, newval, field) do { \
446     uint32_t val = *data; \
447     val &= ~ field##_MASK; \
448     val |= ((newval) << field##_SH) & field##_MASK; \
449     *data = val; \
450     } while(0)
451 
452 static const char *ehci_state_names[] = {
453     [EST_INACTIVE]     = "INACTIVE",
454     [EST_ACTIVE]       = "ACTIVE",
455     [EST_EXECUTING]    = "EXECUTING",
456     [EST_SLEEPING]     = "SLEEPING",
457     [EST_WAITLISTHEAD] = "WAITLISTHEAD",
458     [EST_FETCHENTRY]   = "FETCH ENTRY",
459     [EST_FETCHQH]      = "FETCH QH",
460     [EST_FETCHITD]     = "FETCH ITD",
461     [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
462     [EST_FETCHQTD]     = "FETCH QTD",
463     [EST_EXECUTE]      = "EXECUTE",
464     [EST_WRITEBACK]    = "WRITEBACK",
465     [EST_HORIZONTALQH] = "HORIZONTALQH",
466 };
467 
468 static const char *ehci_mmio_names[] = {
469     [CAPLENGTH]         = "CAPLENGTH",
470     [HCIVERSION]        = "HCIVERSION",
471     [HCSPARAMS]         = "HCSPARAMS",
472     [HCCPARAMS]         = "HCCPARAMS",
473     [USBCMD]            = "USBCMD",
474     [USBSTS]            = "USBSTS",
475     [USBINTR]           = "USBINTR",
476     [FRINDEX]           = "FRINDEX",
477     [PERIODICLISTBASE]  = "P-LIST BASE",
478     [ASYNCLISTADDR]     = "A-LIST ADDR",
479     [PORTSC_BEGIN]      = "PORTSC #0",
480     [PORTSC_BEGIN + 4]  = "PORTSC #1",
481     [PORTSC_BEGIN + 8]  = "PORTSC #2",
482     [PORTSC_BEGIN + 12] = "PORTSC #3",
483     [PORTSC_BEGIN + 16] = "PORTSC #4",
484     [PORTSC_BEGIN + 20] = "PORTSC #5",
485     [CONFIGFLAG]        = "CONFIGFLAG",
486 };
487 
488 static const char *nr2str(const char **n, size_t len, uint32_t nr)
489 {
490     if (nr < len && n[nr] != NULL) {
491         return n[nr];
492     } else {
493         return "unknown";
494     }
495 }
496 
497 static const char *state2str(uint32_t state)
498 {
499     return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
500 }
501 
502 static const char *addr2str(target_phys_addr_t addr)
503 {
504     return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
505 }
506 
507 static void ehci_trace_usbsts(uint32_t mask, int state)
508 {
509     /* interrupts */
510     if (mask & USBSTS_INT) {
511         trace_usb_ehci_usbsts("INT", state);
512     }
513     if (mask & USBSTS_ERRINT) {
514         trace_usb_ehci_usbsts("ERRINT", state);
515     }
516     if (mask & USBSTS_PCD) {
517         trace_usb_ehci_usbsts("PCD", state);
518     }
519     if (mask & USBSTS_FLR) {
520         trace_usb_ehci_usbsts("FLR", state);
521     }
522     if (mask & USBSTS_HSE) {
523         trace_usb_ehci_usbsts("HSE", state);
524     }
525     if (mask & USBSTS_IAA) {
526         trace_usb_ehci_usbsts("IAA", state);
527     }
528 
529     /* status */
530     if (mask & USBSTS_HALT) {
531         trace_usb_ehci_usbsts("HALT", state);
532     }
533     if (mask & USBSTS_REC) {
534         trace_usb_ehci_usbsts("REC", state);
535     }
536     if (mask & USBSTS_PSS) {
537         trace_usb_ehci_usbsts("PSS", state);
538     }
539     if (mask & USBSTS_ASS) {
540         trace_usb_ehci_usbsts("ASS", state);
541     }
542 }
543 
544 static inline void ehci_set_usbsts(EHCIState *s, int mask)
545 {
546     if ((s->usbsts & mask) == mask) {
547         return;
548     }
549     ehci_trace_usbsts(mask, 1);
550     s->usbsts |= mask;
551 }
552 
553 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
554 {
555     if ((s->usbsts & mask) == 0) {
556         return;
557     }
558     ehci_trace_usbsts(mask, 0);
559     s->usbsts &= ~mask;
560 }
561 
562 /* update irq line */
563 static inline void ehci_update_irq(EHCIState *s)
564 {
565     int level = 0;
566 
567     if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
568         level = 1;
569     }
570 
571     trace_usb_ehci_irq(level, s->frindex, s->usbsts, s->usbintr);
572     qemu_set_irq(s->irq, level);
573 }
574 
575 /* flag interrupt condition */
576 static inline void ehci_raise_irq(EHCIState *s, int intr)
577 {
578     if (intr & (USBSTS_PCD | USBSTS_FLR | USBSTS_HSE)) {
579         s->usbsts |= intr;
580         ehci_update_irq(s);
581     } else {
582         s->usbsts_pending |= intr;
583     }
584 }
585 
586 /*
587  * Commit pending interrupts (added via ehci_raise_irq),
588  * at the rate allowed by "Interrupt Threshold Control".
589  */
590 static inline void ehci_commit_irq(EHCIState *s)
591 {
592     uint32_t itc;
593 
594     if (!s->usbsts_pending) {
595         return;
596     }
597     if (s->usbsts_frindex > s->frindex) {
598         return;
599     }
600 
601     itc = (s->usbcmd >> 16) & 0xff;
602     s->usbsts |= s->usbsts_pending;
603     s->usbsts_pending = 0;
604     s->usbsts_frindex = s->frindex + itc;
605     ehci_update_irq(s);
606 }
607 
608 static void ehci_update_halt(EHCIState *s)
609 {
610     if (s->usbcmd & USBCMD_RUNSTOP) {
611         ehci_clear_usbsts(s, USBSTS_HALT);
612     } else {
613         if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) {
614             ehci_set_usbsts(s, USBSTS_HALT);
615         }
616     }
617 }
618 
619 static void ehci_set_state(EHCIState *s, int async, int state)
620 {
621     if (async) {
622         trace_usb_ehci_state("async", state2str(state));
623         s->astate = state;
624         if (s->astate == EST_INACTIVE) {
625             ehci_clear_usbsts(s, USBSTS_ASS);
626             ehci_update_halt(s);
627         } else {
628             ehci_set_usbsts(s, USBSTS_ASS);
629         }
630     } else {
631         trace_usb_ehci_state("periodic", state2str(state));
632         s->pstate = state;
633         if (s->pstate == EST_INACTIVE) {
634             ehci_clear_usbsts(s, USBSTS_PSS);
635             ehci_update_halt(s);
636         } else {
637             ehci_set_usbsts(s, USBSTS_PSS);
638         }
639     }
640 }
641 
642 static int ehci_get_state(EHCIState *s, int async)
643 {
644     return async ? s->astate : s->pstate;
645 }
646 
647 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
648 {
649     if (async) {
650         s->a_fetch_addr = addr;
651     } else {
652         s->p_fetch_addr = addr;
653     }
654 }
655 
656 static int ehci_get_fetch_addr(EHCIState *s, int async)
657 {
658     return async ? s->a_fetch_addr : s->p_fetch_addr;
659 }
660 
661 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
662 {
663     /* need three here due to argument count limits */
664     trace_usb_ehci_qh_ptrs(q, addr, qh->next,
665                            qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
666     trace_usb_ehci_qh_fields(addr,
667                              get_field(qh->epchar, QH_EPCHAR_RL),
668                              get_field(qh->epchar, QH_EPCHAR_MPLEN),
669                              get_field(qh->epchar, QH_EPCHAR_EPS),
670                              get_field(qh->epchar, QH_EPCHAR_EP),
671                              get_field(qh->epchar, QH_EPCHAR_DEVADDR));
672     trace_usb_ehci_qh_bits(addr,
673                            (bool)(qh->epchar & QH_EPCHAR_C),
674                            (bool)(qh->epchar & QH_EPCHAR_H),
675                            (bool)(qh->epchar & QH_EPCHAR_DTC),
676                            (bool)(qh->epchar & QH_EPCHAR_I));
677 }
678 
679 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
680 {
681     /* need three here due to argument count limits */
682     trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
683     trace_usb_ehci_qtd_fields(addr,
684                               get_field(qtd->token, QTD_TOKEN_TBYTES),
685                               get_field(qtd->token, QTD_TOKEN_CPAGE),
686                               get_field(qtd->token, QTD_TOKEN_CERR),
687                               get_field(qtd->token, QTD_TOKEN_PID));
688     trace_usb_ehci_qtd_bits(addr,
689                             (bool)(qtd->token & QTD_TOKEN_IOC),
690                             (bool)(qtd->token & QTD_TOKEN_ACTIVE),
691                             (bool)(qtd->token & QTD_TOKEN_HALT),
692                             (bool)(qtd->token & QTD_TOKEN_BABBLE),
693                             (bool)(qtd->token & QTD_TOKEN_XACTERR));
694 }
695 
696 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
697 {
698     trace_usb_ehci_itd(addr, itd->next,
699                        get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
700                        get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
701                        get_field(itd->bufptr[0], ITD_BUFPTR_EP),
702                        get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
703 }
704 
705 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
706                             EHCIsitd *sitd)
707 {
708     trace_usb_ehci_sitd(addr, sitd->next,
709                         (bool)(sitd->results & SITD_RESULTS_ACTIVE));
710 }
711 
