xref: /openbmc/qemu/hw/usb/hcd-ehci.c (revision 0546b8c2f089867cd7606ff47e026e8931157828)
1 /*
2  * QEMU USB EHCI Emulation
3  *
4  * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5  * Copyright(c) 2011-2012 Red Hat, Inc.
6  *
7  * Red Hat Authors:
8  * Gerd Hoffmann <kraxel@redhat.com>
9  * Hans de Goede <hdegoede@redhat.com>
10  *
11  * EHCI project was started by Mark Burkley, with contributions by
12  * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
13  * Jan Kiszka and Vincent Palatin contributed bugfixes.
14  *
15  *
16  * This library is free software; you can redistribute it and/or
17  * modify it under the terms of the GNU Lesser General Public
18  * License as published by the Free Software Foundation; either
19  * version 2 of the License, or(at your option) any later version.
20  *
21  * This library is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
24  * Lesser General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program; if not, see <http://www.gnu.org/licenses/>.
28  */
29 
30 #include "hw/hw.h"
31 #include "qemu-timer.h"
32 #include "hw/usb.h"
33 #include "hw/pci.h"
34 #include "monitor.h"
35 #include "trace.h"
36 #include "dma.h"
37 
38 #define EHCI_DEBUG   0
39 
40 #if EHCI_DEBUG
41 #define DPRINTF printf
42 #else
43 #define DPRINTF(...)
44 #endif
45 
46 /* internal processing - reset HC to try and recover */
47 #define USB_RET_PROCERR   (-99)
48 
49 #define MMIO_SIZE        0x1000
50 
51 /* Capability Registers Base Address - section 2.2 */
52 #define CAPREGBASE       0x0000
53 #define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
54 #define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
55 #define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
56 #define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
57 #define EECP             HCCPARAMS + 1
58 #define HCSPPORTROUTE1   CAPREGBASE + 0x000c
59 #define HCSPPORTROUTE2   CAPREGBASE + 0x0010
60 
61 #define OPREGBASE        0x0020        // Operational Registers Base Address
62 
63 #define USBCMD           OPREGBASE + 0x0000
64 #define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
65 #define USBCMD_HCRESET   (1 << 1)      // HC Reset
66 #define USBCMD_FLS       (3 << 2)      // Frame List Size
67 #define USBCMD_FLS_SH    2             // Frame List Size Shift
68 #define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
69 #define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
70 #define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
71 #define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
72 #define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
73 #define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
74 #define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
75 #define USBCMD_ITC_SH    16            // Int Threshold Control Shift
76 
77 #define USBSTS           OPREGBASE + 0x0004
78 #define USBSTS_RO_MASK   0x0000003f
79 #define USBSTS_INT       (1 << 0)      // USB Interrupt
80 #define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
81 #define USBSTS_PCD       (1 << 2)      // Port Change Detect
82 #define USBSTS_FLR       (1 << 3)      // Frame List Rollover
83 #define USBSTS_HSE       (1 << 4)      // Host System Error
84 #define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
85 #define USBSTS_HALT      (1 << 12)     // HC Halted
86 #define USBSTS_REC       (1 << 13)     // Reclamation
87 #define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
88 #define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
89 
90 /*
91  *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
92  *  so no need to redefine here.
