1 /* 2 * QEMU USB EHCI Emulation 3 * 4 * Copyright(c) 2008 Emutex Ltd. (address@hidden) 5 * Copyright(c) 2011-2012 Red Hat, Inc. 6 * 7 * Red Hat Authors: 8 * Gerd Hoffmann <kraxel@redhat.com> 9 * Hans de Goede <hdegoede@redhat.com> 10 * 11 * EHCI project was started by Mark Burkley, with contributions by 12 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf, 13 * Jan Kiszka and Vincent Palatin contributed bugfixes. 14 * 15 * 16 * This library is free software; you can redistribute it and/or 17 * modify it under the terms of the GNU Lesser General Public 18 * License as published by the Free Software Foundation; either 19 * version 2 of the License, or(at your option) any later version. 20 * 21 * This library is distributed in the hope that it will be useful, 22 * but WITHOUT ANY WARRANTY; without even the implied warranty of 23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 24 * Lesser General Public License for more details. 25 * 26 * You should have received a copy of the GNU General Public License 27 * along with this program; if not, see <http://www.gnu.org/licenses/>. 28 */ 29 30 #include "hw/usb/hcd-ehci.h" 31 32 /* Capability Registers Base Address - section 2.2 */ 33 #define CAPLENGTH 0x0000 /* 1-byte, 0x0001 reserved */ 34 #define HCIVERSION 0x0002 /* 2-bytes, i/f version # */ 35 #define HCSPARAMS 0x0004 /* 4-bytes, structural params */ 36 #define HCCPARAMS 0x0008 /* 4-bytes, capability params */ 37 #define EECP HCCPARAMS + 1 38 #define HCSPPORTROUTE1 0x000c 39 #define HCSPPORTROUTE2 0x0010 40 41 #define USBCMD 0x0000 42 #define USBCMD_RUNSTOP (1 << 0) // run / Stop 43 #define USBCMD_HCRESET (1 << 1) // HC Reset 44 #define USBCMD_FLS (3 << 2) // Frame List Size 45 #define USBCMD_FLS_SH 2 // Frame List Size Shift 46 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable 47 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable 48 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell 49 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset 50 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count 51 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable 52 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control 53 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift 54 55 #define USBSTS 0x0004 56 #define USBSTS_RO_MASK 0x0000003f 57 #define USBSTS_INT (1 << 0) // USB Interrupt 58 #define USBSTS_ERRINT (1 << 1) // Error Interrupt 59 #define USBSTS_PCD (1 << 2) // Port Change Detect 60 #define USBSTS_FLR (1 << 3) // Frame List Rollover 61 #define USBSTS_HSE (1 << 4) // Host System Error 62 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance 63 #define USBSTS_HALT (1 << 12) // HC Halted 64 #define USBSTS_REC (1 << 13) // Reclamation 65 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status 66 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status 67 68 /* 69 * Interrupt enable bits correspond to the interrupt active bits in USBSTS 70 * so no need to redefine here. 71 */ 72 #define USBINTR 0x0008 73 #define USBINTR_MASK 0x0000003f 74 75 #define FRINDEX 0x000c 76 #define CTRLDSSEGMENT 0x0010 77 #define PERIODICLISTBASE 0x0014 78 #define ASYNCLISTADDR 0x0018 79 #define ASYNCLISTADDR_MASK 0xffffffe0 80 81 #define CONFIGFLAG 0x0040 82 83 /* 84 * Bits that are reserved or are read-only are masked out of values 85 * written to us by software 86 */ 87 #define PORTSC_RO_MASK 0x007001c0 88 #define PORTSC_RWC_MASK 0x0000002a 89 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable 90 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable 91 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable 92 #define PORTSC_PTC (15 << 16) // Port Test Control 93 #define PORTSC_PTC_SH 16 // Port Test Control shift 94 #define PORTSC_PIC (3 << 14) // Port Indicator Control 95 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift 96 #define PORTSC_POWNER (1 << 13) // Port Owner 97 #define PORTSC_PPOWER (1 << 12) // Port Power 98 #define PORTSC_LINESTAT (3 << 10) // Port Line Status 99 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift 100 #define PORTSC_PRESET (1 << 8) // Port Reset 101 #define PORTSC_SUSPEND (1 << 7) // Port Suspend 102 #define PORTSC_FPRES (1 << 6) // Force Port Resume 103 #define PORTSC_OCC (1 << 5) // Over Current Change 104 #define PORTSC_OCA (1 << 4) // Over Current Active 105 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change 106 #define PORTSC_PED (1 << 2) // Port Enable/Disable 107 #define PORTSC_CSC (1 << 1) // Connect Status Change 108 #define PORTSC_CONNECT (1 << 0) // Current Connect Status 109 110 #define FRAME_TIMER_FREQ 1000 111 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ) 112 #define UFRAME_TIMER_NS (FRAME_TIMER_NS / 8) 113 114 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints 115 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction 116 #define MAX_QH 100 // Max allowable queue heads in a chain 117 #define MIN_UFR_PER_TICK 24 /* Min frames to process when catching up */ 118 #define PERIODIC_ACTIVE 512 /* Micro-frames */ 119 120 /* Internal periodic / asynchronous schedule state machine states 121 */ 122 typedef enum { 123 EST_INACTIVE = 1000, 124 EST_ACTIVE, 125 EST_EXECUTING, 126 EST_SLEEPING, 127 /* The following states are internal to the state machine function 128 */ 129 EST_WAITLISTHEAD, 130 EST_FETCHENTRY, 131 EST_FETCHQH, 132 EST_FETCHITD, 133 EST_FETCHSITD, 134 EST_ADVANCEQUEUE, 135 EST_FETCHQTD, 136 EST_EXECUTE, 137 EST_WRITEBACK, 138 EST_HORIZONTALQH 139 } EHCI_STATES; 140 141 /* macros for accessing fields within next link pointer entry */ 142 #define NLPTR_GET(x) ((x) & 0xffffffe0) 143 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3) 144 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid 145 146 /* link pointer types */ 147 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor 148 #define NLPTR_TYPE_QH 1 // queue head 149 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor 150 #define NLPTR_TYPE_FSTN 3 // frame span traversal node 151 152 #define SET_LAST_RUN_CLOCK(s) \ 153 (s)->last_run_ns = qemu_get_clock_ns(vm_clock); 154 155 /* nifty macros from Arnon's EHCI version */ 156 #define get_field(data, field) \ 157 (((data) & field##_MASK) >> field##_SH) 158 159 #define set_field(data, newval, field) do { \ 160 uint32_t val = *data; \ 161 val &= ~ field##_MASK; \ 162 val |= ((newval) << field##_SH) & field##_MASK; \ 163 *data = val; \ 164 } while(0) 165 166 static const char *ehci_state_names[] = { 167 [EST_INACTIVE] = "INACTIVE", 168 [EST_ACTIVE] = "ACTIVE", 169 [EST_EXECUTING] = "EXECUTING", 170 [EST_SLEEPING] = "SLEEPING", 171 [EST_WAITLISTHEAD] = "WAITLISTHEAD", 172 [EST_FETCHENTRY] = "FETCH ENTRY", 173 [EST_FETCHQH] = "FETCH QH", 174 [EST_FETCHITD] = "FETCH ITD", 175 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE", 176 [EST_FETCHQTD] = "FETCH QTD", 177 [EST_EXECUTE] = "EXECUTE", 178 [EST_WRITEBACK] = "WRITEBACK", 179 [EST_HORIZONTALQH] = "HORIZONTALQH", 180 }; 181 182 static const char *ehci_mmio_names[] = { 183 [USBCMD] = "USBCMD", 184 [USBSTS] = "USBSTS", 185 [USBINTR] = "USBINTR", 186 [FRINDEX] = "FRINDEX", 187 [PERIODICLISTBASE] = "P-LIST BASE", 188 [ASYNCLISTADDR] = "A-LIST ADDR", 189 [CONFIGFLAG] = "CONFIGFLAG", 190 }; 191 192 static int ehci_state_executing(EHCIQueue *q); 193 static int ehci_state_writeback(EHCIQueue *q); 194 static int ehci_state_advqueue(EHCIQueue *q); 195 static int ehci_fill_queue(EHCIPacket *p); 196 static void ehci_free_packet(EHCIPacket *p); 197 198 static const char *nr2str(const char **n, size_t len, uint32_t nr) 199 { 200 if (nr < len && n[nr] != NULL) { 201 return n[nr]; 202 } else { 203 return "unknown"; 204 } 205 } 206 207 static const char *state2str(uint32_t state) 208 { 209 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state); 210 } 211 212 static const char *addr2str(hwaddr addr) 213 { 214 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr); 215 } 216 217 static void ehci_trace_usbsts(uint32_t mask, int state) 218 { 219 /* interrupts */ 220 if (mask & USBSTS_INT) { 221 trace_usb_ehci_usbsts("INT", state); 222 } 223 if (mask & USBSTS_ERRINT) { 224 trace_usb_ehci_usbsts("ERRINT", state); 225 } 226 if (mask & USBSTS_PCD) { 227 trace_usb_ehci_usbsts("PCD", state); 228 } 229 if (mask & USBSTS_FLR) { 230 trace_usb_ehci_usbsts("FLR", state); 231 } 232 if (mask & USBSTS_HSE) { 233 trace_usb_ehci_usbsts("HSE", state); 234 } 235 if (mask & USBSTS_IAA) { 236 trace_usb_ehci_usbsts("IAA", state); 237 } 238 239 /* status */ 240 if (mask & USBSTS_HALT) { 241 trace_usb_ehci_usbsts("HALT", state); 242 } 243 if (mask & USBSTS_REC) { 244 trace_usb_ehci_usbsts("REC", state); 245 } 246 if (mask & USBSTS_PSS) { 247 trace_usb_ehci_usbsts("PSS", state); 248 } 249 if (mask & USBSTS_ASS) { 250 trace_usb_ehci_usbsts("ASS", state); 251 } 252 } 253 254 static inline void ehci_set_usbsts(EHCIState *s, int mask) 255 { 256 if ((s->usbsts & mask) == mask) { 257 return; 258 } 259 ehci_trace_usbsts(mask, 1); 260 s->usbsts |= mask; 261 } 262 263 static inline void ehci_clear_usbsts(EHCIState *s, int mask) 264 { 265 if ((s->usbsts & mask) == 0) { 266 return; 267 } 268 ehci_trace_usbsts(mask, 0); 269 s->usbsts &= ~mask; 270 } 271 272 /* update irq line */ 273 static inline void ehci_update_irq(EHCIState *s) 274 { 275 int level = 0; 276 277 if ((s->usbsts & USBINTR_MASK) & s->usbintr) { 278 level = 1; 279 } 280 281 trace_usb_ehci_irq(level, s->frindex, s->usbsts, s->usbintr); 282 qemu_set_irq(s->irq, level); 283 } 284 285 /* flag interrupt condition */ 286 static inline void ehci_raise_irq(EHCIState *s, int intr) 287 { 288 if (intr & (USBSTS_PCD | USBSTS_FLR | USBSTS_HSE)) { 289 s->usbsts |= intr; 290 ehci_update_irq(s); 291 } else { 292 s->usbsts_pending |= intr; 293 } 294 } 295 296 /* 297 * Commit pending interrupts (added via ehci_raise_irq), 298 * at the rate allowed by "Interrupt Threshold Control". 