712 static inline bool ehci_enabled(EHCIState *s)
713 {
714     return s->usbcmd & USBCMD_RUNSTOP;
715 }
716 
717 static inline bool ehci_async_enabled(EHCIState *s)
718 {
719     return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
720 }
721 
722 static inline bool ehci_periodic_enabled(EHCIState *s)
723 {
724     return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
725 }
726 
727 /* packet management */
728 
729 static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
730 {
731     EHCIPacket *p;
732 
733     p = g_new0(EHCIPacket, 1);
734     p->queue = q;
735     usb_packet_init(&p->packet);
736     QTAILQ_INSERT_TAIL(&q->packets, p, next);
737     trace_usb_ehci_packet_action(p->queue, p, "alloc");
738     return p;
739 }
740 
741 static void ehci_free_packet(EHCIPacket *p)
742 {
743     trace_usb_ehci_packet_action(p->queue, p, "free");
744     if (p->async == EHCI_ASYNC_INFLIGHT) {
745         usb_cancel_packet(&p->packet);
746     }
747     QTAILQ_REMOVE(&p->queue->packets, p, next);
748     usb_packet_cleanup(&p->packet);
749     g_free(p);
750 }
751 
752 /* queue management */
753 
754 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
755 {
756     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
757     EHCIQueue *q;
758 
759     q = g_malloc0(sizeof(*q));
760     q->ehci = ehci;
761     q->qhaddr = addr;
762     q->async = async;
763     QTAILQ_INIT(&q->packets);
764     QTAILQ_INSERT_HEAD(head, q, next);
765     trace_usb_ehci_queue_action(q, "alloc");
766     return q;
767 }
768 
769 static void ehci_free_queue(EHCIQueue *q)
770 {
771     EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
772     EHCIPacket *p;
773 
774     trace_usb_ehci_queue_action(q, "free");
775     while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
776         ehci_free_packet(p);
777     }
778     QTAILQ_REMOVE(head, q, next);
779     g_free(q);
780 }
781 
782 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
783                                         int async)
784 {
785     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
786     EHCIQueue *q;
787 
788     QTAILQ_FOREACH(q, head, next) {
789         if (addr == q->qhaddr) {
790             return q;
791         }
792     }
793     return NULL;
794 }
795 
796 static void ehci_queues_tag_unused_async(EHCIState *ehci)
797 {
798     EHCIQueue *q;
799 
800     QTAILQ_FOREACH(q, &ehci->aqueues, next) {
801         if (!q->seen) {
802             q->revalidate = 1;
803         }
804     }
805 }
806 
807 static void ehci_queues_rip_unused(EHCIState *ehci, int async)
808 {
809     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
810     uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4;
811     EHCIQueue *q, *tmp;
812 
813     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
814         if (q->seen) {
815             q->seen = 0;
816             q->ts = ehci->last_run_ns;
817             continue;
818         }
819         if (ehci->last_run_ns < q->ts + maxage) {
820             continue;
821         }
822         ehci_free_queue(q);
823     }
824 }
825 
826 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
827 {
828     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
829     EHCIQueue *q, *tmp;
830 
831     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
832         if (q->dev != dev) {
833             continue;
834         }
835         ehci_free_queue(q);
836     }
837 }
838 
839 static void ehci_queues_rip_all(EHCIState *ehci, int async)
840 {
841     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
842     EHCIQueue *q, *tmp;
843 
844     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
845         ehci_free_queue(q);
846     }
847 }
848 
849 /* Attach or detach a device on root hub */
850 
851 static void ehci_attach(USBPort *port)
852 {
853     EHCIState *s = port->opaque;
854     uint32_t *portsc = &s->portsc[port->index];
855     const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
856 
857     trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc);
858 
859     if (*portsc & PORTSC_POWNER) {
860         USBPort *companion = s->companion_ports[port->index];
861         companion->dev = port->dev;
862         companion->ops->attach(companion);
863         return;
864     }
865 
866     *portsc |= PORTSC_CONNECT;
867     *portsc |= PORTSC_CSC;
868 
869     ehci_raise_irq(s, USBSTS_PCD);
870     ehci_commit_irq(s);
871 }
872 
873 static void ehci_detach(USBPort *port)
874 {
875     EHCIState *s = port->opaque;
876     uint32_t *portsc = &s->portsc[port->index];
877     const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
878 
879     trace_usb_ehci_port_detach(port->index, owner);
880 
881     if (*portsc & PORTSC_POWNER) {
882         USBPort *companion = s->companion_ports[port->index];
883         companion->ops->detach(companion);
884         companion->dev = NULL;
885         /*
886          * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
887          * the port ownership is returned immediately to the EHCI controller."
888          */
889         *portsc &= ~PORTSC_POWNER;
890         return;
891     }
892 
893     ehci_queues_rip_device(s, port->dev, 0);
894     ehci_queues_rip_device(s, port->dev, 1);
895 
896     *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
897     *portsc |= PORTSC_CSC;
898 
899     ehci_raise_irq(s, USBSTS_PCD);
900     ehci_commit_irq(s);
901 }
902 
903 static void ehci_child_detach(USBPort *port, USBDevice *child)
904 {
905     EHCIState *s = port->opaque;
906     uint32_t portsc = s->portsc[port->index];
907 
908     if (portsc & PORTSC_POWNER) {
909         USBPort *companion = s->companion_ports[port->index];
910         companion->ops->child_detach(companion, child);
911         return;
912     }
913 
914     ehci_queues_rip_device(s, child, 0);
915     ehci_queues_rip_device(s, child, 1);
916 }
917 
918 static void ehci_wakeup(USBPort *port)
919 {
920     EHCIState *s = port->opaque;
921     uint32_t portsc = s->portsc[port->index];
922 
923     if (portsc & PORTSC_POWNER) {
924         USBPort *companion = s->companion_ports[port->index];
925         if (companion->ops->wakeup) {
926             companion->ops->wakeup(companion);
927         }
928         return;
929     }
930 
931     qemu_bh_schedule(s->async_bh);
932 }
933 
934 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
935                                    uint32_t portcount, uint32_t firstport)
936 {
937     EHCIState *s = container_of(bus, EHCIState, bus);
938     uint32_t i;
939 
940     if (firstport + portcount > NB_PORTS) {
941         qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
942                       "firstport on masterbus");
943         error_printf_unless_qmp(
944             "firstport value of %u makes companion take ports %u - %u, which "
945             "is outside of the valid range of 0 - %u\n", firstport, firstport,
946             firstport + portcount - 1, NB_PORTS - 1);
947         return -1;
948     }
949 
950     for (i = 0; i < portcount; i++) {
951         if (s->companion_ports[firstport + i]) {
952             qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
953                           "an USB masterbus");
954             error_printf_unless_qmp(
955                 "port %u on masterbus %s already has a companion assigned\n",
956                 firstport + i, bus->qbus.name);
957             return -1;
958         }
959     }
960 
961     for (i = 0; i < portcount; i++) {
962         s->companion_ports[firstport + i] = ports[i];
963         s->ports[firstport + i].speedmask |=
964             USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
965         /* Ensure devs attached before the initial reset go to the companion */
966         s->portsc[firstport + i] = PORTSC_POWNER;
967     }
968 
969     s->companion_count++;
970     s->mmio[0x05] = (s->companion_count << 4) | portcount;
971 
972     return 0;
973 }
974 
975 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
976 {
977     USBDevice *dev;
978     USBPort *port;
979     int i;
980 
981     for (i = 0; i < NB_PORTS; i++) {
982         port = &ehci->ports[i];
983         if (!(ehci->portsc[i] & PORTSC_PED)) {
984             DPRINTF("Port %d not enabled\n", i);
985             continue;
986         }
987         dev = usb_find_device(port, addr);
988         if (dev != NULL) {
989             return dev;
990         }
991     }
992     return NULL;
993 }
994 
995 /* 4.1 host controller initialization */
996 static void ehci_reset(void *opaque)
997 {
998     EHCIState *s = opaque;
999     int i;
1000     USBDevice *devs[NB_PORTS];
1001 
1002     trace_usb_ehci_reset();
1003 
1004     /*
1005      * Do the detach before touching portsc, so that it correctly gets send to
1006      * us or to our companion based on PORTSC_POWNER before the reset.