93  */
94 #define USBINTR              OPREGBASE + 0x0008
95 #define USBINTR_MASK         0x0000003f
96 
97 #define FRINDEX              OPREGBASE + 0x000c
98 #define CTRLDSSEGMENT        OPREGBASE + 0x0010
99 #define PERIODICLISTBASE     OPREGBASE + 0x0014
100 #define ASYNCLISTADDR        OPREGBASE + 0x0018
101 #define ASYNCLISTADDR_MASK   0xffffffe0
102 
103 #define CONFIGFLAG           OPREGBASE + 0x0040
104 
105 #define PORTSC               (OPREGBASE + 0x0044)
106 #define PORTSC_BEGIN         PORTSC
107 #define PORTSC_END           (PORTSC + 4 * NB_PORTS)
108 /*
109  * Bits that are reserved or are read-only are masked out of values
110  * written to us by software
111  */
112 #define PORTSC_RO_MASK       0x007001c0
113 #define PORTSC_RWC_MASK      0x0000002a
114 #define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
115 #define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
116 #define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
117 #define PORTSC_PTC           (15 << 16)   // Port Test Control
118 #define PORTSC_PTC_SH        16           // Port Test Control shift
119 #define PORTSC_PIC           (3 << 14)    // Port Indicator Control
120 #define PORTSC_PIC_SH        14           // Port Indicator Control Shift
121 #define PORTSC_POWNER        (1 << 13)    // Port Owner
122 #define PORTSC_PPOWER        (1 << 12)    // Port Power
123 #define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
124 #define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
125 #define PORTSC_PRESET        (1 << 8)     // Port Reset
126 #define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
127 #define PORTSC_FPRES         (1 << 6)     // Force Port Resume
128 #define PORTSC_OCC           (1 << 5)     // Over Current Change
129 #define PORTSC_OCA           (1 << 4)     // Over Current Active
130 #define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
131 #define PORTSC_PED           (1 << 2)     // Port Enable/Disable
132 #define PORTSC_CSC           (1 << 1)     // Connect Status Change
133 #define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
134 
135 #define FRAME_TIMER_FREQ 1000
136 #define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
137 
138 #define NB_MAXINTRATE    8        // Max rate at which controller issues ints
139 #define NB_PORTS         6        // Number of downstream ports
140 #define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
141 #define MAX_QH           100      // Max allowable queue heads in a chain
142 
143 /*  Internal periodic / asynchronous schedule state machine states
144  */
145 typedef enum {
146     EST_INACTIVE = 1000,
147     EST_ACTIVE,
148     EST_EXECUTING,
149     EST_SLEEPING,
150     /*  The following states are internal to the state machine function
151     */
152     EST_WAITLISTHEAD,
153     EST_FETCHENTRY,
154     EST_FETCHQH,
155     EST_FETCHITD,
156     EST_FETCHSITD,
157     EST_ADVANCEQUEUE,
158     EST_FETCHQTD,
159     EST_EXECUTE,
160     EST_WRITEBACK,
161     EST_HORIZONTALQH
162 } EHCI_STATES;
163 
164 /* macros for accessing fields within next link pointer entry */
165 #define NLPTR_GET(x)             ((x) & 0xffffffe0)
166 #define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
167 #define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
168 
169 /* link pointer types */
170 #define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
171 #define NLPTR_TYPE_QH            1     // queue head
172 #define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
173 #define NLPTR_TYPE_FSTN          3     // frame span traversal node
174 
175 