299 */ 300 static inline void ehci_commit_irq(EHCIState *s) 301 { 302 uint32_t itc; 303 304 if (!s->usbsts_pending) { 305 return; 306 } 307 if (s->usbsts_frindex > s->frindex) { 308 return; 309 } 310 311 itc = (s->usbcmd >> 16) & 0xff; 312 s->usbsts |= s->usbsts_pending; 313 s->usbsts_pending = 0; 314 s->usbsts_frindex = s->frindex + itc; 315 ehci_update_irq(s); 316 } 317 318 static void ehci_update_halt(EHCIState *s) 319 { 320 if (s->usbcmd & USBCMD_RUNSTOP) { 321 ehci_clear_usbsts(s, USBSTS_HALT); 322 } else { 323 if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) { 324 ehci_set_usbsts(s, USBSTS_HALT); 325 } 326 } 327 } 328 329 static void ehci_set_state(EHCIState *s, int async, int state) 330 { 331 if (async) { 332 trace_usb_ehci_state("async", state2str(state)); 333 s->astate = state; 334 if (s->astate == EST_INACTIVE) { 335 ehci_clear_usbsts(s, USBSTS_ASS); 336 ehci_update_halt(s); 337 } else { 338 ehci_set_usbsts(s, USBSTS_ASS); 339 } 340 } else { 341 trace_usb_ehci_state("periodic", state2str(state)); 342 s->pstate = state; 343 if (s->pstate == EST_INACTIVE) { 344 ehci_clear_usbsts(s, USBSTS_PSS); 345 ehci_update_halt(s); 346 } else { 347 ehci_set_usbsts(s, USBSTS_PSS); 348 } 349 } 350 } 351 352 static int ehci_get_state(EHCIState *s, int async) 353 { 354 return async ? s->astate : s->pstate; 355 } 356 357 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr) 358 { 359 if (async) { 360 s->a_fetch_addr = addr; 361 } else { 362 s->p_fetch_addr = addr; 363 } 364 } 365 366 static int ehci_get_fetch_addr(EHCIState *s, int async) 367 { 368 return async ? s->a_fetch_addr : s->p_fetch_addr; 369 } 370 371 static void ehci_trace_qh(EHCIQueue *q, hwaddr addr, EHCIqh *qh) 372 { 373 /* need three here due to argument count limits */ 374 trace_usb_ehci_qh_ptrs(q, addr, qh->next, 375 qh->current_qtd, qh->next_qtd, qh->altnext_qtd); 376 trace_usb_ehci_qh_fields(addr, 377 get_field(qh->epchar, QH_EPCHAR_RL), 378 get_field(qh->epchar, QH_EPCHAR_MPLEN), 379 get_field(qh->epchar, QH_EPCHAR_EPS), 380 get_field(qh->epchar, QH_EPCHAR_EP), 381 get_field(qh->epchar, QH_EPCHAR_DEVADDR)); 382 trace_usb_ehci_qh_bits(addr, 383 (bool)(qh->epchar & QH_EPCHAR_C), 384 (bool)(qh->epchar & QH_EPCHAR_H), 385 (bool)(qh->epchar & QH_EPCHAR_DTC), 386 (bool)(qh->epchar & QH_EPCHAR_I)); 387 } 388 389 static void ehci_trace_qtd(EHCIQueue *q, hwaddr addr, EHCIqtd *qtd) 390 { 391 /* need three here due to argument count limits */ 392 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext); 393 trace_usb_ehci_qtd_fields(addr, 394 get_field(qtd->token, QTD_TOKEN_TBYTES), 395 get_field(qtd->token, QTD_TOKEN_CPAGE), 396 get_field(qtd->token, QTD_TOKEN_CERR), 397 get_field(qtd->token, QTD_TOKEN_PID)); 398 trace_usb_ehci_qtd_bits(addr, 399 (bool)(qtd->token & QTD_TOKEN_IOC), 400 (bool)(qtd->token & QTD_TOKEN_ACTIVE), 401 (bool)(qtd->token & QTD_TOKEN_HALT), 402 (bool)(qtd->token & QTD_TOKEN_BABBLE), 403 (bool)(qtd->token & QTD_TOKEN_XACTERR)); 404 } 405 406 static void ehci_trace_itd(EHCIState *s, hwaddr addr, EHCIitd *itd) 407 { 408 trace_usb_ehci_itd(addr, itd->next, 409 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT), 410 get_field(itd->bufptr[2], ITD_BUFPTR_MULT), 411 get_field(itd->bufptr[0], ITD_BUFPTR_EP), 412 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR)); 413 } 414 415 static void ehci_trace_sitd(EHCIState *s, hwaddr addr, 416 EHCIsitd *sitd) 417 { 418 trace_usb_ehci_sitd(addr, sitd->next, 419 (bool)(sitd->results & SITD_RESULTS_ACTIVE)); 420 } 421 422 static void ehci_trace_guest_bug(EHCIState *s, const char *message) 423 { 424 trace_usb_ehci_guest_bug(message); 425 fprintf(stderr, "ehci warning: %s\n", message); 426 } 427 428 static inline bool ehci_enabled(EHCIState *s) 429 { 430 return s->usbcmd & USBCMD_RUNSTOP; 431 } 432 433 static inline bool ehci_async_enabled(EHCIState *s) 434 { 435 return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE); 436 } 437 438 static inline bool ehci_periodic_enabled(EHCIState *s) 439 { 440 return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE); 441 } 442 443 /* Get an array of dwords from main memory */ 444 static inline int get_dwords(EHCIState *ehci, uint32_t addr, 445 uint32_t *buf, int num) 446 { 447 int i; 448 449 if (!ehci->as) { 450 ehci_raise_irq(ehci, USBSTS_HSE); 451 ehci->usbcmd &= ~USBCMD_RUNSTOP; 452 trace_usb_ehci_dma_error(); 453 return -1; 454 } 455 456 for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { 457 dma_memory_read(ehci->as, addr, buf, sizeof(*buf)); 458 *buf = le32_to_cpu(*buf); 459 } 460 461 return num; 462 } 463 464 /* Put an array of dwords in to main memory */ 465 static inline int put_dwords(EHCIState *ehci, uint32_t addr, 466 uint32_t *buf, int num) 467 { 468 int i; 469 470 if (!ehci->as) { 471 ehci_raise_irq(ehci, USBSTS_HSE); 472 ehci->usbcmd &= ~USBCMD_RUNSTOP; 473 trace_usb_ehci_dma_error(); 474 return -1; 475 } 476 477 for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { 478 uint32_t tmp = cpu_to_le32(*buf); 479 dma_memory_write(ehci->as, addr, &tmp, sizeof(tmp)); 480 } 481 482 return num; 483 } 484 485 static int ehci_get_pid(EHCIqtd *qtd) 486 { 487 switch (get_field(qtd->token, QTD_TOKEN_PID)) { 488 case 0: 489 return USB_TOKEN_OUT; 490 case 1: 491 return USB_TOKEN_IN; 492 case 2: 493 return USB_TOKEN_SETUP; 494 default: 495 fprintf(stderr, "bad token\n"); 496 return 0; 497 } 498 } 499 500 static bool ehci_verify_qh(EHCIQueue *q, EHCIqh *qh) 501 { 502 uint32_t devaddr = get_field(qh->epchar, QH_EPCHAR_DEVADDR); 503 uint32_t endp = get_field(qh->epchar, QH_EPCHAR_EP); 504 if ((devaddr != get_field(q->qh.epchar, QH_EPCHAR_DEVADDR)) || 505 (endp != get_field(q->qh.epchar, QH_EPCHAR_EP)) || 506 (qh->current_qtd != q->qh.current_qtd) || 507 (q->async && qh->next_qtd != q->qh.next_qtd) || 508 (memcmp(&qh->altnext_qtd, &q->qh.altnext_qtd, 509 7 * sizeof(uint32_t)) != 0) || 510 (q->dev != NULL && q->dev->addr != devaddr)) { 511 return false; 512 } else { 513 return true; 514 } 515 } 516 517 static bool ehci_verify_qtd(EHCIPacket *p, EHCIqtd *qtd) 518 { 519 if (p->qtdaddr != p->queue->qtdaddr || 520 (p->queue->async && !NLPTR_TBIT(p->qtd.next) && 521 (p->qtd.next != qtd->next)) || 522 (!NLPTR_TBIT(p->qtd.altnext) && (p->qtd.altnext != qtd->altnext)) || 523 p->qtd.token != qtd->token || 524 p->qtd.bufptr[0] != qtd->bufptr[0]) { 525 return false; 526 } else { 527 return true; 528 } 529 } 530 531 static bool ehci_verify_pid(EHCIQueue *q, EHCIqtd *qtd) 532 { 533 int ep = get_field(q->qh.epchar, QH_EPCHAR_EP); 534 int pid = ehci_get_pid(qtd); 535 536 /* Note the pid changing is normal for ep 0 (the control ep) */ 537 if (q->last_pid && ep != 0 && pid != q->last_pid) { 538 return false; 539 } else { 540 return true; 541 } 542 } 543 544 /* Finish executing and writeback a packet outside of the regular 545 fetchqh -> fetchqtd -> execute -> writeback cycle */ 546 static void ehci_writeback_async_complete_packet(EHCIPacket *p) 547 { 548 EHCIQueue *q = p->queue; 549 EHCIqtd qtd; 550 EHCIqh qh; 551 int state; 552 553 /* Verify the qh + qtd, like we do when going through fetchqh & fetchqtd */ 554 get_dwords(q->ehci, NLPTR_GET(q->qhaddr), 555 (uint32_t *) &qh, sizeof(EHCIqh) >> 2); 556 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), 557 (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2); 558 if (!ehci_verify_qh(q, &qh) || !ehci_verify_qtd(p, &qtd)) { 559 p->async = EHCI_ASYNC_INITIALIZED; 560 ehci_free_packet(p); 561 return; 562 } 563 564 state = ehci_get_state(q->ehci, q->async); 565 ehci_state_executing(q); 566 ehci_state_writeback(q); /* Frees the packet! */ 567 if (!(q->qh.token & QTD_TOKEN_HALT)) { 568 ehci_state_advqueue(q); 569 } 570 ehci_set_state(q->ehci, q->async, state); 571 } 572 573 /* packet management */ 574 575 static EHCIPacket *ehci_alloc_packet(EHCIQueue *q) 576 { 577 EHCIPacket *p; 578 579 p = g_new0(EHCIPacket, 1); 580 p->queue = q; 581 usb_packet_init(&p->packet); 582 QTAILQ_INSERT_TAIL(&q->packets, p, next); 583 trace_usb_ehci_packet_action(p->queue, p, "alloc"); 584 return p; 585 } 586 587 static void ehci_free_packet(EHCIPacket *p) 588 { 589 if (p->async == EHCI_ASYNC_FINISHED && 590 !