1007      */
1008     for(i = 0; i < NB_PORTS; i++) {
1009         devs[i] = s->ports[i].dev;
1010         if (devs[i] && devs[i]->attached) {
1011             usb_detach(&s->ports[i]);
1012         }
1013     }
1014 
1015     memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
1016 
1017     s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
1018     s->usbsts = USBSTS_HALT;
1019     s->usbsts_pending = 0;
1020     s->usbsts_frindex = 0;
1021 
1022     s->astate = EST_INACTIVE;
1023     s->pstate = EST_INACTIVE;
1024 
1025     for(i = 0; i < NB_PORTS; i++) {
1026         if (s->companion_ports[i]) {
1027             s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
1028         } else {
1029             s->portsc[i] = PORTSC_PPOWER;
1030         }
1031         if (devs[i] && devs[i]->attached) {
1032             usb_attach(&s->ports[i]);
1033             usb_device_reset(devs[i]);
1034         }
1035     }
1036     ehci_queues_rip_all(s, 0);
1037     ehci_queues_rip_all(s, 1);
1038     qemu_del_timer(s->frame_timer);
1039     qemu_bh_cancel(s->async_bh);
1040 }
1041 
1042 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
1043 {
1044     EHCIState *s = ptr;
1045     uint32_t val;
1046 
1047     val = s->mmio[addr];
1048 
1049     return val;
1050 }
1051 
1052 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
1053 {
1054     EHCIState *s = ptr;
1055     uint32_t val;
1056 
1057     val = s->mmio[addr] | (s->mmio[addr+1] << 8);
1058 
1059     return val;
1060 }
1061 
1062 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
1063 {
1064     EHCIState *s = ptr;
1065     uint32_t val;
1066 
1067     val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
1068           (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
1069 
1070     trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
1071     return val;
1072 }
1073 
1074 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
1075 {
1076     fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
1077     exit(1);
1078 }
1079 
1080 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
1081 {
1082     fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
1083     exit(1);
1084 }
1085 
1086 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
1087 {
1088     USBDevice *dev = s->ports[port].dev;
1089     uint32_t *portsc = &s->portsc[port];
1090     uint32_t orig;
1091 
1092     if (s->companion_ports[port] == NULL)
1093         return;
1094 
1095     owner = owner & PORTSC_POWNER;
1096     orig  = *portsc & PORTSC_POWNER;
1097 
1098     if (!(owner ^ orig)) {
1099         return;
1100     }
1101 
1102     if (dev && dev->attached) {
1103         usb_detach(&s->ports[port]);
1104     }
1105 
1106     *portsc &= ~PORTSC_POWNER;
1107     *portsc |= owner;
1108 
1109     if (dev && dev->attached) {
1110         usb_attach(&s->ports[port]);
1111     }
1112 }
1113 
1114 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
1115 {
1116     uint32_t *portsc = &s->portsc[port];
1117     USBDevice *dev = s->ports[port].dev;
1118 
1119     /* Clear rwc bits */
1120     *portsc &= ~(val & PORTSC_RWC_MASK);
1121     /* The guest may clear, but not set the PED bit */
1122     *portsc &= val | ~PORTSC_PED;
1123     /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1124     handle_port_owner_write(s, port, val);
1125     /* And finally apply RO_MASK */
1126     val &= PORTSC_RO_MASK;
1127 
1128     if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1129         trace_usb_ehci_port_reset(port, 1);
1130     }
1131 
1132     if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1133         trace_usb_ehci_port_reset(port, 0);
1134         if (dev && dev->attached) {
1135             usb_port_reset(&s->ports[port]);
1136             *portsc &= ~PORTSC_CSC;
1137         }
1138 
1139         /*
1140          *  Table 2.16 Set the enable bit(and enable bit change) to indicate
1141          *  to SW that this port has a high speed device attached
1142          */
1143         if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1144             val |= PORTSC_PED;
1145         }
1146     }
1147 
1148     *portsc &= ~PORTSC_RO_MASK;
1149     *portsc |= val;
1150 }
1151 
1152 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1153 {
1154     EHCIState *s = ptr;
1155     uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1156     uint32_t old = *mmio;
1157     int i;
1158 
1159     trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1160 
1161     /* Only aligned reads are allowed on OHCI */
1162     if (addr & 3) {
1163         fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1164                 TARGET_FMT_plx "\n", addr);
1165         return;
1166     }
1167 
1168     if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1169         handle_port_status_write(s, (addr-PORTSC)/4, val);
1170         trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1171         return;
1172     }
1173 
1174     if (addr < OPREGBASE) {
1175         fprintf(stderr, "usb-ehci: write attempt to read-only register"
1176                 TARGET_FMT_plx "\n", addr);
1177         return;
1178     }
1179 
1180 
1181     /* Do any register specific pre-write processing here.  */
1182     switch(addr) {
1183     case USBCMD:
1184         if (val & USBCMD_HCRESET) {
1185             ehci_reset(s);
1186             val = s->usbcmd;
1187             break;
1188         }
1189 
1190         /* not supporting dynamic frame list size at the moment */
1191         if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1192             fprintf(stderr, "attempt to set frame list size -- value %d\n",
1193                     val & USBCMD_FLS);
1194             val &= ~USBCMD_FLS;
1195         }
1196 
1197         if (((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & val) !=
1198             ((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & s->usbcmd)) {
1199             if (s->pstate == EST_INACTIVE) {
1200                 SET_LAST_RUN_CLOCK(s);
1201             }
1202             s->usbcmd = val; /* Set usbcmd for ehci_update_halt() */
1203             ehci_update_halt(s);
1204             s->async_stepdown = 0;
1205             qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1206         }
1207         break;
1208 
1209     case USBSTS:
1210         val &= USBSTS_RO_MASK;              // bits 6 through 31 are RO
1211         ehci_clear_usbsts(s, val);          // bits 0 through 5 are R/WC
1212         val = s->usbsts;
1213         ehci_update_irq(s);
1214         break;
1215 
1216     case USBINTR:
1217         val &= USBINTR_MASK;
1218         break;
1219 
1220     case FRINDEX:
1221         val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1222         break;
1223 
1224     case CONFIGFLAG:
1225         val &= 0x1;
1226         if (val) {
1227             for(i = 0; i < NB_PORTS; i++)
1228                 handle_port_owner_write(s, i, 0);
1229         }
1230         break;
1231 
1232     case PERIODICLISTBASE:
1233         if (ehci_periodic_enabled(s)) {
1234             fprintf(stderr,
1235               "ehci: PERIODIC list base register set while periodic schedule\n"
1236               "      is enabled and HC is enabled\n");
1237         }
1238         break;
1239 
1240     case ASYNCLISTADDR:
1241         if (ehci_async_enabled(s)) {
1242             fprintf(stderr,
1243               "ehci: ASYNC list address register set while async schedule\n"
1244               "      is enabled and HC is enabled\n");
1245         }
1246         break;
1247     }
1248 
1249     *mmio = val;
1250     trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1251 }
1252 
1253 
1254 // TODO : Put in common header file, duplication from usb-ohci.c
1255 
1256 /* Get an array of dwords from main memory */
1257 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1258                              uint32_t *buf, int num)
1259 {
1260     int i;
1261 
1262     for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1263         pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1264         *buf = le32_to_cpu(*buf);
1265     }
1266 
1267     return 1;
1268 }
1269 
1270 /* Put an array of dwords in to main memory */
1271 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1272                              uint32_t *buf, int num)
1273 {
1274     int i;
1275 
1276     for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1277         uint32_t tmp = cpu_to_le32(*buf);
1278         pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1279     }
1280 
1281     return 1;
1282 }
1283 
1284 /*
1285  *  Write the qh back to guest physical memory.  This step isn't
1286  *  in the EHCI spec but we need to do it since we don't share
1287  *  physical memory with our guest VM.
1288  *
1289  *  The first three dwords are read-only for the EHCI, so skip them
1290  *  when writing back the qh.