176 /*  EHCI spec version 1.0 Section 3.3
177  */
178 typedef struct EHCIitd {
179     uint32_t next;
180 
181     uint32_t transact[8];
182 #define ITD_XACT_ACTIVE          (1 << 31)
183 #define ITD_XACT_DBERROR         (1 << 30)
184 #define ITD_XACT_BABBLE          (1 << 29)
185 #define ITD_XACT_XACTERR         (1 << 28)
186 #define ITD_XACT_LENGTH_MASK     0x0fff0000
187 #define ITD_XACT_LENGTH_SH       16
188 #define ITD_XACT_IOC             (1 << 15)
189 #define ITD_XACT_PGSEL_MASK      0x00007000
190 #define ITD_XACT_PGSEL_SH        12
191 #define ITD_XACT_OFFSET_MASK     0x00000fff
192 
193     uint32_t bufptr[7];
194 #define ITD_BUFPTR_MASK          0xfffff000
195 #define ITD_BUFPTR_SH            12
196 #define ITD_BUFPTR_EP_MASK       0x00000f00
197 #define ITD_BUFPTR_EP_SH         8
198 #define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
199 #define ITD_BUFPTR_DEVADDR_SH    0
200 #define ITD_BUFPTR_DIRECTION     (1 << 11)
201 #define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
202 #define ITD_BUFPTR_MAXPKT_SH     0
203 #define ITD_BUFPTR_MULT_MASK     0x00000003
204 #define ITD_BUFPTR_MULT_SH       0
205 } EHCIitd;
206 
207 /*  EHCI spec version 1.0 Section 3.4
208  */
209 typedef struct EHCIsitd {
210     uint32_t next;                  // Standard next link pointer
211     uint32_t epchar;
212 #define SITD_EPCHAR_IO              (1 << 31)
213 #define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
214 #define SITD_EPCHAR_PORTNUM_SH      24
215 #define SITD_EPCHAR_HUBADD_MASK     0x007f0000
216 #define SITD_EPCHAR_HUBADDR_SH      16
217 #define SITD_EPCHAR_EPNUM_MASK      0x00000f00
218 #define SITD_EPCHAR_EPNUM_SH        8
219 #define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
220 
221     uint32_t uframe;
222 #define SITD_UFRAME_CMASK_MASK      0x0000ff00
223 #define SITD_UFRAME_CMASK_SH        8
224 #define SITD_UFRAME_SMASK_MASK      0x000000ff
225 
226     uint32_t results;
227 #define SITD_RESULTS_IOC              (1 << 31)
228 #define SITD_RESULTS_PGSEL            (1 << 30)
229 #define SITD_RESULTS_TBYTES_MASK      0x03ff0000
230 #define SITD_RESULTS_TYBYTES_SH       16
231 #define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
232 #define SITD_RESULTS_CPROGMASK_SH     8
233 #define SITD_RESULTS_ACTIVE           (1 << 7)
234 #define SITD_RESULTS_ERR              (1 << 6)
235 #define SITD_RESULTS_DBERR            (1 << 5)
236 #define SITD_RESULTS_BABBLE           (1 << 4)
237 #define SITD_RESULTS_XACTERR          (1 << 3)
238 #define SITD_RESULTS_MISSEDUF         (1 << 2)
239 #define SITD_RESULTS_SPLITXSTATE      (1 << 1)
240 
241     uint32_t bufptr[2];
242 #define SITD_BUFPTR_MASK              0xfffff000
243 #define SITD_BUFPTR_CURROFF_MASK      0x00000fff
244 #define SITD_BUFPTR_TPOS_MASK         0x00000018
245 #define SITD_BUFPTR_TPOS_SH           3
246 #define SITD_BUFPTR_TCNT_MASK         0x00000007
247 
248     uint32_t backptr;                 // Standard next link pointer
249 } EHCIsitd;
250 
251 /*  EHCI spec version 1.0 Section 3.5
252  */
253 typedef struct EHCIqtd {
254     uint32_t next;                    // Standard next link pointer
255     uint32_t altnext;                 // Standard next link pointer
256     uint32_t token;
257 #define QTD_TOKEN_DTOGGLE             (1 << 31)
258 #define QTD_TOKEN_TBYTES_MASK         0x7fff0000
259 #define QTD_TOKEN_TBYTES_SH           16
260 #define QTD_TOKEN_IOC                 (1 << 15)
261 #define QTD_TOKEN_CPAGE_MASK          0x00007000
262 #define QTD_TOKEN_CPAGE_SH            12
263 #define QTD_TOKEN_CERR_MASK           0x00000c00
264 #define QTD_TOKEN_CERR_SH             10