(p->queue->qh.token & QTD_TOKEN_HALT)) { 591 ehci_writeback_async_complete_packet(p); 592 return; 593 } 594 trace_usb_ehci_packet_action(p->queue, p, "free"); 595 if (p->async == EHCI_ASYNC_INFLIGHT) { 596 usb_cancel_packet(&p->packet); 597 } 598 if (p->async == EHCI_ASYNC_FINISHED && 599 p->packet.status == USB_RET_SUCCESS) { 600 fprintf(stderr, 601 "EHCI: Dropping completed packet from halted %s ep %02X\n", 602 (p->pid == USB_TOKEN_IN) ? "in" : "out", 603 get_field(p->queue->qh.epchar, QH_EPCHAR_EP)); 604 } 605 if (p->async != EHCI_ASYNC_NONE) { 606 usb_packet_unmap(&p->packet, &p->sgl); 607 qemu_sglist_destroy(&p->sgl); 608 } 609 QTAILQ_REMOVE(&p->queue->packets, p, next); 610 usb_packet_cleanup(&p->packet); 611 g_free(p); 612 } 613 614 /* queue management */ 615 616 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async) 617 { 618 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 619 EHCIQueue *q; 620 621 q = g_malloc0(sizeof(*q)); 622 q->ehci = ehci; 623 q->qhaddr = addr; 624 q->async = async; 625 QTAILQ_INIT(&q->packets); 626 QTAILQ_INSERT_HEAD(head, q, next); 627 trace_usb_ehci_queue_action(q, "alloc"); 628 return q; 629 } 630 631 static void ehci_queue_stopped(EHCIQueue *q) 632 { 633 int endp = get_field(q->qh.epchar, QH_EPCHAR_EP); 634 635 if (!q->last_pid || !q->dev) { 636 return; 637 } 638 639 usb_device_ep_stopped(q->dev, usb_ep_get(q->dev, q->last_pid, endp)); 640 } 641 642 static int ehci_cancel_queue(EHCIQueue *q) 643 { 644 EHCIPacket *p; 645 int packets = 0; 646 647 p = QTAILQ_FIRST(&q->packets); 648 if (p == NULL) { 649 goto leave; 650 } 651 652 trace_usb_ehci_queue_action(q, "cancel"); 653 do { 654 ehci_free_packet(p); 655 packets++; 656 } while ((p = QTAILQ_FIRST(&q->packets)) != NULL); 657 658 leave: 659 ehci_queue_stopped(q); 660 return packets; 661 } 662 663 static int ehci_reset_queue(EHCIQueue *q) 664 { 665 int packets; 666 667 trace_usb_ehci_queue_action(q, "reset"); 668 packets = ehci_cancel_queue(q); 669 q->dev = NULL; 670 q->qtdaddr = 0; 671 q->last_pid = 0; 672 return packets; 673 } 674 675 static void ehci_free_queue(EHCIQueue *q, const char *warn) 676 { 677 EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues; 678 int cancelled; 679 680 trace_usb_ehci_queue_action(q, "free"); 681 cancelled = ehci_cancel_queue(q); 682 if (warn && cancelled > 0) { 683 ehci_trace_guest_bug(q->ehci, warn); 684 } 685 QTAILQ_REMOVE(head, q, next); 686 g_free(q); 687 } 688 689 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr, 690 int async) 691 { 692 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 693 EHCIQueue *q; 694 695 QTAILQ_FOREACH(q, head, next) { 696 if (addr == q->qhaddr) { 697 return q; 698 } 699 } 700 return NULL; 701 } 702 703 static void ehci_queues_rip_unused(EHCIState *ehci, int async) 704 { 705 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 706 const char *warn = async ? "guest unlinked busy QH" : NULL; 707 uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4; 708 EHCIQueue *q, *tmp; 709 710 QTAILQ_FOREACH_SAFE(q, head, next, tmp) { 711 if (q->seen) { 712 q->seen = 0; 713 q->ts = ehci->last_run_ns; 714 continue; 715 } 716 if (ehci->last_run_ns < q->ts + maxage) { 717 continue; 718 } 719 ehci_free_queue(q, warn); 720 } 721 } 722 723 static void ehci_queues_rip_unseen(EHCIState *ehci, int async) 724 { 725 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 726 EHCIQueue *q, *tmp; 727 728 QTAILQ_FOREACH_SAFE(q, head, next, tmp) { 729 if (!q->seen) { 730 ehci_free_queue(q, NULL); 731 } 732 } 733 } 734 735 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async) 736 { 737 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 738 EHCIQueue *q, *tmp; 739 740 QTAILQ_FOREACH_SAFE(q, head, next, tmp) { 741 if (q->dev != dev) { 742 continue; 743 } 744 ehci_free_queue(q, NULL); 745 } 746 } 747 748 static void ehci_queues_rip_all(EHCIState *ehci, int async) 749 { 750 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues; 751 const char *warn = async ? "guest stopped busy async schedule" : NULL; 752 EHCIQueue *q, *tmp; 753 754 QTAILQ_FOREACH_SAFE(q, head, next, tmp) { 755 ehci_free_queue(q, warn); 756 } 757 } 758 759 /* Attach or detach a device on root hub */ 760 761 static void ehci_attach(USBPort *port) 762 { 763 EHCIState *s = port->opaque; 764 uint32_t *portsc = &s->portsc[port->index]; 765 const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci"; 766 767 trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc); 768 769 if (*portsc & PORTSC_POWNER) { 770 USBPort *companion = s->companion_ports[port->index]; 771 companion->dev = port->dev; 772 companion->ops->attach(companion); 773 return; 774 } 775 776 *portsc |= PORTSC_CONNECT; 777 *portsc |= PORTSC_CSC; 778 779 ehci_raise_irq(s, USBSTS_PCD); 780 } 781 782 static void ehci_detach(USBPort *port) 783 { 784 EHCIState *s = port->opaque; 785 uint32_t *portsc = &s->portsc[port->index]; 786 const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci"; 787 788 trace_usb_ehci_port_detach(port->index, owner); 789 790 if (*portsc & PORTSC_POWNER) { 791 USBPort *companion = s->companion_ports[port->index]; 792 companion->ops->detach(companion); 793 companion->dev = NULL; 794 /* 795 * EHCI spec 4.2.2: "When a disconnect occurs... On the event, 796 * the port ownership is returned immediately to the EHCI controller." 797 */ 798 *portsc &= ~PORTSC_POWNER; 799 return; 800 } 801 802 ehci_queues_rip_device(s, port->dev, 0); 803 ehci_queues_rip_device(s, port->dev, 1); 804 805 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED); 806 *portsc |= PORTSC_CSC; 807 808 ehci_raise_irq(s, USBSTS_PCD); 809 } 810 811 static void ehci_child_detach(USBPort *port, USBDevice *child) 812 { 813 EHCIState *s = port->opaque; 814 uint32_t portsc = s->portsc[port->index]; 815 816 if (portsc & PORTSC_POWNER) { 817 USBPort *companion = s->companion_ports[port->index]; 818 companion->ops->child_detach(companion, child); 819 return; 820 } 821 822 ehci_queues_rip_device(s, child, 0); 823 ehci_queues_rip_device(s, child, 1); 824 } 825 826 static void ehci_wakeup(USBPort *port) 827 { 828 EHCIState *s = port->opaque; 829 uint32_t portsc = s->portsc[port->index]; 830 831 if (portsc & PORTSC_POWNER) { 832 USBPort *companion = s->companion_ports[port->index]; 833 if (companion->ops->wakeup) { 834 companion->ops->wakeup(companion); 835 } 836 return; 837 } 838 839 qemu_bh_schedule(s->async_bh); 840 } 841 842 static int ehci_register_companion(USBBus *bus, USBPort *ports[], 843 uint32_t portcount, uint32_t firstport) 844 { 845 EHCIState *s = container_of(bus, EHCIState, bus); 846 uint32_t i; 847 848 if (firstport + portcount > NB_PORTS) { 849 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport", 850 "firstport on masterbus"); 851 error_printf_unless_qmp( 852 "firstport value of %u makes companion take ports %u - %u, which " 853 "is outside of the valid range of 0 - %u\n", firstport, firstport, 854 firstport + portcount - 1, NB_PORTS - 1); 855 return -1; 856 } 857 858 for (i = 0; i < portcount; i++) { 859 if (s->companion_ports[firstport + i]) { 860 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus", 861 "an USB masterbus"); 862 error_printf_unless_qmp( 863 "port %u on masterbus %s already has a companion assigned\n", 864 firstport + i, bus->qbus.name); 865 return -1; 866 } 867 } 868 869 for (i = 0; i < portcount; i++) { 870 s->companion_ports[firstport + i] = ports[i]; 871 s->ports[firstport + i].speedmask |= 872 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL; 873 /* Ensure devs attached before the initial reset go to the companion */ 874 s->portsc[firstport + i] = PORTSC_POWNER; 875 } 876 877 s->companion_count++; 878 s->caps[0x05] = (s->companion_count << 4) | portcount; 879 880 return 0; 881 } 882 883 static void ehci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep, 884 unsigned int stream) 885 { 886 EHCIState *s = container_of(bus, EHCIState, bus); 887 uint32_t portsc = s->portsc[ep->dev->port->index]; 888 889 if (portsc & PORTSC_POWNER) { 890 return; 891 } 892 893 s->periodic_sched_active = PERIODIC_ACTIVE; 894 qemu_bh_schedule(s->async_bh); 895 } 896 897 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr) 898 { 899 USBDevice *dev; 900 USBPort *port; 901 int i; 902 903 for (i = 0; i < NB_PORTS; i++) { 904 port = &ehci->ports[i]; 905 if (!(ehci->portsc[i] & PORTSC_PED)) { 906 DPRINTF("Port %d not enabled\n", i); 907 continue; 908 } 909 dev = usb_find_device(port, addr); 910 if (dev != NULL) { 911 return dev; 912 } 913 } 914 return NULL; 915 } 916 917 /* 4.1 host controller initialization */ 918 static void ehci_reset(void *opaque) 919 { 920 EHCIState *s = opaque; 921 int i; 922 USBDevice *devs[NB_PORTS]; 923 924 trace_usb_ehci_reset(); 925 926 /* 927 * Do the detach before touching portsc, so that it correctly gets send to 928 * us or to our companion based on PORTSC_POWNER before the reset. 