1291  */
1292 static void ehci_flush_qh(EHCIQueue *q)
1293 {
1294     uint32_t *qh = (uint32_t *) &q->qh;
1295     uint32_t dwords = sizeof(EHCIqh) >> 2;
1296     uint32_t addr = NLPTR_GET(q->qhaddr);
1297 
1298     put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1299 }
1300 
1301 // 4.10.2
1302 
1303 static int ehci_qh_do_overlay(EHCIQueue *q)
1304 {
1305     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1306     int i;
1307     int dtoggle;
1308     int ping;
1309     int eps;
1310     int reload;
1311 
1312     assert(p != NULL);
1313     assert(p->qtdaddr == q->qtdaddr);
1314 
1315     // remember values in fields to preserve in qh after overlay
1316 
1317     dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1318     ping    = q->qh.token & QTD_TOKEN_PING;
1319 
1320     q->qh.current_qtd = p->qtdaddr;
1321     q->qh.next_qtd    = p->qtd.next;
1322     q->qh.altnext_qtd = p->qtd.altnext;
1323     q->qh.token       = p->qtd.token;
1324 
1325 
1326     eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1327     if (eps == EHCI_QH_EPS_HIGH) {
1328         q->qh.token &= ~QTD_TOKEN_PING;
1329         q->qh.token |= ping;
1330     }
1331 
1332     reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1333     set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1334 
1335     for (i = 0; i < 5; i++) {
1336         q->qh.bufptr[i] = p->qtd.bufptr[i];
1337     }
1338 
1339     if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1340         // preserve QH DT bit
1341         q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1342         q->qh.token |= dtoggle;
1343     }
1344 
1345     q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1346     q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1347 
1348     ehci_flush_qh(q);
1349 
1350     return 0;
1351 }
1352 
1353 static int ehci_init_transfer(EHCIPacket *p)
1354 {
1355     uint32_t cpage, offset, bytes, plen;
1356     dma_addr_t page;
1357 
1358     cpage  = get_field(p->qtd.token, QTD_TOKEN_CPAGE);
1359     bytes  = get_field(p->qtd.token, QTD_TOKEN_TBYTES);
1360     offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK;
1361     pci_dma_sglist_init(&p->sgl, &p->queue->ehci->dev, 5);
1362 
1363     while (bytes > 0) {
1364         if (cpage > 4) {
1365             fprintf(stderr, "cpage out of range (%d)\n", cpage);
1366             return USB_RET_PROCERR;
1367         }
1368 
1369         page  = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK;
1370         page += offset;
1371         plen  = bytes;
1372         if (plen > 4096 - offset) {
1373             plen = 4096 - offset;
1374             offset = 0;
1375             cpage++;
1376         }
1377 
1378         qemu_sglist_add(&p->sgl, page, plen);
1379         bytes -= plen;
1380     }
1381     return 0;
1382 }
1383 
1384 static void ehci_finish_transfer(EHCIQueue *q, int status)
1385 {
1386     uint32_t cpage, offset;
1387 
1388     if (status > 0) {
1389         /* update cpage & offset */
1390         cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1391         offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1392 
1393         offset += status;
1394         cpage  += offset >> QTD_BUFPTR_SH;
1395         offset &= ~QTD_BUFPTR_MASK;
1396 
1397         set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1398         q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1399         q->qh.bufptr[0] |= offset;
1400     }
1401 }
1402 
1403 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1404 {
1405     EHCIPacket *p;
1406     EHCIState *s = port->opaque;
1407     uint32_t portsc = s->portsc[port->index];
1408 
1409     if (portsc & PORTSC_POWNER) {
1410         USBPort *companion = s->companion_ports[port->index];
1411         companion->ops->complete(companion, packet);
1412         return;
1413     }
1414 
1415     p = container_of(packet, EHCIPacket, packet);
1416     trace_usb_ehci_packet_action(p->queue, p, "wakeup");
1417     assert(p->async == EHCI_ASYNC_INFLIGHT);
1418     p->async = EHCI_ASYNC_FINISHED;
1419     p->usb_status = packet->result;
1420 
1421     if (p->queue->async) {
1422         qemu_bh_schedule(p->queue->ehci->async_bh);
1423     }
1424 }
1425 
1426 static void ehci_execute_complete(EHCIQueue *q)
1427 {
1428     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1429 
1430     assert(p != NULL);
1431     assert(p->qtdaddr == q->qtdaddr);
1432     assert(p->async != EHCI_ASYNC_INFLIGHT);
1433     p->async = EHCI_ASYNC_NONE;
1434 
1435     DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1436             q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1437 
1438     if (p->usb_status < 0) {
1439         switch (p->usb_status) {
1440         case USB_RET_IOERROR:
1441         case USB_RET_NODEV:
1442             q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1443             set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1444             ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1445             break;
1446         case USB_RET_STALL:
1447             q->qh.token |= QTD_TOKEN_HALT;
1448             ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1449             break;
1450         case USB_RET_NAK:
1451             set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1452             return; /* We're not done yet with this transaction */
1453         case USB_RET_BABBLE:
1454             q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1455             ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1456             break;
1457         default:
1458             /* should not be triggerable */
1459             fprintf(stderr, "USB invalid response %d\n", p->usb_status);
1460             assert(0);
1461             break;
1462         }
1463     } else if ((p->usb_status > p->tbytes) && (p->pid == USB_TOKEN_IN)) {
1464         p->usb_status = USB_RET_BABBLE;
1465         q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1466         ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1467     } else {
1468         // TODO check 4.12 for splits
1469 
1470         if (p->tbytes && p->pid == USB_TOKEN_IN) {
1471             p->tbytes -= p->usb_status;
1472         } else {
1473             p->tbytes = 0;
1474         }
1475 
1476         DPRINTF("updating tbytes to %d\n", p->tbytes);
1477         set_field(&q->qh.token, p->tbytes, QTD_TOKEN_TBYTES);
1478     }
1479     ehci_finish_transfer(q, p->usb_status);
1480     usb_packet_unmap(&p->packet, &p->sgl);
1481     qemu_sglist_destroy(&p->sgl);
1482 
1483     q->qh.token ^= QTD_TOKEN_DTOGGLE;
1484     q->qh.token &= ~QTD_TOKEN_ACTIVE;
1485 
1486     if (q->qh.token & QTD_TOKEN_IOC) {
1487         ehci_raise_irq(q->ehci, USBSTS_INT);
1488     }
1489 }
1490 
1491 // 4.10.3
1492 
1493 static int ehci_execute(EHCIPacket *p, const char *action)
1494 {
1495     USBEndpoint *ep;
1496     int ret;
1497     int endp;
1498 
1499     if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) {
1500         fprintf(stderr, "Attempting to execute inactive qtd\n");
1501         return USB_RET_PROCERR;
1502     }
1503 
1504     p->tbytes = (p->qtd.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1505     if (p->tbytes > BUFF_SIZE) {
1506         fprintf(stderr, "Request for more bytes than allowed\n");
1507         return USB_RET_PROCERR;
1508     }
1509 
1510     p->pid = (p->qtd.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1511     switch (p->pid) {
1512     case 0:
1513         p->pid = USB_TOKEN_OUT;
1514         break;
1515     case 1:
1516         p->pid = USB_TOKEN_IN;
1517         break;
1518     case 2:
1519         p->pid = USB_TOKEN_SETUP;
1520         break;
1521     default:
1522         fprintf(stderr, "bad token\n");
1523         break;
1524     }
1525 
1526     if (ehci_init_transfer(p) != 0) {
1527         return USB_RET_PROCERR;
1528     }
1529 
1530     endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP);
1531     ep = usb_ep_get(p->queue->dev, p->pid, endp);
1532 
1533     usb_packet_setup(&p->packet, p->pid, ep);
1534     usb_packet_map(&p->packet, &p->sgl);
1535 
1536     trace_usb_ehci_packet_action(p->queue, p, action);
1537     ret = usb_handle_packet(p->queue->dev, &p->packet);
1538     DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1539             "(total %d) endp %x ret %d\n",
1540             q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1541             q->packet.iov.size, q->tbytes, endp, ret);
1542 
1543     if (ret > BUFF_SIZE) {
1544         fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1545         return USB_RET_PROCERR;
1546     }
1547 
1548     return ret;
1549 }
1550 
1551 /*  4.7.2
1552  */
1553 
1554 static int ehci_process_itd(EHCIState *ehci,
1555                             EHCIitd *itd)
1556 {
1557     USBDevice *dev;
1558     USBEndpoint *ep;
1559     int ret;
1560     uint32_t i, len, pid, dir, devaddr, endp;
1561     uint32_t pg, off, ptr1, ptr2, max, mult;
1562 
1563     dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1564     devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1565     endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1566     max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1567     mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1568 
1569     for(i = 0; i < 8; i++) {
1570         if (itd->transact[i] & ITD_XACT_ACTIVE) {