265 #define QTD_TOKEN_PID_MASK            0x00000300
266 #define QTD_TOKEN_PID_SH              8
267 #define QTD_TOKEN_ACTIVE              (1 << 7)
268 #define QTD_TOKEN_HALT                (1 << 6)
269 #define QTD_TOKEN_DBERR               (1 << 5)
270 #define QTD_TOKEN_BABBLE              (1 << 4)
271 #define QTD_TOKEN_XACTERR             (1 << 3)
272 #define QTD_TOKEN_MISSEDUF            (1 << 2)
273 #define QTD_TOKEN_SPLITXSTATE         (1 << 1)
274 #define QTD_TOKEN_PING                (1 << 0)
275 
276     uint32_t bufptr[5];               // Standard buffer pointer
277 #define QTD_BUFPTR_MASK               0xfffff000
278 #define QTD_BUFPTR_SH                 12
279 } EHCIqtd;
280 
281 /*  EHCI spec version 1.0 Section 3.6
282  */
283 typedef struct EHCIqh {
284     uint32_t next;                    // Standard next link pointer
285 
286     /* endpoint characteristics */
287     uint32_t epchar;
288 #define QH_EPCHAR_RL_MASK             0xf0000000
289 #define QH_EPCHAR_RL_SH               28
290 #define QH_EPCHAR_C                   (1 << 27)
291 #define QH_EPCHAR_MPLEN_MASK          0x07FF0000
292 #define QH_EPCHAR_MPLEN_SH            16
293 #define QH_EPCHAR_H                   (1 << 15)
294 #define QH_EPCHAR_DTC                 (1 << 14)
295 #define QH_EPCHAR_EPS_MASK            0x00003000
296 #define QH_EPCHAR_EPS_SH              12
297 #define EHCI_QH_EPS_FULL              0
298 #define EHCI_QH_EPS_LOW               1
299 #define EHCI_QH_EPS_HIGH              2
300 #define EHCI_QH_EPS_RESERVED          3
301 
302 #define QH_EPCHAR_EP_MASK             0x00000f00
303 #define QH_EPCHAR_EP_SH               8
304 #define QH_EPCHAR_I                   (1 << 7)
305 #define QH_EPCHAR_DEVADDR_MASK        0x0000007f
306 #define QH_EPCHAR_DEVADDR_SH          0
307 
308     /* endpoint capabilities */
309     uint32_t epcap;
310 #define QH_EPCAP_MULT_MASK            0xc0000000
311 #define QH_EPCAP_MULT_SH              30
312 #define QH_EPCAP_PORTNUM_MASK         0x3f800000
313 #define QH_EPCAP_PORTNUM_SH           23
314 #define QH_EPCAP_HUBADDR_MASK         0x007f0000
315 #define QH_EPCAP_HUBADDR_SH           16
316 #define QH_EPCAP_CMASK_MASK           0x0000ff00
317 #define QH_EPCAP_CMASK_SH             8
318 #define QH_EPCAP_SMASK_MASK           0x000000ff
319 #define QH_EPCAP_SMASK_SH             0
320 
321     uint32_t current_qtd;             // Standard next link pointer
322     uint32_t next_qtd;                // Standard next link pointer
323     uint32_t altnext_qtd;
324 #define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
325 #define QH_ALTNEXT_NAKCNT_SH          1
326 
327     uint32_t token;                   // Same as QTD token
328     uint32_t bufptr[5];               // Standard buffer pointer
329 #define BUFPTR_CPROGMASK_MASK         0x000000ff
330 #define BUFPTR_FRAMETAG_MASK          0x0000001f
331 #define BUFPTR_SBYTES_MASK            0x00000fe0
332 #define BUFPTR_SBYTES_SH              5
333 } EHCIqh;
334 
335 /*  EHCI spec version 1.0 Section 3.7
336  */
337 typedef struct EHCIfstn {
338     uint32_t next;                    // Standard next link pointer
339     uint32_t backptr;                 // Standard next link pointer
340 } EHCIfstn;
341 
342 typedef struct EHCIPacket EHCIPacket;
343 typedef struct EHCIQueue EHCIQueue;
344 typedef struct EHCIState EHCIState;
345 
346 enum async_state {
347     EHCI_ASYNC_NONE = 0,
348     EHCI_ASYNC_INITIALIZED,
349     EHCI_ASYNC_INFLIGHT,
350     EHCI_ASYNC_FINISHED,
351 };
352 
353 struct EHCIPacket {
354     EHCIQueue *queue;
355     QTAILQ_ENTRY(EHCIPacket) next;
356 