929 */ 930 for(i = 0; i < NB_PORTS; i++) { 931 devs[i] = s->ports[i].dev; 932 if (devs[i] && devs[i]->attached) { 933 usb_detach(&s->ports[i]); 934 } 935 } 936 937 memset(&s->opreg, 0x00, sizeof(s->opreg)); 938 memset(&s->portsc, 0x00, sizeof(s->portsc)); 939 940 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH; 941 s->usbsts = USBSTS_HALT; 942 s->usbsts_pending = 0; 943 s->usbsts_frindex = 0; 944 945 s->astate = EST_INACTIVE; 946 s->pstate = EST_INACTIVE; 947 948 for(i = 0; i < NB_PORTS; i++) { 949 if (s->companion_ports[i]) { 950 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER; 951 } else { 952 s->portsc[i] = PORTSC_PPOWER; 953 } 954 if (devs[i] && devs[i]->attached) { 955 usb_attach(&s->ports[i]); 956 usb_device_reset(devs[i]); 957 } 958 } 959 ehci_queues_rip_all(s, 0); 960 ehci_queues_rip_all(s, 1); 961 qemu_del_timer(s->frame_timer); 962 qemu_bh_cancel(s->async_bh); 963 } 964 965 static uint64_t ehci_caps_read(void *ptr, hwaddr addr, 966 unsigned size) 967 { 968 EHCIState *s = ptr; 969 return s->caps[addr]; 970 } 971 972 static uint64_t ehci_opreg_read(void *ptr, hwaddr addr, 973 unsigned size) 974 { 975 EHCIState *s = ptr; 976 uint32_t val; 977 978 switch (addr) { 979 case FRINDEX: 980 /* Round down to mult of 8, else it can go backwards on migration */ 981 val = s->frindex & ~7; 982 break; 983 default: 984 val = s->opreg[addr >> 2]; 985 } 986 987 trace_usb_ehci_opreg_read(addr + s->opregbase, addr2str(addr), val); 988 return val; 989 } 990 991 static uint64_t ehci_port_read(void *ptr, hwaddr addr, 992 unsigned size) 993 { 994 EHCIState *s = ptr; 995 uint32_t val; 996 997 val = s->portsc[addr >> 2]; 998 trace_usb_ehci_portsc_read(addr + s->portscbase, addr >> 2, val); 999 return val; 1000 } 1001 1002 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner) 1003 { 1004 USBDevice *dev = s->ports[port].dev; 1005 uint32_t *portsc = &s->portsc[port]; 1006 uint32_t orig; 1007 1008 if (s->companion_ports[port] == NULL) 1009 return; 1010 1011 owner = owner & PORTSC_POWNER; 1012 orig = *portsc & PORTSC_POWNER; 1013 1014 if (!(owner ^ orig)) { 1015 return; 1016 } 1017 1018 if (dev && dev->attached) { 1019 usb_detach(&s->ports[port]); 1020 } 1021 1022 *portsc &= ~PORTSC_POWNER; 1023 *portsc |= owner; 1024 1025 if (dev && dev->attached) { 1026 usb_attach(&s->ports[port]); 1027 } 1028 } 1029 1030 static void ehci_port_write(void *ptr, hwaddr addr, 1031 uint64_t val, unsigned size) 1032 { 1033 EHCIState *s = ptr; 1034 int port = addr >> 2; 1035 uint32_t *portsc = &s->portsc[port]; 1036 uint32_t old = *portsc; 1037 USBDevice *dev = s->ports[port].dev; 1038 1039 trace_usb_ehci_portsc_write(addr + s->portscbase, addr >> 2, val); 1040 1041 /* Clear rwc bits */ 1042 *portsc &= ~(val & PORTSC_RWC_MASK); 1043 /* The guest may clear, but not set the PED bit */ 1044 *portsc &= val | ~PORTSC_PED; 1045 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */ 1046 handle_port_owner_write(s, port, val); 1047 /* And finally apply RO_MASK */ 1048 val &= PORTSC_RO_MASK; 1049 1050 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) { 1051 trace_usb_ehci_port_reset(port, 1); 1052 } 1053 1054 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) { 1055 trace_usb_ehci_port_reset(port, 0); 1056 if (dev && dev->attached) { 1057 usb_port_reset(&s->ports[port]); 1058 *portsc &= ~PORTSC_CSC; 1059 } 1060 1061 /* 1062 * Table 2.16 Set the enable bit(and enable bit change) to indicate 1063 * to SW that this port has a high speed device attached 1064 */ 1065 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) { 1066 val |= PORTSC_PED; 1067 } 1068 } 1069 1070 *portsc &= ~PORTSC_RO_MASK; 1071 *portsc |= val; 1072 trace_usb_ehci_portsc_change(addr + s->portscbase, addr >> 2, *portsc, old); 1073 } 1074 1075 static void ehci_opreg_write(void *ptr, hwaddr addr, 1076 uint64_t val, unsigned size) 1077 { 1078 EHCIState *s = ptr; 1079 uint32_t *mmio = s->opreg + (addr >> 2); 1080 uint32_t old = *mmio; 1081 int i; 1082 1083 trace_usb_ehci_opreg_write(addr + s->opregbase, addr2str(addr), val); 1084 1085 switch (addr) { 1086 case USBCMD: 1087 if (val & USBCMD_HCRESET) { 1088 ehci_reset(s); 1089 val = s->usbcmd; 1090 break; 1091 } 1092 1093 /* not supporting dynamic frame list size at the moment */ 1094 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) { 1095 fprintf(stderr, "attempt to set frame list size -- value %d\n", 1096 (int)val & USBCMD_FLS); 1097 val &= ~USBCMD_FLS; 1098 } 1099 1100 if (val & USBCMD_IAAD) { 1101 /* 1102 * Process IAAD immediately, otherwise the Linux IAAD watchdog may 1103 * trigger and re-use a qh without us seeing the unlink. 1104 */ 1105 s->async_stepdown = 0; 1106 qemu_bh_schedule(s->async_bh); 1107 trace_usb_ehci_doorbell_ring(); 1108 } 1109 1110 if (((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & val) != 1111 ((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & s->usbcmd)) { 1112 if (s->pstate == EST_INACTIVE) { 1113 SET_LAST_RUN_CLOCK(s); 1114 } 1115 s->usbcmd = val; /* Set usbcmd for ehci_update_halt() */ 1116 ehci_update_halt(s); 1117 s->async_stepdown = 0; 1118 qemu_bh_schedule(s->async_bh); 1119 } 1120 break; 1121 1122 case USBSTS: 1123 val &= USBSTS_RO_MASK; // bits 6 through 31 are RO 1124 ehci_clear_usbsts(s, val); // bits 0 through 5 are R/WC 1125 val = s->usbsts; 1126 ehci_update_irq(s); 1127 break; 1128 1129 case USBINTR: 1130 val &= USBINTR_MASK; 1131 if (ehci_enabled(s) && (USBSTS_FLR & val)) { 1132 qemu_bh_schedule(s->async_bh); 1133 } 1134 break; 1135 1136 case FRINDEX: 1137 val &= 0x00003fff; /* frindex is 14bits */ 1138 s->usbsts_frindex = val; 1139 break; 1140 1141 case CONFIGFLAG: 1142 val &= 0x1; 1143 if (val) { 1144 for(i = 0; i < NB_PORTS; i++) 1145 handle_port_owner_write(s, i, 0); 1146 } 1147 break; 1148 1149 case PERIODICLISTBASE: 1150 if (ehci_periodic_enabled(s)) { 1151 fprintf(stderr, 1152 "ehci: PERIODIC list base register set while periodic schedule\n" 1153 " is enabled and HC is enabled\n"); 1154 } 1155 break; 1156 1157 case ASYNCLISTADDR: 1158 if (ehci_async_enabled(s)) { 1159 fprintf(stderr, 1160 "ehci: ASYNC list address register set while async schedule\n" 1161 " is enabled and HC is enabled\n"); 1162 } 1163 break; 1164 } 1165 1166 *mmio = val; 1167 trace_usb_ehci_opreg_change(addr + s->opregbase, addr2str(addr), 1168 *mmio, old); 1169 } 1170 1171 /* 1172 * Write the qh back to guest physical memory. This step isn't 1173 * in the EHCI spec but we need to do it since we don't share 1174 * physical memory with our guest VM. 1175 * 1176 * The first three dwords are read-only for the EHCI, so skip them 1177 * when writing back the qh. 1178 */ 1179 static void ehci_flush_qh(EHCIQueue *q) 1180 { 1181 uint32_t *qh = (uint32_t *) &q->qh; 1182 uint32_t dwords = sizeof(EHCIqh) >> 2; 1183 uint32_t addr = NLPTR_GET(q->qhaddr); 1184 1185 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3); 1186 } 1187 1188 // 4.10.2 1189 1190 static int ehci_qh_do_overlay(EHCIQueue *q) 1191 { 1192 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 1193 int i; 1194 int dtoggle; 1195 int ping; 1196 int eps; 1197 int reload; 1198 1199 assert(p != NULL); 1200 assert(p->qtdaddr == q->qtdaddr); 1201 1202 // remember values in fields to preserve in qh after overlay 1203 1204 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE; 1205 ping = q->qh.token & QTD_TOKEN_PING; 1206 1207 q->qh.current_qtd = p->qtdaddr; 1208 q->qh.next_qtd = p->qtd.next; 1209 q->qh.altnext_qtd = p->qtd.altnext; 1210 q->qh.token = p->qtd.token; 1211 1212 1213 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS); 1214 if (eps == EHCI_QH_EPS_HIGH) { 1215 q->qh.token &= ~QTD_TOKEN_PING; 1216 q->qh.token |= ping; 1217 } 1218 1219 reload = get_field(q->qh.epchar, QH_EPCHAR_RL); 1220 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT); 1221 1222 for (i = 0; i < 5; i++) { 1223 q->qh.bufptr[i] = p->qtd.bufptr[i]; 1224 } 1225 1226 if (!(q->qh.epchar & QH_EPCHAR_DTC)) { 1227 // preserve QH DT bit 1228 q->qh.token &= ~QTD_TOKEN_DTOGGLE; 1229 q->qh.token |= dtoggle; 1230 } 1231 1232 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK; 1233 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK; 1234 1235 ehci_flush_qh(q); 1236 1237 return 0; 1238 } 1239 1240 static int ehci_init_transfer(EHCIPacket *p) 1241 { 1242 uint32_t cpage, offset, bytes, plen; 1243 dma_addr_t page; 1244 USBBus *bus = &p->queue->ehci->bus; 1245 BusState *qbus = BUS(bus); 1246 1247 cpage = get_field(p->qtd.token, QTD_TOKEN_CPAGE); 1248 bytes = get_field(p->qtd.token, QTD_TOKEN_TBYTES); 1249 offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK; 1250 qemu_sglist_init(&p->sgl, qbus->parent, 5, p->queue->ehci->as); 1251 1252 while (bytes > 0) { 1253 if (cpage > 4) { 1254 fprintf(stderr, "cpage out of range (%d)\n", cpage); 1255 return -1; 1256 } 1257 1258 page = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK; 1259 page += offset; 1260 plen = bytes; 1261 if (plen > 4096 - offset) { 1262 plen = 4096 - offset; 1263 offset = 0; 1264 cpage++; 1265 } 1266 1267 qemu_sglist_add(&p->sgl, page, plen); 1268 bytes -= plen; 1269 } 1270 return 0; 1271 } 1272 1273 static void ehci_finish_transfer(EHCIQueue *q, int len) 1274 { 1275 uint32_t cpage, offset; 1276 1277 if (len > 0) { 1278 /* update cpage & offset */ 1279 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE); 1280 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK; 1281 1282 offset += len; 1283 cpage += offset >> QTD_BUFPTR_SH; 1284 offset &= ~QTD_BUFPTR_MASK; 1285 1286 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE); 1287 