1571             pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1572             off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1573             ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1574             ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1575             len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1576 
1577             if (len > max * mult) {
1578                 len = max * mult;
1579             }
1580 
1581             if (len > BUFF_SIZE) {
1582                 return USB_RET_PROCERR;
1583             }
1584 
1585             pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1586             if (off + len > 4096) {
1587                 /* transfer crosses page border */
1588                 uint32_t len2 = off + len - 4096;
1589                 uint32_t len1 = len - len2;
1590                 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1591                 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1592             } else {
1593                 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1594             }
1595 
1596             pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1597 
1598             dev = ehci_find_device(ehci, devaddr);
1599             ep = usb_ep_get(dev, pid, endp);
1600             if (ep->type == USB_ENDPOINT_XFER_ISOC) {
1601                 usb_packet_setup(&ehci->ipacket, pid, ep);
1602                 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1603                 ret = usb_handle_packet(dev, &ehci->ipacket);
1604                 assert(ret != USB_RET_ASYNC);
1605                 usb_packet_unmap(&ehci->ipacket, &ehci->isgl);
1606             } else {
1607                 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1608                 ret = USB_RET_NAK;
1609             }
1610             qemu_sglist_destroy(&ehci->isgl);
1611 
1612             if (ret < 0) {
1613                 switch (ret) {
1614                 default:
1615                     fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1616                     /* Fall through */
1617                 case USB_RET_IOERROR:
1618                 case USB_RET_NODEV:
1619                     /* 3.3.2: XACTERR is only allowed on IN transactions */
1620                     if (dir) {
1621                         itd->transact[i] |= ITD_XACT_XACTERR;
1622                         ehci_raise_irq(ehci, USBSTS_ERRINT);
1623                     }
1624                     break;
1625                 case USB_RET_BABBLE:
1626                     itd->transact[i] |= ITD_XACT_BABBLE;
1627                     ehci_raise_irq(ehci, USBSTS_ERRINT);
1628                     break;
1629                 case USB_RET_NAK:
1630                     /* no data for us, so do a zero-length transfer */
1631                     ret = 0;
1632                     break;
1633                 }
1634             }
1635             if (ret >= 0) {
1636                 if (!dir) {
1637                     /* OUT */
1638                     set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1639                 } else {
1640                     /* IN */
1641                     set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1642                 }
1643             }
1644             if (itd->transact[i] & ITD_XACT_IOC) {
1645                 ehci_raise_irq(ehci, USBSTS_INT);
1646             }
1647             itd->transact[i] &= ~ITD_XACT_ACTIVE;
1648         }
1649     }
1650     return 0;
1651 }
1652 
1653 
1654 /*  This state is the entry point for asynchronous schedule
1655  *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1656  */
1657 static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1658 {
1659     EHCIqh qh;
1660     int i = 0;
1661     int again = 0;
1662     uint32_t entry = ehci->asynclistaddr;
1663 
1664     /* set reclamation flag at start event (4.8.6) */
1665     if (async) {
1666         ehci_set_usbsts(ehci, USBSTS_REC);
1667     }
1668 
1669     ehci_queues_rip_unused(ehci, async);
1670 
1671     /*  Find the head of the list (4.9.1.1) */
1672     for(i = 0; i < MAX_QH; i++) {
1673         get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1674                    sizeof(EHCIqh) >> 2);
1675         ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1676 
1677         if (qh.epchar & QH_EPCHAR_H) {
1678             if (async) {
1679                 entry |= (NLPTR_TYPE_QH << 1);
1680             }
1681 
1682             ehci_set_fetch_addr(ehci, async, entry);
1683             ehci_set_state(ehci, async, EST_FETCHENTRY);
1684             again = 1;
1685             goto out;
1686         }
1687 
1688         entry = qh.next;
1689         if (entry == ehci->asynclistaddr) {
1690             break;
1691         }
1692     }
1693 
1694     /* no head found for list. */
1695 
1696     ehci_set_state(ehci, async, EST_ACTIVE);
1697 
1698 out:
1699     return again;
1700 }
1701 
1702 
1703 /*  This state is the entry point for periodic schedule processing as
1704  *  well as being a continuation state for async processing.
1705  */
1706 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1707 {
1708     int again = 0;
1709     uint32_t entry = ehci_get_fetch_addr(ehci, async);
1710 
1711     if (NLPTR_TBIT(entry)) {
1712         ehci_set_state(ehci, async, EST_ACTIVE);
1713         goto out;
1714     }
1715 
1716     /* section 4.8, only QH in async schedule */
1717     if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1718         fprintf(stderr, "non queue head request in async schedule\n");
1719         return -1;
1720     }
1721 
1722     switch (NLPTR_TYPE_GET(entry)) {
1723     case NLPTR_TYPE_QH:
1724         ehci_set_state(ehci, async, EST_FETCHQH);
1725         again = 1;
1726         break;
1727 
1728     case NLPTR_TYPE_ITD:
1729         ehci_set_state(ehci, async, EST_FETCHITD);
1730         again = 1;
1731         break;
1732 
1733     case NLPTR_TYPE_STITD:
1734         ehci_set_state(ehci, async, EST_FETCHSITD);
1735         again = 1;
1736         break;
1737 
1738     default:
1739         /* TODO: handle FSTN type */
1740         fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1741                 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1742         return -1;
1743     }
1744 
1745 out:
1746     return again;
1747 }
1748 
1749 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1750 {
1751     EHCIPacket *p;
1752     uint32_t entry, devaddr;
1753     EHCIQueue *q;
1754     EHCIqh qh;
1755 
1756     entry = ehci_get_fetch_addr(ehci, async);
1757     q = ehci_find_queue_by_qh(ehci, entry, async);
1758     if (NULL == q) {
1759         q = ehci_alloc_queue(ehci, entry, async);
1760     }
1761     p = QTAILQ_FIRST(&q->packets);
1762 
1763     q->seen++;
1764     if (q->seen > 1) {
1765         /* we are going in circles -- stop processing */
1766         ehci_set_state(ehci, async, EST_ACTIVE);
1767         q = NULL;
1768         goto out;
1769     }
1770 
1771     get_dwords(ehci, NLPTR_GET(q->qhaddr),
1772                (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1773     if (q->revalidate && (q->qh.epchar      != qh.epchar ||
1774                           q->qh.epcap       != qh.epcap  ||
1775                           q->qh.current_qtd != qh.current_qtd)) {
1776         ehci_free_queue(q);
1777         q = ehci_alloc_queue(ehci, entry, async);
1778         q->seen++;
1779         p = NULL;
1780     }
1781     q->qh = qh;
1782     q->revalidate = 0;
1783     ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1784 
1785     devaddr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1786     if (q->dev != NULL && q->dev->addr != devaddr) {
1787         if (!QTAILQ_EMPTY(&q->packets)) {
1788             /* should not happen (guest bug) */
1789             while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
1790                 ehci_free_packet(p);
1791             }
1792         }
1793         q->dev = NULL;
1794     }
1795     if (q->dev == NULL) {
1796         q->dev = ehci_find_device(q->ehci, devaddr);
1797     }
1798 
1799     if (p && p->async == EHCI_ASYNC_INFLIGHT) {
1800         /* I/O still in progress -- skip queue */
1801         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1802         goto out;
1803     }
1804     if (p && p->async == EHCI_ASYNC_FINISHED) {
1805         /* I/O finished -- continue processing queue */
1806         trace_usb_ehci_packet_action(p->queue, p, "complete");
1807         ehci_set_state(ehci, async, EST_EXECUTING);
1808         goto out;
1809     }
1810 
1811     if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1812 
1813         /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1814         if (ehci->usbsts & USBSTS_REC) {
1815             ehci_clear_usbsts(ehci, USBSTS_REC);
1816         } else {
1817             DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1818                        " - done processing\n", q->qhaddr);
1819             ehci_set_state(ehci, async, EST_ACTIVE);
1820             q = NULL;
1821             goto out;
1822         }
1823     }
1824 
1825 #if EHCI_DEBUG
1826     if (q->qhaddr != q->qh.next) {
1827     DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1828                q->qhaddr,
1829                q->qh.epchar & QH_EPCHAR_H,