357     EHCIqtd qtd;           /* copy of current QTD (being worked on) */
358     uint32_t qtdaddr;      /* address QTD read from                 */
359 
360     USBPacket packet;
361     QEMUSGList sgl;
362     int pid;
363     uint32_t tbytes;
364     enum async_state async;
365     int usb_status;
366 };
367 
368 struct EHCIQueue {
369     EHCIState *ehci;
370     QTAILQ_ENTRY(EHCIQueue) next;
371     uint32_t seen;
372     uint64_t ts;
373     int async;
374 
375     /* cached data from guest - needs to be flushed
376      * when guest removes an entry (doorbell, handshake sequence)
377      */
378     EHCIqh qh;             /* copy of current QH (being worked on) */
379     uint32_t qhaddr;       /* address QH read from                 */
380     uint32_t qtdaddr;      /* address QTD read from                */
381     USBDevice *dev;
382     QTAILQ_HEAD(, EHCIPacket) packets;
383 };
384 
385 typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
386 
387 struct EHCIState {
388     PCIDevice dev;
389     USBBus bus;
390     qemu_irq irq;
391     MemoryRegion mem;
392     int companion_count;
393 
394     /* properties */
395     uint32_t maxframes;
396 
397     /*
398      *  EHCI spec version 1.0 Section 2.3
399      *  Host Controller Operational Registers
400      */
401     union {
402         uint8_t mmio[MMIO_SIZE];
403         struct {
404             uint8_t cap[OPREGBASE];
405             uint32_t usbcmd;
406             uint32_t usbsts;
407             uint32_t usbintr;
408             uint32_t frindex;
409             uint32_t ctrldssegment;
410             uint32_t periodiclistbase;
411             uint32_t asynclistaddr;
412             uint32_t notused[9];
413             uint32_t configflag;
414             uint32_t portsc[NB_PORTS];
415         };
416     };
417 
418     /*
419      *  Internal states, shadow registers, etc
420      */
421     QEMUTimer *frame_timer;
422     QEMUBH *async_bh;
423     uint32_t astate;         /* Current state in asynchronous schedule */
424     uint32_t pstate;         /* Current state in periodic schedule     */
425     USBPort ports[NB_PORTS];
426     USBPort *companion_ports[NB_PORTS];
427     uint32_t usbsts_pending;
428     uint32_t usbsts_frindex;
429     EHCIQueueHead aqueues;
430     EHCIQueueHead pqueues;
431 
432     /* which address to look at next */
433     uint32_t a_fetch_addr;
434     uint32_t p_fetch_addr;
435 
436     USBPacket ipacket;
437     QEMUSGList isgl;
438 
439     uint64_t last_run_ns;
440     uint32_t async_stepdown;
441 };
442 
443 #define SET_LAST_RUN_CLOCK(s) \
444     (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
445 
446 /* nifty macros from Arnon's EHCI version  */
447 #define get_field(data, field) \
448     (((data) & field##_MASK) >> field##_SH)
449 
450 #define set_field(data, newval, field) do { \
451     uint32_t val = *data; \
452     val &= ~ field##_MASK; \
453     val |= ((newval) << field##_SH) & field##_MASK; \
454     *data = val; \
455     } while(0)
456 
457 static const char *ehci_state_names[] = {
458     [EST_INACTIVE]     = "INACTIVE",
459     [EST_ACTIVE]       = "ACTIVE",
460     [EST_EXECUTING]    = "EXECUTING",
461     [EST_SLEEPING]     = "SLEEPING",
462     [EST_WAITLISTHEAD] = "WAITLISTHEAD",
463     [EST_FETCHENTRY]   = "FETCH ENTRY",
464     [EST_FETCHQH]      = "FETCH QH",
465     [EST_FETCHITD]     = "FETCH ITD",
466     [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
467     [EST_FETCHQTD]     = "FETCH QTD",
468     [EST_EXECUTE]      = "EXECUTE",
469     [EST_WRITEBACK]    = "WRITEBACK",
470     [EST_HORIZONTALQH] = "HORIZONTALQH",
471 };