q->qh.bufptr[0] &= QTD_BUFPTR_MASK; 1288 q->qh.bufptr[0] |= offset; 1289 } 1290 } 1291 1292 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet) 1293 { 1294 EHCIPacket *p; 1295 EHCIState *s = port->opaque; 1296 uint32_t portsc = s->portsc[port->index]; 1297 1298 if (portsc & PORTSC_POWNER) { 1299 USBPort *companion = s->companion_ports[port->index]; 1300 companion->ops->complete(companion, packet); 1301 return; 1302 } 1303 1304 p = container_of(packet, EHCIPacket, packet); 1305 assert(p->async == EHCI_ASYNC_INFLIGHT); 1306 1307 if (packet->status == USB_RET_REMOVE_FROM_QUEUE) { 1308 trace_usb_ehci_packet_action(p->queue, p, "remove"); 1309 ehci_free_packet(p); 1310 return; 1311 } 1312 1313 trace_usb_ehci_packet_action(p->queue, p, "wakeup"); 1314 p->async = EHCI_ASYNC_FINISHED; 1315 1316 if (!p->queue->async) { 1317 s->periodic_sched_active = PERIODIC_ACTIVE; 1318 } 1319 qemu_bh_schedule(s->async_bh); 1320 } 1321 1322 static void ehci_execute_complete(EHCIQueue *q) 1323 { 1324 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 1325 uint32_t tbytes; 1326 1327 assert(p != NULL); 1328 assert(p->qtdaddr == q->qtdaddr); 1329 assert(p->async == EHCI_ASYNC_INITIALIZED || 1330 p->async == EHCI_ASYNC_FINISHED); 1331 1332 DPRINTF("execute_complete: qhaddr 0x%x, next 0x%x, qtdaddr 0x%x, " 1333 "status %d, actual_length %d\n", 1334 q->qhaddr, q->qh.next, q->qtdaddr, 1335 p->packet.status, p->packet.actual_length); 1336 1337 switch (p->packet.status) { 1338 case USB_RET_SUCCESS: 1339 break; 1340 case USB_RET_IOERROR: 1341 case USB_RET_NODEV: 1342 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR); 1343 set_field(&q->qh.token, 0, QTD_TOKEN_CERR); 1344 ehci_raise_irq(q->ehci, USBSTS_ERRINT); 1345 break; 1346 case USB_RET_STALL: 1347 q->qh.token |= QTD_TOKEN_HALT; 1348 ehci_raise_irq(q->ehci, USBSTS_ERRINT); 1349 break; 1350 case USB_RET_NAK: 1351 set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT); 1352 return; /* We're not done yet with this transaction */ 1353 case USB_RET_BABBLE: 1354 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE); 1355 ehci_raise_irq(q->ehci, USBSTS_ERRINT); 1356 break; 1357 default: 1358 /* should not be triggerable */ 1359 fprintf(stderr, "USB invalid response %d\n", p->packet.status); 1360 g_assert_not_reached(); 1361 break; 1362 } 1363 1364 /* TODO check 4.12 for splits */ 1365 tbytes = get_field(q->qh.token, QTD_TOKEN_TBYTES); 1366 if (tbytes && p->pid == USB_TOKEN_IN) { 1367 tbytes -= p->packet.actual_length; 1368 if (tbytes) { 1369 /* 4.15.1.2 must raise int on a short input packet */ 1370 ehci_raise_irq(q->ehci, USBSTS_INT); 1371 if (q->async) { 1372 q->ehci->int_req_by_async = true; 1373 } 1374 } 1375 } else { 1376 tbytes = 0; 1377 } 1378 DPRINTF("updating tbytes to %d\n", tbytes); 1379 set_field(&q->qh.token, tbytes, QTD_TOKEN_TBYTES); 1380 1381 ehci_finish_transfer(q, p->packet.actual_length); 1382 usb_packet_unmap(&p->packet, &p->sgl); 1383 qemu_sglist_destroy(&p->sgl); 1384 p->async = EHCI_ASYNC_NONE; 1385 1386 q->qh.token ^= QTD_TOKEN_DTOGGLE; 1387 q->qh.token &= ~QTD_TOKEN_ACTIVE; 1388 1389 if (q->qh.token & QTD_TOKEN_IOC) { 1390 ehci_raise_irq(q->ehci, USBSTS_INT); 1391 if (q->async) { 1392 q->ehci->int_req_by_async = true; 1393 } 1394 } 1395 } 1396 1397 /* 4.10.3 returns "again" */ 1398 static int ehci_execute(EHCIPacket *p, const char *action) 1399 { 1400 USBEndpoint *ep; 1401 int endp; 1402 bool spd; 1403 1404 assert(p->async == EHCI_ASYNC_NONE || 1405 p->async == EHCI_ASYNC_INITIALIZED); 1406 1407 if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) { 1408 fprintf(stderr, "Attempting to execute inactive qtd\n"); 1409 return -1; 1410 } 1411 1412 if (get_field(p->qtd.token, QTD_TOKEN_TBYTES) > BUFF_SIZE) { 1413 ehci_trace_guest_bug(p->queue->ehci, 1414 "guest requested more bytes than allowed"); 1415 return -1; 1416 } 1417 1418 if (!ehci_verify_pid(p->queue, &p->qtd)) { 1419 ehci_queue_stopped(p->queue); /* Mark the ep in the prev dir stopped */ 1420 } 1421 p->pid = ehci_get_pid(&p->qtd); 1422 p->queue->last_pid = p->pid; 1423 endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP); 1424 ep = usb_ep_get(p->queue->dev, p->pid, endp); 1425 1426 if (p->async == EHCI_ASYNC_NONE) { 1427 if (ehci_init_transfer(p) != 0) { 1428 return -1; 1429 } 1430 1431 spd = (p->pid == USB_TOKEN_IN && NLPTR_TBIT(p->qtd.altnext) == 0); 1432 usb_packet_setup(&p->packet, p->pid, ep, 0, p->qtdaddr, spd, 1433 (p->qtd.token & QTD_TOKEN_IOC) != 0); 1434 usb_packet_map(&p->packet, &p->sgl); 1435 p->async = EHCI_ASYNC_INITIALIZED; 1436 } 1437 1438 trace_usb_ehci_packet_action(p->queue, p, action); 1439 usb_handle_packet(p->queue->dev, &p->packet); 1440 DPRINTF("submit: qh 0x%x next 0x%x qtd 0x%x pid 0x%x len %zd endp 0x%x " 1441 "status %d actual_length %d\n", p->queue->qhaddr, p->qtd.next, 1442 p->qtdaddr, p->pid, p->packet.iov.size, endp, p->packet.status, 1443 p->packet.actual_length); 1444 1445 if (p->packet.actual_length > BUFF_SIZE) { 1446 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n"); 1447 return -1; 1448 } 1449 1450 return 1; 1451 } 1452 1453 /* 4.7.2 1454 */ 1455 1456 static int ehci_process_itd(EHCIState *ehci, 1457 EHCIitd *itd, 1458 uint32_t addr) 1459 { 1460 USBDevice *dev; 1461 USBEndpoint *ep; 1462 uint32_t i, len, pid, dir, devaddr, endp; 1463 uint32_t pg, off, ptr1, ptr2, max, mult; 1464 1465 ehci->periodic_sched_active = PERIODIC_ACTIVE; 1466 1467 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION); 1468 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR); 1469 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP); 1470 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT); 1471 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT); 1472 1473 for(i = 0; i < 8; i++) { 1474 if (itd->transact[i] & ITD_XACT_ACTIVE) { 1475 pg = get_field(itd->transact[i], ITD_XACT_PGSEL); 1476 off = itd->transact[i] & ITD_XACT_OFFSET_MASK; 1477 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK); 1478 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK); 1479 len = get_field(itd->transact[i], ITD_XACT_LENGTH); 1480 1481 if (len > max * mult) { 1482 len = max * mult; 1483 } 1484 1485 if (len > BUFF_SIZE) { 1486 return -1; 1487 } 1488 1489 qemu_sglist_init(&ehci->isgl, DEVICE(ehci), 2, ehci->as); 1490 if (off + len > 4096) { 1491 /* transfer crosses page border */ 1492 uint32_t len2 = off + len - 4096; 1493 uint32_t len1 = len - len2; 1494 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1); 1495 qemu_sglist_add(&ehci->isgl, ptr2, len2); 1496 } else { 1497 qemu_sglist_add(&ehci->isgl, ptr1 + off, len); 1498 } 1499 1500 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT; 1501 1502 dev = ehci_find_device(ehci, devaddr); 1503 ep = usb_ep_get(dev, pid, endp); 1504 if (ep && ep->type == USB_ENDPOINT_XFER_ISOC) { 1505 usb_packet_setup(&ehci->ipacket, pid, ep, 0, addr, false, 1506 (itd->transact[i] & ITD_XACT_IOC) != 0); 1507 usb_packet_map(&ehci->ipacket, &ehci->isgl); 1508 usb_handle_packet(dev, &ehci->ipacket); 1509 usb_packet_unmap(&ehci->ipacket, &ehci->isgl); 1510 } else { 1511 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n"); 1512 ehci->ipacket.status = USB_RET_NAK; 1513 ehci->ipacket.actual_length = 0; 1514 } 1515 qemu_sglist_destroy(&ehci->isgl); 1516 1517 switch (ehci->ipacket.status) { 1518 case USB_RET_SUCCESS: 1519 break; 1520 default: 1521 fprintf(stderr, "Unexpected iso usb result: %d\n", 1522 ehci->ipacket.status); 1523 /* Fall through */ 1524 case USB_RET_IOERROR: 1525 case USB_RET_NODEV: 1526 /* 3.3.2: XACTERR is only allowed on IN transactions */ 1527 if (dir) { 1528 itd->transact[i] |= ITD_XACT_XACTERR; 1529 ehci_raise_irq(ehci, USBSTS_ERRINT); 1530 } 1531 break; 1532 case USB_RET_BABBLE: 1533 itd->transact[i] |= ITD_XACT_BABBLE; 1534 ehci_raise_irq(ehci, USBSTS_ERRINT); 1535 break; 1536 case USB_RET_NAK: 1537 /* no data for us, so do a zero-length transfer */ 1538 ehci->ipacket.actual_length = 0; 1539 break; 1540 } 1541 if (!dir) { 1542 set_field(&itd->transact[i], len - ehci->ipacket.actual_length, 1543 ITD_XACT_LENGTH); /* OUT */ 1544 } else { 1545 set_field(&itd->transact[i], ehci->ipacket.actual_length, 1546 ITD_XACT_LENGTH); /* IN */ 1547 } 1548 if (itd->transact[i] & ITD_XACT_IOC) { 1549 ehci_raise_irq(ehci, USBSTS_INT); 1550 } 1551 itd->transact[i] &= ~ITD_XACT_ACTIVE; 1552 } 1553 } 1554 return 0; 1555 } 1556 1557 1558 /* This state is the entry point for asynchronous schedule 1559 * processing. Entry here consitutes a EHCI start event state (4.8.5) 1560 */ 1561 static int ehci_state_waitlisthead(EHCIState *ehci, int async) 1562 { 1563 EHCIqh qh; 1564 int i = 0; 1565 int again = 0; 1566 uint32_t entry = ehci->asynclistaddr; 1567 1568 /* set reclamation flag at start event (4.8.6) */ 1569 if (async) { 1570 ehci_set_usbsts(ehci, USBSTS_REC); 1571 } 1572 1573 ehci_queues_rip_unused(ehci, async); 1574 1575 /* Find the head of the list (4.9.1.1) */ 1576 for(i = 0; i < MAX_QH; i++) { 1577 if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh, 1578 sizeof(EHCIqh) >> 2) < 0) { 1579 return 0; 1580 } 1581 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh); 1582 1583 if (qh.epchar & QH_EPCHAR_H) { 1584 if (async) { 1585 entry |= (NLPTR_TYPE_QH << 1); 1586 } 1587 1588 ehci_set_fetch_addr(ehci, async, entry); 1589 ehci_set_state(ehci, async, EST_FETCHENTRY); 1590 again = 1; 1591 goto out; 1592 } 1593 1594 entry = qh.next; 1595 if (entry == ehci->asynclistaddr) { 1596 break; 1597 } 1598 } 1599 1600 /* no head found for list. */ 1601 1602 ehci_set_state(ehci, async, EST_ACTIVE); 1603 1604 out: 1605 return again; 1606 } 1607 1608 1609 /* This state is the entry point for periodic schedule processing as 1610 * well as being a continuation state for async processing. 