1830                q->qh.token & QTD_TOKEN_HALT,
1831                q->qh.token & QTD_TOKEN_ACTIVE,
1832                q->qh.next);
1833     }
1834 #endif
1835 
1836     if (q->qh.token & QTD_TOKEN_HALT) {
1837         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1838 
1839     } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1840                (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1841         q->qtdaddr = q->qh.current_qtd;
1842         ehci_set_state(ehci, async, EST_FETCHQTD);
1843 
1844     } else {
1845         /*  EHCI spec version 1.0 Section 4.10.2 */
1846         ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1847     }
1848 
1849 out:
1850     return q;
1851 }
1852 
1853 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1854 {
1855     uint32_t entry;
1856     EHCIitd itd;
1857 
1858     assert(!async);
1859     entry = ehci_get_fetch_addr(ehci, async);
1860 
1861     get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1862                sizeof(EHCIitd) >> 2);
1863     ehci_trace_itd(ehci, entry, &itd);
1864 
1865     if (ehci_process_itd(ehci, &itd) != 0) {
1866         return -1;
1867     }
1868 
1869     put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1870                sizeof(EHCIitd) >> 2);
1871     ehci_set_fetch_addr(ehci, async, itd.next);
1872     ehci_set_state(ehci, async, EST_FETCHENTRY);
1873 
1874     return 1;
1875 }
1876 
1877 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1878 {
1879     uint32_t entry;
1880     EHCIsitd sitd;
1881 
1882     assert(!async);
1883     entry = ehci_get_fetch_addr(ehci, async);
1884 
1885     get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1886                sizeof(EHCIsitd) >> 2);
1887     ehci_trace_sitd(ehci, entry, &sitd);
1888 
1889     if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1890         /* siTD is not active, nothing to do */;
1891     } else {
1892         /* TODO: split transfers are not implemented */
1893         fprintf(stderr, "WARNING: Skipping active siTD\n");
1894     }
1895 
1896     ehci_set_fetch_addr(ehci, async, sitd.next);
1897     ehci_set_state(ehci, async, EST_FETCHENTRY);
1898     return 1;
1899 }
1900 
1901 /* Section 4.10.2 - paragraph 3 */
1902 static int ehci_state_advqueue(EHCIQueue *q)
1903 {
1904 #if 0
1905     /* TO-DO: 4.10.2 - paragraph 2
1906      * if I-bit is set to 1 and QH is not active
1907      * go to horizontal QH
1908      */
1909     if (I-bit set) {
1910         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1911         goto out;
1912     }
1913 #endif
1914 
1915     /*
1916      * want data and alt-next qTD is valid
1917      */
1918     if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1919         (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1920         q->qtdaddr = q->qh.altnext_qtd;
1921         ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1922 
1923     /*
1924      *  next qTD is valid
1925      */
1926     } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1927         q->qtdaddr = q->qh.next_qtd;
1928         ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1929 
1930     /*
1931      *  no valid qTD, try next QH
1932      */
1933     } else {
1934         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1935     }
1936 
1937     return 1;
1938 }
1939 
1940 /* Section 4.10.2 - paragraph 4 */
1941 static int ehci_state_fetchqtd(EHCIQueue *q)
1942 {
1943     EHCIqtd qtd;
1944     EHCIPacket *p;
1945     int again = 0;
1946 
1947     get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd,
1948                sizeof(EHCIqtd) >> 2);
1949     ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
1950 
1951     p = QTAILQ_FIRST(&q->packets);
1952     while (p != NULL && p->qtdaddr != q->qtdaddr) {
1953         /* should not happen (guest bug) */
1954         ehci_free_packet(p);
1955         p = QTAILQ_FIRST(&q->packets);
1956     }
1957     if (p != NULL) {
1958         ehci_qh_do_overlay(q);
1959         ehci_flush_qh(q);
1960         if (p->async == EHCI_ASYNC_INFLIGHT) {
1961             ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1962         } else {
1963             ehci_set_state(q->ehci, q->async, EST_EXECUTING);
1964         }
1965         again = 1;
1966     } else if (qtd.token & QTD_TOKEN_ACTIVE) {
1967         p = ehci_alloc_packet(q);
1968         p->qtdaddr = q->qtdaddr;
1969         p->qtd = qtd;
1970         ehci_set_state(q->ehci, q->async, EST_EXECUTE);
1971         again = 1;
1972     } else {
1973         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1974         again = 1;
1975     }
1976 
1977     return again;
1978 }
1979 
1980 static int ehci_state_horizqh(EHCIQueue *q)
1981 {
1982     int again = 0;
1983 
1984     if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
1985         ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
1986         ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
1987         again = 1;
1988     } else {
1989         ehci_set_state(q->ehci, q->async, EST_ACTIVE);
1990     }
1991 
1992     return again;
1993 }
1994 
1995 static void ehci_fill_queue(EHCIPacket *p)
1996 {
1997     EHCIQueue *q = p->queue;
1998     EHCIqtd qtd = p->qtd;
1999     uint32_t qtdaddr;
2000 
2001     for (;;) {
2002         if (NLPTR_TBIT(qtd.altnext) == 0) {
2003             break;
2004         }
2005         if (NLPTR_TBIT(qtd.next) != 0) {
2006             break;
2007         }
2008         qtdaddr = qtd.next;
2009         get_dwords(q->ehci, NLPTR_GET(qtdaddr),
2010                    (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
2011         ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd);
2012         if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
2013             break;
2014         }
2015         p = ehci_alloc_packet(q);
2016         p->qtdaddr = qtdaddr;
2017         p->qtd = qtd;
2018         p->usb_status = ehci_execute(p, "queue");
2019         assert(p->usb_status == USB_RET_ASYNC);
2020         p->async = EHCI_ASYNC_INFLIGHT;
2021     }
2022 }
2023 
2024 static int ehci_state_execute(EHCIQueue *q)
2025 {
2026     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2027     int again = 0;
2028 
2029     assert(p != NULL);
2030     assert(p->qtdaddr == q->qtdaddr);
2031 
2032     if (ehci_qh_do_overlay(q) != 0) {
2033         return -1;
2034     }
2035 
2036     // TODO verify enough time remains in the uframe as in 4.4.1.1
2037     // TODO write back ptr to async list when done or out of time
2038     // TODO Windows does not seem to ever set the MULT field
2039 
2040     if (!q->async) {
2041         int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2042         if (!transactCtr) {
2043             ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2044             again = 1;
2045             goto out;
2046         }
2047     }
2048 
2049     if (q->async) {
2050         ehci_set_usbsts(q->ehci, USBSTS_REC);
2051     }
2052 
2053     p->usb_status = ehci_execute(p, "process");
2054     if (p->usb_status == USB_RET_PROCERR) {
2055         again = -1;
2056         goto out;
2057     }
2058     if (p->usb_status == USB_RET_ASYNC) {
2059         ehci_flush_qh(q);
2060         trace_usb_ehci_packet_action(p->queue, p, "async");
2061         p->async = EHCI_ASYNC_INFLIGHT;
2062         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2063         again = 1;
2064         ehci_fill_queue(p);
2065         goto out;
2066     }
2067 
2068     ehci_set_state(q->ehci, q->async, EST_EXECUTING);
2069     again = 1;
2070 
2071 out:
2072     return again;
2073 }
2074 
2075 static int ehci_state_executing(EHCIQueue *q)
2076 {
2077     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2078     int again = 0;
2079 
2080     assert(p != NULL);
2081     assert(p->qtdaddr == q->qtdaddr);
2082 
2083     ehci_execute_complete(q);
2084     if (p->usb_status == USB_RET_ASYNC) {
2085         goto out;
2086     }
2087     if (p->usb_status == USB_RET_PROCERR) {
2088         again = -1;
2089         goto out;
2090     }
2091 
2092     // 4.10.3
2093     if (!q->async) {
2094         int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2095         transactCtr--;
2096         set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
2097         // 4.10.3, bottom of page 82, should exit this state when transaction
2098         // counter decrements to 0
2099     }
2100 
2101     /* 4.10.5 */
2102     if (p->usb_status == USB_RET_NAK) {
2103         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2104     } else {
2105         ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
2106     }
2107 
2108     again = 1;
2109 
2110 out:
2111     ehci_flush_qh(q);
2112     return again;
2113 }
2114 
2115 
2116 static int ehci_state_writeback(EHCIQueue *q)
2117 {
2118     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2119     uint32_t *qtd, addr;
2120     int again = 0;
2121 
2122     /*  Write back the QTD from the QH area */
2123     assert(p != NULL);
2124     assert(p->qtdaddr == q->qtdaddr);
2125 
2126     ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd);
2127     qtd = (uint32_t *) &q->qh.next_qtd;
2128     addr = NLPTR_GET(p->qtdaddr);
2129     put_dwords(q->ehci, addr + 2 * sizeof(uint32_t), qtd + 2, 2);
2130     ehci_free_packet(p);
2131 
2132     /*
2133      * EHCI specs say go horizontal here.