472 
473 static const char *ehci_mmio_names[] = {
474     [CAPLENGTH]         = "CAPLENGTH",
475     [HCIVERSION]        = "HCIVERSION",
476     [HCSPARAMS]         = "HCSPARAMS",
477     [HCCPARAMS]         = "HCCPARAMS",
478     [USBCMD]            = "USBCMD",
479     [USBSTS]            = "USBSTS",
480     [USBINTR]           = "USBINTR",
481     [FRINDEX]           = "FRINDEX",
482     [PERIODICLISTBASE]  = "P-LIST BASE",
483     [ASYNCLISTADDR]     = "A-LIST ADDR",
484     [PORTSC_BEGIN]      = "PORTSC #0",
485     [PORTSC_BEGIN + 4]  = "PORTSC #1",
486     [PORTSC_BEGIN + 8]  = "PORTSC #2",
487     [PORTSC_BEGIN + 12] = "PORTSC #3",
488     [PORTSC_BEGIN + 16] = "PORTSC #4",
489     [PORTSC_BEGIN + 20] = "PORTSC #5",
490     [CONFIGFLAG]        = "CONFIGFLAG",
491 };
492 
493 static int ehci_state_executing(EHCIQueue *q);
494 static int ehci_state_writeback(EHCIQueue *q);
495 
496 static const char *nr2str(const char **n, size_t len, uint32_t nr)
497 {
498     if (nr < len && n[nr] != NULL) {
499         return n[nr];
500     } else {
501         return "unknown";
502     }
503 }
504 
505 static const char *state2str(uint32_t state)
506 {
507     return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
508 }
509 
510 static const char *addr2str(target_phys_addr_t addr)
511 {
512     return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
513 }
514 
515 static void ehci_trace_usbsts(uint32_t mask, int state)
516 {
517     /* interrupts */
518     if (mask & USBSTS_INT) {
519         trace_usb_ehci_usbsts("INT", state);
520     }
521     if (mask & USBSTS_ERRINT) {
522         trace_usb_ehci_usbsts("ERRINT", state);
523     }
524     if (mask & USBSTS_PCD) {
525         trace_usb_ehci_usbsts("PCD", state);
526     }
527     if (mask & USBSTS_FLR) {
528         trace_usb_ehci_usbsts("FLR", state);
529     }
530     if (mask & USBSTS_HSE) {
531         trace_usb_ehci_usbsts("HSE", state);
532     }
533     if (mask & USBSTS_IAA) {
534         trace_usb_ehci_usbsts("IAA", state);
535     }
536 
537     /* status */
538     if (mask & USBSTS_HALT) {
539         trace_usb_ehci_usbsts("HALT", state);
540     }
541     if (mask & USBSTS_REC) {
542         trace_usb_ehci_usbsts("REC", state);
543     }
544     if (mask & USBSTS_PSS) {
545         trace_usb_ehci_usbsts("PSS", state);
546     }
547     if (mask & USBSTS_ASS) {
548         trace_usb_ehci_usbsts("ASS", state);
549     }
550 }
551 
552 static inline void ehci_set_usbsts(EHCIState *s, int mask)
553 {
554     if ((s->usbsts & mask) == mask) {
555         return;
556     }
557     ehci_trace_usbsts(mask, 1);
558     s->usbsts |= mask;
559 }
560 
561 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
562 {
563     if ((s->usbsts & mask) == 0) {
564         return;
565     }
566     ehci_trace_usbsts(mask, 0);
567     s->usbsts &= ~mask;
568 }
569 
570 /* update irq line */
571 static inline void ehci_update_irq(EHCIState *s)
572 {
573     int level = 0;
574 
575     if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
576         level = 1;
577     }
578 
579     trace_usb_ehci_irq(level, s->frindex, s->usbsts, s->usbintr);
580     qemu_set_irq(s->irq, level);
581 }
582 
583 /* flag interrupt condition */
584 static inline void ehci_raise_irq(EHCIState *s, int intr)
585 {
586     if (intr & (USBSTS_PCD | USBSTS_FLR | USBSTS_HSE)) {
587         s->usbsts |= intr;
588         ehci_update_irq(s);
589     } else {
590         s->usbsts_pending |= intr;
591     }
592 }
593 
594 /*
595  * Commit pending interrupts (added via ehci_raise_irq),
596  * at the rate allowed by "Interrupt Threshold Control".