1611 */ 1612 static int ehci_state_fetchentry(EHCIState *ehci, int async) 1613 { 1614 int again = 0; 1615 uint32_t entry = ehci_get_fetch_addr(ehci, async); 1616 1617 if (NLPTR_TBIT(entry)) { 1618 ehci_set_state(ehci, async, EST_ACTIVE); 1619 goto out; 1620 } 1621 1622 /* section 4.8, only QH in async schedule */ 1623 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) { 1624 fprintf(stderr, "non queue head request in async schedule\n"); 1625 return -1; 1626 } 1627 1628 switch (NLPTR_TYPE_GET(entry)) { 1629 case NLPTR_TYPE_QH: 1630 ehci_set_state(ehci, async, EST_FETCHQH); 1631 again = 1; 1632 break; 1633 1634 case NLPTR_TYPE_ITD: 1635 ehci_set_state(ehci, async, EST_FETCHITD); 1636 again = 1; 1637 break; 1638 1639 case NLPTR_TYPE_STITD: 1640 ehci_set_state(ehci, async, EST_FETCHSITD); 1641 again = 1; 1642 break; 1643 1644 default: 1645 /* TODO: handle FSTN type */ 1646 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d " 1647 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry)); 1648 return -1; 1649 } 1650 1651 out: 1652 return again; 1653 } 1654 1655 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async) 1656 { 1657 uint32_t entry; 1658 EHCIQueue *q; 1659 EHCIqh qh; 1660 1661 entry = ehci_get_fetch_addr(ehci, async); 1662 q = ehci_find_queue_by_qh(ehci, entry, async); 1663 if (NULL == q) { 1664 q = ehci_alloc_queue(ehci, entry, async); 1665 } 1666 1667 q->seen++; 1668 if (q->seen > 1) { 1669 /* we are going in circles -- stop processing */ 1670 ehci_set_state(ehci, async, EST_ACTIVE); 1671 q = NULL; 1672 goto out; 1673 } 1674 1675 if (get_dwords(ehci, NLPTR_GET(q->qhaddr), 1676 (uint32_t *) &qh, sizeof(EHCIqh) >> 2) < 0) { 1677 q = NULL; 1678 goto out; 1679 } 1680 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &qh); 1681 1682 /* 1683 * The overlay area of the qh should never be changed by the guest, 1684 * except when idle, in which case the reset is a nop. 1685 */ 1686 if (!ehci_verify_qh(q, &qh)) { 1687 if (ehci_reset_queue(q) > 0) { 1688 ehci_trace_guest_bug(ehci, "guest updated active QH"); 1689 } 1690 } 1691 q->qh = qh; 1692 1693 q->transact_ctr = get_field(q->qh.epcap, QH_EPCAP_MULT); 1694 if (q->transact_ctr == 0) { /* Guest bug in some versions of windows */ 1695 q->transact_ctr = 4; 1696 } 1697 1698 if (q->dev == NULL) { 1699 q->dev = ehci_find_device(q->ehci, 1700 get_field(q->qh.epchar, QH_EPCHAR_DEVADDR)); 1701 } 1702 1703 if (async && (q->qh.epchar & QH_EPCHAR_H)) { 1704 1705 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */ 1706 if (ehci->usbsts & USBSTS_REC) { 1707 ehci_clear_usbsts(ehci, USBSTS_REC); 1708 } else { 1709 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset" 1710 " - done processing\n", q->qhaddr); 1711 ehci_set_state(ehci, async, EST_ACTIVE); 1712 q = NULL; 1713 goto out; 1714 } 1715 } 1716 1717 #if EHCI_DEBUG 1718 if (q->qhaddr != q->qh.next) { 1719 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n", 1720 q->qhaddr, 1721 q->qh.epchar & QH_EPCHAR_H, 1722 q->qh.token & QTD_TOKEN_HALT, 1723 q->qh.token & QTD_TOKEN_ACTIVE, 1724 q->qh.next); 1725 } 1726 #endif 1727 1728 if (q->qh.token & QTD_TOKEN_HALT) { 1729 ehci_set_state(ehci, async, EST_HORIZONTALQH); 1730 1731 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && 1732 (NLPTR_TBIT(q->qh.current_qtd) == 0)) { 1733 q->qtdaddr = q->qh.current_qtd; 1734 ehci_set_state(ehci, async, EST_FETCHQTD); 1735 1736 } else { 1737 /* EHCI spec version 1.0 Section 4.10.2 */ 1738 ehci_set_state(ehci, async, EST_ADVANCEQUEUE); 1739 } 1740 1741 out: 1742 return q; 1743 } 1744 1745 static int ehci_state_fetchitd(EHCIState *ehci, int async) 1746 { 1747 uint32_t entry; 1748 EHCIitd itd; 1749 1750 assert(!async); 1751 entry = ehci_get_fetch_addr(ehci, async); 1752 1753 if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd, 1754 sizeof(EHCIitd) >> 2) < 0) { 1755 return -1; 1756 } 1757 ehci_trace_itd(ehci, entry, &itd); 1758 1759 if (ehci_process_itd(ehci, &itd, entry) != 0) { 1760 return -1; 1761 } 1762 1763 put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd, 1764 sizeof(EHCIitd) >> 2); 1765 ehci_set_fetch_addr(ehci, async, itd.next); 1766 ehci_set_state(ehci, async, EST_FETCHENTRY); 1767 1768 return 1; 1769 } 1770 1771 static int ehci_state_fetchsitd(EHCIState *ehci, int async) 1772 { 1773 uint32_t entry; 1774 EHCIsitd sitd; 1775 1776 assert(!async); 1777 entry = ehci_get_fetch_addr(ehci, async); 1778 1779 if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd, 1780 sizeof(EHCIsitd) >> 2) < 0) { 1781 return 0; 1782 } 1783 ehci_trace_sitd(ehci, entry, &sitd); 1784 1785 if (!(sitd.results & SITD_RESULTS_ACTIVE)) { 1786 /* siTD is not active, nothing to do */; 1787 } else { 1788 /* TODO: split transfers are not implemented */ 1789 fprintf(stderr, "WARNING: Skipping active siTD\n"); 1790 } 1791 1792 ehci_set_fetch_addr(ehci, async, sitd.next); 1793 ehci_set_state(ehci, async, EST_FETCHENTRY); 1794 return 1; 1795 } 1796 1797 /* Section 4.10.2 - paragraph 3 */ 1798 static int ehci_state_advqueue(EHCIQueue *q) 1799 { 1800 #if 0 1801 /* TO-DO: 4.10.2 - paragraph 2 1802 * if I-bit is set to 1 and QH is not active 1803 * go to horizontal QH 1804 */ 1805 if (I-bit set) { 1806 ehci_set_state(ehci, async, EST_HORIZONTALQH); 1807 goto out; 1808 } 1809 #endif 1810 1811 /* 1812 * want data and alt-next qTD is valid 1813 */ 1814 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) && 1815 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) { 1816 q->qtdaddr = q->qh.altnext_qtd; 1817 ehci_set_state(q->ehci, q->async, EST_FETCHQTD); 1818 1819 /* 1820 * next qTD is valid 1821 */ 1822 } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) { 1823 q->qtdaddr = q->qh.next_qtd; 1824 ehci_set_state(q->ehci, q->async, EST_FETCHQTD); 1825 1826 /* 1827 * no valid qTD, try next QH 1828 */ 1829 } else { 1830 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1831 } 1832 1833 return 1; 1834 } 1835 1836 /* Section 4.10.2 - paragraph 4 */ 1837 static int ehci_state_fetchqtd(EHCIQueue *q) 1838 { 1839 EHCIqtd qtd; 1840 EHCIPacket *p; 1841 int again = 1; 1842 1843 if (get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd, 1844 sizeof(EHCIqtd) >> 2) < 0) { 1845 return 0; 1846 } 1847 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd); 1848 1849 p = QTAILQ_FIRST(&q->packets); 1850 if (p != NULL) { 1851 if (!ehci_verify_qtd(p, &qtd)) { 1852 ehci_cancel_queue(q); 1853 if (qtd.token & QTD_TOKEN_ACTIVE) { 1854 ehci_trace_guest_bug(q->ehci, "guest updated active qTD"); 1855 } 1856 p = NULL; 1857 } else { 1858 p->qtd = qtd; 1859 ehci_qh_do_overlay(q); 1860 } 1861 } 1862 1863 if (!(qtd.token & QTD_TOKEN_ACTIVE)) { 1864 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1865 } else if (p != NULL) { 1866 switch (p->async) { 1867 case EHCI_ASYNC_NONE: 1868 case EHCI_ASYNC_INITIALIZED: 1869 /* Not yet executed (MULT), or previously nacked (int) packet */ 1870 ehci_set_state(q->ehci, q->async, EST_EXECUTE); 1871 break; 1872 case EHCI_ASYNC_INFLIGHT: 1873 /* Check if the guest has added new tds to the queue */ 1874 again = ehci_fill_queue(QTAILQ_LAST(&q->packets, pkts_head)); 1875 /* Unfinished async handled packet, go horizontal */ 1876 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1877 break; 1878 case EHCI_ASYNC_FINISHED: 1879 /* Complete executing of the packet */ 1880 ehci_set_state(q->ehci, q->async, EST_EXECUTING); 1881 break; 1882 } 1883 } else { 1884 p = ehci_alloc_packet(q); 1885 p->qtdaddr = q->qtdaddr; 1886 p->qtd = qtd; 1887 ehci_set_state(q->ehci, q->async, EST_EXECUTE); 1888 } 1889 1890 return again; 1891 } 1892 1893 static int ehci_state_horizqh(EHCIQueue *q) 1894 { 1895 int again = 0; 1896 1897 if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) { 1898 ehci_set_fetch_addr(q->ehci, q->async, q->qh.next); 1899 ehci_set_state(q->ehci, q->async, EST_FETCHENTRY); 1900 again = 1; 1901 } else { 1902 ehci_set_state(q->ehci, q->async, EST_ACTIVE); 1903 } 1904 1905 return again; 1906 } 1907 1908 /* Returns "again" */ 1909 static int ehci_fill_queue(EHCIPacket *p) 1910 { 1911 USBEndpoint *ep = p->packet.ep; 1912 EHCIQueue *q = p->queue; 1913 EHCIqtd qtd = p->qtd; 1914 uint32_t qtdaddr; 1915 1916 for (;;) { 1917 if (NLPTR_TBIT(qtd.next) != 0) { 1918 break; 1919 } 1920 qtdaddr = qtd.next; 1921 /* 1922 * Detect circular td lists, Windows creates these, counting on the 1923 * active bit going low after execution to make the queue stop. 1924 */ 1925 QTAILQ_FOREACH(p, &q->packets, next) { 1926 if (p->qtdaddr == qtdaddr) { 1927 goto leave; 1928 } 1929 } 1930 if (get_dwords(q->ehci, NLPTR_GET(qtdaddr), 1931 (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2) < 0) { 1932 return -1; 1933 } 1934 ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd); 1935 if (!