2134      *
2135      * We can also advance the queue here for performance reasons.  We
2136      * need to take care to only take that shortcut in case we've
2137      * processed the qtd just written back without errors, i.e. halt
2138      * bit is clear.
2139      */
2140     if (q->qh.token & QTD_TOKEN_HALT) {
2141         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2142         again = 1;
2143     } else {
2144         ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
2145         again = 1;
2146     }
2147     return again;
2148 }
2149 
2150 /*
2151  * This is the state machine that is common to both async and periodic
2152  */
2153 
2154 static void ehci_advance_state(EHCIState *ehci, int async)
2155 {
2156     EHCIQueue *q = NULL;
2157     int again;
2158 
2159     do {
2160         switch(ehci_get_state(ehci, async)) {
2161         case EST_WAITLISTHEAD:
2162             again = ehci_state_waitlisthead(ehci, async);
2163             break;
2164 
2165         case EST_FETCHENTRY:
2166             again = ehci_state_fetchentry(ehci, async);
2167             break;
2168 
2169         case EST_FETCHQH:
2170             q = ehci_state_fetchqh(ehci, async);
2171             if (q != NULL) {
2172                 assert(q->async == async);
2173                 again = 1;
2174             } else {
2175                 again = 0;
2176             }
2177             break;
2178 
2179         case EST_FETCHITD:
2180             again = ehci_state_fetchitd(ehci, async);
2181             break;
2182 
2183         case EST_FETCHSITD:
2184             again = ehci_state_fetchsitd(ehci, async);
2185             break;
2186 
2187         case EST_ADVANCEQUEUE:
2188             again = ehci_state_advqueue(q);
2189             break;
2190 
2191         case EST_FETCHQTD:
2192             again = ehci_state_fetchqtd(q);
2193             break;
2194 
2195         case EST_HORIZONTALQH:
2196             again = ehci_state_horizqh(q);
2197             break;
2198 
2199         case EST_EXECUTE:
2200             again = ehci_state_execute(q);
2201             if (async) {
2202                 ehci->async_stepdown = 0;
2203             }
2204             break;
2205 
2206         case EST_EXECUTING:
2207             assert(q != NULL);
2208             if (async) {
2209                 ehci->async_stepdown = 0;
2210             }
2211             again = ehci_state_executing(q);
2212             break;
2213 
2214         case EST_WRITEBACK:
2215             assert(q != NULL);
2216             again = ehci_state_writeback(q);
2217             break;
2218 
2219         default:
2220             fprintf(stderr, "Bad state!\n");
2221             again = -1;
2222             assert(0);
2223             break;
2224         }
2225 
2226         if (again < 0) {
2227             fprintf(stderr, "processing error - resetting ehci HC\n");
2228             ehci_reset(ehci);
2229             again = 0;
2230         }
2231     }
2232     while (again);
2233 }
2234 
2235 static void ehci_advance_async_state(EHCIState *ehci)
2236 {
2237     const int async = 1;
2238 
2239     switch(ehci_get_state(ehci, async)) {
2240     case EST_INACTIVE:
2241         if (!ehci_async_enabled(ehci)) {
2242             break;
2243         }
2244         ehci_set_state(ehci, async, EST_ACTIVE);
2245         // No break, fall through to ACTIVE
2246 
2247     case EST_ACTIVE:
2248         if (!ehci_async_enabled(ehci)) {
2249             ehci_queues_rip_all(ehci, async);
2250             ehci_set_state(ehci, async, EST_INACTIVE);
2251             break;
2252         }
2253 
2254         /* make sure guest has acknowledged the doorbell interrupt */
2255         /* TO-DO: is this really needed? */
2256         if (ehci->usbsts & USBSTS_IAA) {
2257             DPRINTF("IAA status bit still set.\n");
2258             break;
2259         }
2260 
2261         /* check that address register has been set */
2262         if (ehci->asynclistaddr == 0) {
2263             break;
2264         }
2265 
2266         ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2267         ehci_advance_state(ehci, async);
2268 
2269         /* If the doorbell is set, the guest wants to make a change to the
2270          * schedule. The host controller needs to release cached data.
2271          * (section 4.8.2)
2272          */
2273         if (ehci->usbcmd & USBCMD_IAAD) {
2274             /* Remove all unseen qhs from the async qhs queue */
2275             ehci_queues_tag_unused_async(ehci);
2276             DPRINTF("ASYNC: doorbell request acknowledged\n");
2277             ehci->usbcmd &= ~USBCMD_IAAD;
2278             ehci_raise_irq(ehci, USBSTS_IAA);
2279         }
2280         break;
2281 
2282     default:
2283         /* this should only be due to a developer mistake */
2284         fprintf(stderr, "ehci: Bad asynchronous state %d. "
2285                 "Resetting to active\n", ehci->astate);
2286         assert(0);
2287     }
2288 }
2289 
2290 static void ehci_advance_periodic_state(EHCIState *ehci)
2291 {
2292     uint32_t entry;
2293     uint32_t list;
2294     const int async = 0;
2295 
2296     // 4.6
2297 
2298     switch(ehci_get_state(ehci, async)) {
2299     case EST_INACTIVE:
2300         if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
2301             ehci_set_state(ehci, async, EST_ACTIVE);
2302             // No break, fall through to ACTIVE
2303         } else
2304             break;
2305 
2306     case EST_ACTIVE:
2307         if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
2308             ehci_queues_rip_all(ehci, async);
2309             ehci_set_state(ehci, async, EST_INACTIVE);
2310             break;
2311         }
2312 
2313         list = ehci->periodiclistbase & 0xfffff000;
2314         /* check that register has been set */
2315         if (list == 0) {
2316             break;
2317         }
2318         list |= ((ehci->frindex & 0x1ff8) >> 1);
2319 
2320         pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2321         entry = le32_to_cpu(entry);
2322 
2323         DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2324                 ehci->frindex / 8, list, entry);
2325         ehci_set_fetch_addr(ehci, async,entry);
2326         ehci_set_state(ehci, async, EST_FETCHENTRY);
2327         ehci_advance_state(ehci, async);
2328         ehci_queues_rip_unused(ehci, async);
2329         break;
2330 
2331     default:
2332         /* this should only be due to a developer mistake */
2333         fprintf(stderr, "ehci: Bad periodic state %d. "
2334                 "Resetting to active\n", ehci->pstate);
2335         assert(0);
2336     }
2337 }
2338 
2339 static void ehci_update_frindex(EHCIState *ehci, int frames)
2340 {
2341     int i;
2342 
2343     if (!ehci_enabled(ehci)) {
2344         return;
2345     }
2346 
2347     for (i = 0; i < frames; i++) {
2348         ehci->frindex += 8;
2349 
2350         if (ehci->frindex == 0x00002000) {
2351             ehci_raise_irq(ehci, USBSTS_FLR);
2352         }
2353 
2354         if (ehci->frindex == 0x00004000) {
2355             ehci_raise_irq(ehci, USBSTS_FLR);
2356             ehci->frindex = 0;
2357             if (ehci->usbsts_frindex > 0x00004000) {
2358                 ehci->usbsts_frindex -= 0x00004000;
2359             } else {
2360                 ehci->usbsts_frindex = 0;
2361             }
2362         }
2363     }
2364 }
2365 
2366 static void ehci_frame_timer(void *opaque)
2367 {
2368     EHCIState *ehci = opaque;
2369     int need_timer = 0;
2370     int64_t expire_time, t_now;
2371     uint64_t ns_elapsed;
2372     int frames, skipped_frames;
2373     int i;
2374 
2375     t_now = qemu_get_clock_ns(vm_clock);
2376     ns_elapsed = t_now - ehci->last_run_ns;
2377     frames = ns_elapsed / FRAME_TIMER_NS;
2378 
2379     if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) {
2380         need_timer++;
2381         ehci->async_stepdown = 0;
2382 
2383         if (frames > ehci->maxframes) {
2384             skipped_frames = frames - ehci->maxframes;
2385             ehci_update_frindex(ehci, skipped_frames);
2386             ehci->last_run_ns += FRAME_TIMER_NS * skipped_frames;
2387             frames -= skipped_frames;
2388             DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2389         }
2390 
2391         for (i = 0; i < frames; i++) {
2392             ehci_update_frindex(ehci, 1);
2393             ehci_advance_periodic_state(ehci);