597  */
598 static inline void ehci_commit_irq(EHCIState *s)
599 {
600     uint32_t itc;
601 
602     if (!s->usbsts_pending) {
603         return;
604     }
605     if (s->usbsts_frindex > s->frindex) {
606         return;
607     }
608 
609     itc = (s->usbcmd >> 16) & 0xff;
610     s->usbsts |= s->usbsts_pending;
611     s->usbsts_pending = 0;
612     s->usbsts_frindex = s->frindex + itc;
613     ehci_update_irq(s);
614 }
615 
616 static void ehci_update_halt(EHCIState *s)
617 {
618     if (s->usbcmd & USBCMD_RUNSTOP) {
619         ehci_clear_usbsts(s, USBSTS_HALT);
620     } else {
621         if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) {
622             ehci_set_usbsts(s, USBSTS_HALT);
623         }
624     }
625 }
626 
627 static void ehci_set_state(EHCIState *s, int async, int state)
628 {
629     if (async) {
630         trace_usb_ehci_state("async", state2str(state));
631         s->astate = state;
632         if (s->astate == EST_INACTIVE) {
633             ehci_clear_usbsts(s, USBSTS_ASS);
634             ehci_update_halt(s);
635         } else {
636             ehci_set_usbsts(s, USBSTS_ASS);
637         }
638     } else {
639         trace_usb_ehci_state("periodic", state2str(state));
640         s->pstate = state;
641         if (s->pstate == EST_INACTIVE) {
642             ehci_clear_usbsts(s, USBSTS_PSS);
643             ehci_update_halt(s);
644         } else {
645             ehci_set_usbsts(s, USBSTS_PSS);
646         }
647     }
648 }
649 
650 static int ehci_get_state(EHCIState *s, int async)
651 {
652     return async ? s->astate : s->pstate;
653 }
654 
655 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
656 {
657     if (async) {
658         s->a_fetch_addr = addr;
659     } else {
660         s->p_fetch_addr = addr;
661     }
662 }
663 
664 static int ehci_get_fetch_addr(EHCIState *s, int async)
665 {
666     return async ? s->a_fetch_addr : s->p_fetch_addr;
667 }
668 
669 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
670 {
671     /* need three here due to argument count limits */
672     trace_usb_ehci_qh_ptrs(q, addr, qh->next,
673                            qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
674     trace_usb_ehci_qh_fields(addr,
675                              get_field(qh->epchar, QH_EPCHAR_RL),
676                              get_field(qh->epchar, QH_EPCHAR_MPLEN),
677                              get_field(qh->epchar, QH_EPCHAR_EPS),
678                              get_field(qh->epchar, QH_EPCHAR_EP),
679                              get_field(qh->epchar, QH_EPCHAR_DEVADDR));
680     trace_usb_ehci_qh_bits(addr,
681                            (bool)(qh->epchar & QH_EPCHAR_C),
682                            (bool)(qh->epchar & QH_EPCHAR_H),
683                            (bool)(qh->epchar & QH_EPCHAR_DTC),
684                            (bool)(qh->epchar & QH_EPCHAR_I));
685 }
686 
687 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
688 {
689     /* need three here due to argument count limits */
690     trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
691     trace_usb_ehci_qtd_fields(addr,
692                               get_field(qtd->token, QTD_TOKEN_TBYTES),
693                               get_field(qtd->token, QTD_TOKEN_CPAGE),
694                               get_field(qtd->token, QTD_TOKEN_CERR),
695                               get_field(qtd->token, QTD_TOKEN_PID));
696     trace_usb_ehci_qtd_bits(addr,
697                             (bool)(qtd->token & QTD_TOKEN_IOC),
698                             (bool)(qtd->token & QTD_TOKEN_ACTIVE),
699                             (bool)(qtd->token & QTD_TOKEN_HALT),
700                             (bool)(qtd->token & QTD_TOKEN_BABBLE),