(qtd.token & QTD_TOKEN_ACTIVE)) { 1936 break; 1937 } 1938 if (!ehci_verify_pid(q, &qtd)) { 1939 ehci_trace_guest_bug(q->ehci, "guest queued token with wrong pid"); 1940 break; 1941 } 1942 p = ehci_alloc_packet(q); 1943 p->qtdaddr = qtdaddr; 1944 p->qtd = qtd; 1945 if (ehci_execute(p, "queue") == -1) { 1946 return -1; 1947 } 1948 assert(p->packet.status == USB_RET_ASYNC); 1949 p->async = EHCI_ASYNC_INFLIGHT; 1950 } 1951 leave: 1952 usb_device_flush_ep_queue(ep->dev, ep); 1953 return 1; 1954 } 1955 1956 static int ehci_state_execute(EHCIQueue *q) 1957 { 1958 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 1959 int again = 0; 1960 1961 assert(p != NULL); 1962 assert(p->qtdaddr == q->qtdaddr); 1963 1964 if (ehci_qh_do_overlay(q) != 0) { 1965 return -1; 1966 } 1967 1968 // TODO verify enough time remains in the uframe as in 4.4.1.1 1969 // TODO write back ptr to async list when done or out of time 1970 1971 /* 4.10.3, bottom of page 82, go horizontal on transaction counter == 0 */ 1972 if (!q->async && q->transact_ctr == 0) { 1973 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1974 again = 1; 1975 goto out; 1976 } 1977 1978 if (q->async) { 1979 ehci_set_usbsts(q->ehci, USBSTS_REC); 1980 } 1981 1982 again = ehci_execute(p, "process"); 1983 if (again == -1) { 1984 goto out; 1985 } 1986 if (p->packet.status == USB_RET_ASYNC) { 1987 ehci_flush_qh(q); 1988 trace_usb_ehci_packet_action(p->queue, p, "async"); 1989 p->async = EHCI_ASYNC_INFLIGHT; 1990 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 1991 if (q->async) { 1992 again = ehci_fill_queue(p); 1993 } else { 1994 again = 1; 1995 } 1996 goto out; 1997 } 1998 1999 ehci_set_state(q->ehci, q->async, EST_EXECUTING); 2000 again = 1; 2001 2002 out: 2003 return again; 2004 } 2005 2006 static int ehci_state_executing(EHCIQueue *q) 2007 { 2008 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 2009 2010 assert(p != NULL); 2011 assert(p->qtdaddr == q->qtdaddr); 2012 2013 ehci_execute_complete(q); 2014 2015 /* 4.10.3 */ 2016 if (!q->async && q->transact_ctr > 0) { 2017 q->transact_ctr--; 2018 } 2019 2020 /* 4.10.5 */ 2021 if (p->packet.status == USB_RET_NAK) { 2022 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 2023 } else { 2024 ehci_set_state(q->ehci, q->async, EST_WRITEBACK); 2025 } 2026 2027 ehci_flush_qh(q); 2028 return 1; 2029 } 2030 2031 2032 static int ehci_state_writeback(EHCIQueue *q) 2033 { 2034 EHCIPacket *p = QTAILQ_FIRST(&q->packets); 2035 uint32_t *qtd, addr; 2036 int again = 0; 2037 2038 /* Write back the QTD from the QH area */ 2039 assert(p != NULL); 2040 assert(p->qtdaddr == q->qtdaddr); 2041 2042 ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd); 2043 qtd = (uint32_t *) &q->qh.next_qtd; 2044 addr = NLPTR_GET(p->qtdaddr); 2045 put_dwords(q->ehci, addr + 2 * sizeof(uint32_t), qtd + 2, 2); 2046 ehci_free_packet(p); 2047 2048 /* 2049 * EHCI specs say go horizontal here. 2050 * 2051 * We can also advance the queue here for performance reasons. We 2052 * need to take care to only take that shortcut in case we've 2053 * processed the qtd just written back without errors, i.e. halt 2054 * bit is clear. 2055 */ 2056 if (q->qh.token & QTD_TOKEN_HALT) { 2057 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); 2058 again = 1; 2059 } else { 2060 ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE); 2061 again = 1; 2062 } 2063 return again; 2064 } 2065 2066 /* 2067 * This is the state machine that is common to both async and periodic 2068 */ 2069 2070 static void ehci_advance_state(EHCIState *ehci, int async) 2071 { 2072 EHCIQueue *q = NULL; 2073 int again; 2074 2075 do { 2076 switch(ehci_get_state(ehci, async)) { 2077 case EST_WAITLISTHEAD: 2078 again = ehci_state_waitlisthead(ehci, async); 2079 break; 2080 2081 case EST_FETCHENTRY: 2082 again = ehci_state_fetchentry(ehci, async); 2083 break; 2084 2085 case EST_FETCHQH: 2086 q = ehci_state_fetchqh(ehci, async); 2087 if (q != NULL) { 2088 assert(q->async == async); 2089 again = 1; 2090 } else { 2091 again = 0; 2092 } 2093 break; 2094 2095 case EST_FETCHITD: 2096 again = ehci_state_fetchitd(ehci, async); 2097 break; 2098 2099 case EST_FETCHSITD: 2100 again = ehci_state_fetchsitd(ehci, async); 2101 break; 2102 2103 case EST_ADVANCEQUEUE: 2104 assert(q != NULL); 2105 again = ehci_state_advqueue(q); 2106 break; 2107 2108 case EST_FETCHQTD: 2109 assert(q != NULL); 2110 again = ehci_state_fetchqtd(q); 2111 break; 2112 2113 case EST_HORIZONTALQH: 2114 assert(q != NULL); 2115 again = ehci_state_horizqh(q); 2116 break; 2117 2118 case EST_EXECUTE: 2119 assert(q != NULL); 2120 again = ehci_state_execute(q); 2121 if (async) { 2122 ehci->async_stepdown = 0; 2123 } 2124 break; 2125 2126 case EST_EXECUTING: 2127 assert(q != NULL); 2128 if (async) { 2129 ehci->async_stepdown = 0; 2130 } 2131 again = ehci_state_executing(q); 2132 break; 2133 2134 case EST_WRITEBACK: 2135 assert(q != NULL); 2136 again = ehci_state_writeback(q); 2137 if (!async) { 2138 ehci->periodic_sched_active = PERIODIC_ACTIVE; 2139 } 2140 break; 2141 2142 default: 2143 fprintf(stderr, "Bad state!\n"); 2144 again = -1; 2145 g_assert_not_reached(); 2146 break; 2147 } 2148 2149 if (again < 0) { 2150 fprintf(stderr, "processing error - resetting ehci HC\n"); 2151 ehci_reset(ehci); 2152 again = 0; 2153 } 2154 } 2155 while (again); 2156 } 2157 2158 static void ehci_advance_async_state(EHCIState *ehci) 2159 { 2160 const int async = 1; 2161 2162 switch(ehci_get_state(ehci, async)) { 2163 case EST_INACTIVE: 2164 if (!ehci_async_enabled(ehci)) { 2165 break; 2166 } 2167 ehci_set_state(ehci, async, EST_ACTIVE); 2168 // No break, fall through to ACTIVE 2169 2170 case EST_ACTIVE: 2171 if (!ehci_async_enabled(ehci)) { 2172 ehci_queues_rip_all(ehci, async); 2173 ehci_set_state(ehci, async, EST_INACTIVE); 2174 break; 2175 } 2176 2177 /* make sure guest has acknowledged the doorbell interrupt */ 2178 /* TO-DO: is this really needed? */ 2179 if (ehci->usbsts & USBSTS_IAA) { 2180 DPRINTF("IAA status bit still set.\n"); 2181 break; 2182 } 2183 2184 /* check that address register has been set */ 2185 if (ehci->asynclistaddr == 0) { 2186 break; 2187 } 2188 2189 ehci_set_state(ehci, async, EST_WAITLISTHEAD); 2190 ehci_advance_state(ehci, async); 2191 2192 /* If the doorbell is set, the guest wants to make a change to the 2193 * schedule. The host controller needs to release cached data. 2194 * (section 4.8.2) 2195 */ 2196 if (ehci->usbcmd & USBCMD_IAAD) { 2197 /* Remove all unseen qhs from the async qhs queue */ 2198 ehci_queues_rip_unseen(ehci, async); 2199 trace_usb_ehci_doorbell_ack(); 2200 ehci->usbcmd &= ~USBCMD_IAAD; 2201 ehci_raise_irq(ehci, USBSTS_IAA); 2202 } 2203 break; 2204 2205 default: 2206 /* this should only be due to a developer mistake */ 2207 fprintf(stderr, "ehci: Bad asynchronous state %d. " 2208 "Resetting to active\n", ehci->astate); 2209 g_assert_not_reached(); 2210 } 2211 } 2212 2213 static void ehci_advance_periodic_state(EHCIState *ehci) 2214 { 2215 uint32_t entry; 2216 uint32_t list; 2217 const int async = 0; 2218 2219 // 4.6 2220 2221 switch(ehci_get_state(ehci, async)) { 2222 case EST_INACTIVE: 2223 if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) { 2224 ehci_set_state(ehci, async, EST_ACTIVE); 2225 // No break, fall through to ACTIVE 2226 } else 2227 break; 2228 2229 case EST_ACTIVE: 2230 if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) { 2231 ehci_queues_rip_all(ehci, async); 2232 ehci_set_state(ehci, async, EST_INACTIVE); 2233 break; 2234 } 2235 2236 list = ehci->periodiclistbase & 0xfffff000; 2237 /* check that register has been set */ 2238 if (list == 0) { 2239 break; 2240 } 2241 list |= ((ehci->frindex & 0x1ff8) >> 1); 2242 2243 if (get_dwords(ehci, list, &entry, 1) < 0) { 2244 break; 2245 } 2246 2247 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n", 2248 ehci->frindex / 8, list, entry); 2249 ehci_set_fetch_addr(ehci, async,entry); 2250 ehci_set_state(ehci, async, EST_FETCHENTRY); 2251 ehci_advance_state(ehci, async); 2252 ehci_queues_rip_unused(ehci, async); 2253 break; 2254 2255 default: 2256 /* this should only be due to a developer mistake */ 2257 fprintf(stderr, "ehci: Bad periodic state %d. " 2258 "Resetting to active\n", ehci->pstate); 2259 g_assert_not_reached(); 2260 } 2261 } 2262 2263 static void ehci_update_frindex(EHCIState *ehci, int uframes) 2264 { 2265 int i; 2266 2267 if (!ehci_enabled(ehci) && ehci->pstate == EST_INACTIVE) { 2268 return; 2269 } 2270 2271 for (i = 0; i < uframes; i++) { 2272 ehci->frindex++; 2273 2274 if (ehci->frindex == 0x00002000) { 2275 ehci_raise_irq(ehci, USBSTS_FLR); 2276 } 2277 2278 if (ehci->frindex == 0x00004000) { 2279 ehci_raise_irq(ehci, USBSTS_FLR); 2280 ehci->frindex = 0; 2281 if (ehci->usbsts_frindex >= 0x00004000) { 2282 ehci->usbsts_frindex -= 0x00004000; 2283 } else { 2284 ehci->usbsts_frindex = 0; 2285 } 2286 } 2287 } 2288 } 2289 2290 