2394             ehci->last_run_ns += FRAME_TIMER_NS;
2395         }
2396     } else {
2397         if (ehci->async_stepdown < ehci->maxframes / 2) {
2398             ehci->async_stepdown++;
2399         }
2400         ehci_update_frindex(ehci, frames);
2401         ehci->last_run_ns += FRAME_TIMER_NS * frames;
2402     }
2403 
2404     /*  Async is not inside loop since it executes everything it can once
2405      *  called
2406      */
2407     if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) {
2408         need_timer++;
2409         ehci_advance_async_state(ehci);
2410     }
2411 
2412     ehci_commit_irq(ehci);
2413     if (ehci->usbsts_pending) {
2414         need_timer++;
2415         ehci->async_stepdown = 0;
2416     }
2417 
2418     if (need_timer) {
2419         expire_time = t_now + (get_ticks_per_sec()
2420                                * (ehci->async_stepdown+1) / FRAME_TIMER_FREQ);
2421         qemu_mod_timer(ehci->frame_timer, expire_time);
2422     }
2423 }
2424 
2425 static void ehci_async_bh(void *opaque)
2426 {
2427     EHCIState *ehci = opaque;
2428     ehci_advance_async_state(ehci);
2429 }
2430 
2431 static const MemoryRegionOps ehci_mem_ops = {
2432     .old_mmio = {
2433         .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2434         .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2435     },
2436     .endianness = DEVICE_LITTLE_ENDIAN,
2437 };
2438 
2439 static int usb_ehci_initfn(PCIDevice *dev);
2440 
2441 static USBPortOps ehci_port_ops = {
2442     .attach = ehci_attach,
2443     .detach = ehci_detach,
2444     .child_detach = ehci_child_detach,
2445     .wakeup = ehci_wakeup,
2446     .complete = ehci_async_complete_packet,
2447 };
2448 
2449 static USBBusOps ehci_bus_ops = {
2450     .register_companion = ehci_register_companion,
2451 };
2452 
2453 static int usb_ehci_post_load(void *opaque, int version_id)
2454 {
2455     EHCIState *s = opaque;
2456     int i;
2457 
2458     for (i = 0; i < NB_PORTS; i++) {
2459         USBPort *companion = s->companion_ports[i];
2460         if (companion == NULL) {
2461             continue;
2462         }
2463         if (s->portsc[i] & PORTSC_POWNER) {
2464             companion->dev = s->ports[i].dev;
2465         } else {
2466             companion->dev = NULL;
2467         }
2468     }
2469 
2470     return 0;
2471 }
2472 
2473 static const VMStateDescription vmstate_ehci = {
2474     .name        = "ehci",
2475     .version_id  = 2,
2476     .minimum_version_id  = 1,
2477     .post_load   = usb_ehci_post_load,
2478     .fields      = (VMStateField[]) {
2479         VMSTATE_PCI_DEVICE(dev, EHCIState),
2480         /* mmio registers */
2481         VMSTATE_UINT32(usbcmd, EHCIState),
2482         VMSTATE_UINT32(usbsts, EHCIState),
2483         VMSTATE_UINT32_V(usbsts_pending, EHCIState, 2),
2484         VMSTATE_UINT32_V(usbsts_frindex, EHCIState, 2),
2485         VMSTATE_UINT32(usbintr, EHCIState),
2486         VMSTATE_UINT32(frindex, EHCIState),
2487         VMSTATE_UINT32(ctrldssegment, EHCIState),
2488         VMSTATE_UINT32(periodiclistbase, EHCIState),
2489         VMSTATE_UINT32(asynclistaddr, EHCIState),
2490         VMSTATE_UINT32(configflag, EHCIState),
2491         VMSTATE_UINT32(portsc[0], EHCIState),
2492         VMSTATE_UINT32(portsc[1], EHCIState),
2493         VMSTATE_UINT32(portsc[2], EHCIState),
2494         VMSTATE_UINT32(portsc[3], EHCIState),
2495         VMSTATE_UINT32(portsc[4], EHCIState),
2496         VMSTATE_UINT32(portsc[5], EHCIState),
2497         /* frame timer */
2498         VMSTATE_TIMER(frame_timer, EHCIState),
2499         VMSTATE_UINT64(last_run_ns, EHCIState),
2500         VMSTATE_UINT32(async_stepdown, EHCIState),
2501         /* schedule state */
2502         VMSTATE_UINT32(astate, EHCIState),
2503         VMSTATE_UINT32(pstate, EHCIState),
2504         VMSTATE_UINT32(a_fetch_addr, EHCIState),
2505         VMSTATE_UINT32(p_fetch_addr, EHCIState),
2506         VMSTATE_END_OF_LIST()
2507     }
2508 };
2509 
2510 static Property ehci_properties[] = {
2511     DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2512     DEFINE_PROP_END_OF_LIST(),
2513 };
2514 
2515 static void ehci_class_init(ObjectClass *klass, void *data)
2516 {
2517     DeviceClass *dc = DEVICE_CLASS(klass);
2518     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2519 
2520     k->init = usb_ehci_initfn;
2521     k->vendor_id = PCI_VENDOR_ID_INTEL;
2522     k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2523     k->revision = 0x10;
2524     k->class_id = PCI_CLASS_SERIAL_USB;
2525     dc->vmsd = &vmstate_ehci;
2526     dc->props = ehci_properties;
2527 }
2528 
2529 static TypeInfo ehci_info = {
2530     .name          = "usb-ehci",
2531     .parent        = TYPE_PCI_DEVICE,
2532     .instance_size = sizeof(EHCIState),
2533     .class_init    = ehci_class_init,
2534 };
2535 
2536 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2537 {
2538     DeviceClass *dc = DEVICE_CLASS(klass);
2539     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2540 
2541     k->init = usb_ehci_initfn;
2542     k->vendor_id = PCI_VENDOR_ID_INTEL;
2543     k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2544     k->revision = 0x03;
2545     k->class_id = PCI_CLASS_SERIAL_USB;
2546     dc->vmsd = &vmstate_ehci;
2547     dc->props = ehci_properties;
2548 }
2549 
2550 static TypeInfo ich9_ehci_info = {
2551     .name          = "ich9-usb-ehci1",
2552     .parent        = TYPE_PCI_DEVICE,
2553     .instance_size = sizeof(EHCIState),
2554     .class_init    = ich9_ehci_class_init,
2555 };
2556 
2557 static int usb_ehci_initfn(PCIDevice *dev)
2558 {
2559     EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2560     uint8_t *pci_conf = s->dev.config;
2561     int i;
2562 
2563     pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2564 
2565     /* capabilities pointer */
2566     pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2567     //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2568 
2569     pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2570     pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2571     pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2572 
2573     // pci_conf[0x50] = 0x01; // power management caps
2574 
2575     pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2576     pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2577     pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2578 
2579     pci_conf[0x64] = 0x00;
2580     pci_conf[0x65] = 0x00;
2581     pci_conf[0x66] = 0x00;
2582     pci_conf[0x67] = 0x00;
2583     pci_conf[0x68] = 0x01;
2584     pci_conf[0x69] = 0x00;
2585     pci_conf[0x6a] = 0x00;
2586     pci_conf[0x6b] = 0x00;  // USBLEGSUP
2587     pci_conf[0x6c] = 0x00;
2588     pci_conf[0x6d] = 0x00;
2589     pci_conf[0x6e] = 0x00;
2590     pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2591 
2592     // 2.2 host controller interface version
2593     s->mmio[0x00] = (uint8_t) OPREGBASE;
2594     s->mmio[0x01] = 0x00;
2595     s->mmio[0x02] = 0x00;
2596     s->mmio[0x03] = 0x01;        // HC version
2597     s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2598     s->mmio[0x05] = 0x00;        // No companion ports at present
2599     s->mmio[0x06] = 0x00;
2600     s->mmio[0x07] = 0x00;
2601     s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2602     s->mmio[0x09] = 0x68;        // EECP
2603     s->mmio[0x0a] = 0x00;
2604     s->mmio[0x0b] = 0x00;
2605 
2606     s->irq = s->dev.irq[3];
2607 
2608     usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2609     for(i = 0; i < NB_PORTS; i++) {
2610         usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2611                           USB_SPEED_MASK_HIGH);
2612         s->ports[i].dev = 0;
2613     }
2614 
2615     s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2616     s->async_bh = qemu_bh_new(ehci_async_bh, s);
2617     QTAILQ_INIT(&s->aqueues);
2618     QTAILQ_INIT(&s->pqueues);
2619     usb_packet_init(&s->ipacket);
2620 
2621     qemu_register_reset(ehci_reset, s);
2622 
2623     memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2624     pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2625 
2626     return 0;
2627 }
2628 
2629 static void ehci_register_types(void)
2630 {
2631     type_register_static(&ehci_info);
2632     type_register_static(&ich9_ehci_info);
2633 }
2634 
2635 type_init(ehci_register_types)
2636 
2637 /*
2638  * vim: expandtab ts=4
2639  */
2640