static void ehci_frame_timer(void *opaque) 2291 { 2292 EHCIState *ehci = opaque; 2293 int need_timer = 0; 2294 int64_t expire_time, t_now; 2295 uint64_t ns_elapsed; 2296 int uframes, skipped_uframes; 2297 int i; 2298 2299 t_now = qemu_get_clock_ns(vm_clock); 2300 ns_elapsed = t_now - ehci->last_run_ns; 2301 uframes = ns_elapsed / UFRAME_TIMER_NS; 2302 2303 if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) { 2304 need_timer++; 2305 2306 if (uframes > (ehci->maxframes * 8)) { 2307 skipped_uframes = uframes - (ehci->maxframes * 8); 2308 ehci_update_frindex(ehci, skipped_uframes); 2309 ehci->last_run_ns += UFRAME_TIMER_NS * skipped_uframes; 2310 uframes -= skipped_uframes; 2311 DPRINTF("WARNING - EHCI skipped %d uframes\n", skipped_uframes); 2312 } 2313 2314 for (i = 0; i < uframes; i++) { 2315 /* 2316 * If we're running behind schedule, we should not catch up 2317 * too fast, as that will make some guests unhappy: 2318 * 1) We must process a minimum of MIN_UFR_PER_TICK frames, 2319 * otherwise we will never catch up 2320 * 2) Process frames until the guest has requested an irq (IOC) 2321 */ 2322 if (i >= MIN_UFR_PER_TICK) { 2323 ehci_commit_irq(ehci); 2324 if ((ehci->usbsts & USBINTR_MASK) & ehci->usbintr) { 2325 break; 2326 } 2327 } 2328 if (ehci->periodic_sched_active) { 2329 ehci->periodic_sched_active--; 2330 } 2331 ehci_update_frindex(ehci, 1); 2332 if ((ehci->frindex & 7) == 0) { 2333 ehci_advance_periodic_state(ehci); 2334 } 2335 ehci->last_run_ns += UFRAME_TIMER_NS; 2336 } 2337 } else { 2338 ehci->periodic_sched_active = 0; 2339 ehci_update_frindex(ehci, uframes); 2340 ehci->last_run_ns += UFRAME_TIMER_NS * uframes; 2341 } 2342 2343 if (ehci->periodic_sched_active) { 2344 ehci->async_stepdown = 0; 2345 } else if (ehci->async_stepdown < ehci->maxframes / 2) { 2346 ehci->async_stepdown++; 2347 } 2348 2349 /* Async is not inside loop since it executes everything it can once 2350 * called 2351 */ 2352 if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) { 2353 need_timer++; 2354 ehci_advance_async_state(ehci); 2355 } 2356 2357 ehci_commit_irq(ehci); 2358 if (ehci->usbsts_pending) { 2359 need_timer++; 2360 ehci->async_stepdown = 0; 2361 } 2362 2363 if (ehci_enabled(ehci) && (ehci->usbintr & USBSTS_FLR)) { 2364 need_timer++; 2365 } 2366 2367 if (need_timer) { 2368 /* If we've raised int, we speed up the timer, so that we quickly 2369 * notice any new packets queued up in response */ 2370 if (ehci->int_req_by_async && (ehci->usbsts & USBSTS_INT)) { 2371 expire_time = t_now + get_ticks_per_sec() / (FRAME_TIMER_FREQ * 4); 2372 ehci->int_req_by_async = false; 2373 } else { 2374 expire_time = t_now + (get_ticks_per_sec() 2375 * (ehci->async_stepdown+1) / FRAME_TIMER_FREQ); 2376 } 2377 qemu_mod_timer(ehci->frame_timer, expire_time); 2378 } 2379 } 2380 2381 static const MemoryRegionOps ehci_mmio_caps_ops = { 2382 .read = ehci_caps_read, 2383 .valid.min_access_size = 1, 2384 .valid.max_access_size = 4, 2385 .impl.min_access_size = 1, 2386 .impl.max_access_size = 1, 2387 .endianness = DEVICE_LITTLE_ENDIAN, 2388 }; 2389 2390 static const MemoryRegionOps ehci_mmio_opreg_ops = { 2391 .read = ehci_opreg_read, 2392 .write = ehci_opreg_write, 2393 .valid.min_access_size = 4, 2394 .valid.max_access_size = 4, 2395 .endianness = DEVICE_LITTLE_ENDIAN, 2396 }; 2397 2398 static const MemoryRegionOps ehci_mmio_port_ops = { 2399 .read = ehci_port_read, 2400 .write = ehci_port_write, 2401 .valid.min_access_size = 4, 2402 .valid.max_access_size = 4, 2403 .endianness = DEVICE_LITTLE_ENDIAN, 2404 }; 2405 2406 static USBPortOps ehci_port_ops = { 2407 .attach = ehci_attach, 2408 .detach = ehci_detach, 2409 .child_detach = ehci_child_detach, 2410 .wakeup = ehci_wakeup, 2411 .complete = ehci_async_complete_packet, 2412 }; 2413 2414 static USBBusOps ehci_bus_ops = { 2415 .register_companion = ehci_register_companion, 2416 .wakeup_endpoint = ehci_wakeup_endpoint, 2417 }; 2418 2419 static void usb_ehci_pre_save(void *opaque) 2420 { 2421 EHCIState *ehci = opaque; 2422 uint32_t new_frindex; 2423 2424 /* Round down frindex to a multiple of 8 for migration compatibility */ 2425 new_frindex = ehci->frindex & ~7; 2426 ehci->last_run_ns -= (ehci->frindex - new_frindex) * UFRAME_TIMER_NS; 2427 ehci->frindex = new_frindex; 2428 } 2429 2430 static int usb_ehci_post_load(void *opaque, int version_id) 2431 { 2432 EHCIState *s = opaque; 2433 int i; 2434 2435 for (i = 0; i < NB_PORTS; i++) { 2436 USBPort *companion = s->companion_ports[i]; 2437 if (companion == NULL) { 2438 continue; 2439 } 2440 if (s->portsc[i] & PORTSC_POWNER) { 2441 companion->dev = s->ports[i].dev; 2442 } else { 2443 companion->dev = NULL; 2444 } 2445 } 2446 2447 return 0; 2448 } 2449 2450 static void usb_ehci_vm_state_change(void *opaque, int running, RunState state) 2451 { 2452 EHCIState *ehci = opaque; 2453 2454 /* 2455 * We don't migrate the EHCIQueue-s, instead we rebuild them for the 2456 * schedule in guest memory. We must do the rebuilt ASAP, so that 2457 * USB-devices which have async handled packages have a packet in the 2458 * ep queue to match the completion with. 2459 */ 2460 if (state == RUN_STATE_RUNNING) { 2461 ehci_advance_async_state(ehci); 2462 } 2463 2464 /* 2465 * The schedule rebuilt from guest memory could cause the migration dest 2466 * to miss a QH unlink, and fail to cancel packets, since the unlinked QH 2467 * will never have existed on the destination. Therefor we must flush the 2468 * async schedule on savevm to catch any not yet noticed unlinks. 2469 */ 2470 if (state == RUN_STATE_SAVE_VM) { 2471 ehci_advance_async_state(ehci); 2472 ehci_queues_rip_unseen(ehci, 1); 2473 } 2474 } 2475 2476 const VMStateDescription vmstate_ehci = { 2477 .name = "ehci-core", 2478 .version_id = 2, 2479 .minimum_version_id = 1, 2480 .pre_save = usb_ehci_pre_save, 2481 .post_load = usb_ehci_post_load, 2482 .fields = (VMStateField[]) { 2483 /* mmio registers */ 2484 VMSTATE_UINT32(usbcmd, EHCIState), 2485 VMSTATE_UINT32(usbsts, EHCIState), 2486 VMSTATE_UINT32_V(usbsts_pending, EHCIState, 2), 2487 VMSTATE_UINT32_V(usbsts_frindex, EHCIState, 2), 2488 VMSTATE_UINT32(usbintr, EHCIState), 2489 VMSTATE_UINT32(frindex, EHCIState), 2490 VMSTATE_UINT32(ctrldssegment, EHCIState), 2491 VMSTATE_UINT32(periodiclistbase, EHCIState), 2492 VMSTATE_UINT32(asynclistaddr, EHCIState), 2493 VMSTATE_UINT32(configflag, EHCIState), 2494 VMSTATE_UINT32(portsc[0], EHCIState), 2495 VMSTATE_UINT32(portsc[1], EHCIState), 2496 VMSTATE_UINT32(portsc[2], EHCIState), 2497 VMSTATE_UINT32(portsc[3], EHCIState), 2498 VMSTATE_UINT32(portsc[4], EHCIState), 2499 VMSTATE_UINT32(portsc[5], EHCIState), 2500 /* frame timer */ 2501 VMSTATE_TIMER(frame_timer, EHCIState), 2502 VMSTATE_UINT64(last_run_ns, EHCIState), 2503 VMSTATE_UINT32(async_stepdown, EHCIState), 2504 /* schedule state */ 2505 VMSTATE_UINT32(astate, EHCIState), 2506 VMSTATE_UINT32(pstate, EHCIState), 2507 VMSTATE_UINT32(a_fetch_addr, EHCIState), 2508 VMSTATE_UINT32(p_fetch_addr, EHCIState), 2509 VMSTATE_END_OF_LIST() 2510 } 2511 }; 2512 2513 void usb_ehci_realize(EHCIState *s, DeviceState *dev, Error **errp) 2514 { 2515 int i; 2516 2517 if (s->portnr > NB_PORTS) { 2518 error_setg(errp, "Too many ports! Max. port number is %d.", 2519 NB_PORTS); 2520 return; 2521 } 2522 2523 usb_bus_new(&s->bus, &ehci_bus_ops, dev); 2524 for (i = 0; i < s->portnr; i++) { 2525 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops, 2526 USB_SPEED_MASK_HIGH); 2527 s->ports[i].dev = 0; 2528 } 2529 2530 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s); 2531 s->async_bh = qemu_bh_new(ehci_frame_timer, s); 2532 2533 qemu_register_reset(ehci_reset, s); 2534 qemu_add_vm_change_state_handler(usb_ehci_vm_state_change, s); 2535 } 2536 2537 void usb_ehci_init(EHCIState *s, DeviceState *dev) 2538 { 2539 /* 2.2 host controller interface version */ 2540 s->caps[0x00] = (uint8_t)(s->opregbase - s->capsbase); 2541 s->caps[0x01] = 0x00; 2542 s->caps[0x02] = 0x00; 2543 s->caps[0x03] = 0x01; /* HC version */ 2544 s->caps[0x04] = s->portnr; /* Number of downstream ports */ 2545 s->caps[0x05] = 0x00; /* No companion ports at present */ 2546 s->caps[0x06] = 0x00; 2547 s->caps[0x07] = 0x00; 2548 s->caps[0x08] = 0x80; /* We can cache whole frame, no 64-bit */ 2549 s->caps[0x0a] = 0x00; 2550 s->caps[0x0b] = 0x00; 2551 2552 QTAILQ_INIT(&s->aqueues); 2553 QTAILQ_INIT(&s->pqueues); 2554 usb_packet_init(&s->ipacket); 2555 2556 memory_region_init(&s->mem, OBJECT(dev), "ehci", MMIO_SIZE); 2557 memory_region_init_io(&s->mem_caps, OBJECT(dev), &ehci_mmio_caps_ops, s, 2558 "capabilities", CAPA_SIZE); 2559 memory_region_init_io(&s->mem_opreg, OBJECT(dev), &ehci_mmio_opreg_ops, s, 2560 "operational", s->portscbase); 2561 memory_region_init_io(&s->mem_ports, OBJECT(dev), &ehci_mmio_port_ops, s, 2562 "ports", 4 * s->portnr); 2563 2564 memory_region_add_subregion(&s->mem, s->capsbase, &s->mem_caps); 2565 memory_region_add_subregion(&s->mem, s->opregbase, &s->mem_opreg); 2566 memory_region_add_subregion(&s->mem, s->opregbase + s->portscbase, 2567 &s->mem_ports); 2568 } 2569 2570 /* 2571 * vim: expandtab ts=4 2572 */ 2573