701                             (bool)(qtd->token & QTD_TOKEN_XACTERR));
702 }
703 
704 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
705 {
706     trace_usb_ehci_itd(addr, itd->next,
707                        get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
708                        get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
709                        get_field(itd->bufptr[0], ITD_BUFPTR_EP),
710                        get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
711 }
712 
713 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
714                             EHCIsitd *sitd)
715 {
716     trace_usb_ehci_sitd(addr, sitd->next,
717                         (bool)(sitd->results & SITD_RESULTS_ACTIVE));
718 }
719 
720 static void ehci_trace_guest_bug(EHCIState *s, const char *message)
721 {
722     trace_usb_ehci_guest_bug(message);
723     fprintf(stderr, "ehci warning: %s\n", message);
724 }
725 
726 static inline bool ehci_enabled(EHCIState *s)
727 {
728     return s->usbcmd & USBCMD_RUNSTOP;
729 }
730 
731 static inline bool ehci_async_enabled(EHCIState *s)
732 {
733     return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
734 }
735 
736 static inline bool ehci_periodic_enabled(EHCIState *s)
737 {
738     return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
739 }
740 
741 /* packet management */
742 
743 static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
744 {
745     EHCIPacket *p;
746 
747     p = g_new0(EHCIPacket, 1);
748     p->queue = q;
749     usb_packet_init(&p->packet);
750     QTAILQ_INSERT_TAIL(&q->packets, p, next);
751     trace_usb_ehci_packet_action(p->queue, p, "alloc");
752     return p;
753 }
754 
755 static void ehci_free_packet(EHCIPacket *p)
756 {
757     if (p->async == EHCI_ASYNC_FINISHED) {
758         int state = ehci_get_state(p->queue->ehci, p->queue->async);
759         /* This is a normal, but rare condition (cancel racing completion) */
760         fprintf(stderr, "EHCI: Warning packet completed but not processed\n");
761         ehci_state_executing(p->queue);
762         ehci_state_writeback(p->queue);
763         ehci_set_state(p->queue->ehci, p->queue->async, state);
764         /* state_writeback recurses into us with async == EHCI_ASYNC_NONE!! */
765         return;
766     }
767     trace_usb_ehci_packet_action(p->queue, p, "free");
768     if (p->async == EHCI_ASYNC_INITIALIZED) {
769         usb_packet_unmap(&p->packet, &p->sgl);
770         qemu_sglist_destroy(&p->sgl);
771     }
772     if (p->async == EHCI_ASYNC_INFLIGHT) {
773         usb_cancel_packet(&p->packet);
774         usb_packet_unmap(&p->packet, &p->sgl);
775         qemu_sglist_destroy(&p->sgl);
776     }
777     QTAILQ_REMOVE(&p->queue->packets, p, next);
778     usb_packet_cleanup(&p->packet);
779     g_free(p);
780 }
781 
782 /* queue management */
783 
784 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
785 {
786     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
787     EHCIQueue *q;
788 
789     q = g_malloc0(sizeof(*q));
790     q->ehci = ehci;
791     q->qhaddr = addr;
792     q->async = async;
793     QTAILQ_INIT(&q->packets);
794     QTAILQ_INSERT_HEAD(head, q, next);
795     trace_usb_ehci_queue_action(q, "alloc");
796     return q;
797 }
798 
799 static int ehci_cancel_queue(EHCIQueue *q)
800 {
801     EHCIPacket *p;
802     int packets = 0;
803 
804     p = QTAILQ_FIRST(&q->packets);
805     if (p == NULL) {
806         return 0;
807     }
808 
809     trace_usb_ehci_queue_action(q, "cancel");
810     do {
811         ehci_free_packet(p);
812         packets++;
813     } while ((p = QTAILQ_FIRST(&q->packets)) != NULL);
814     return packets;
815 }
816 
817 static int ehci_reset_queue(EHCIQueue *q)
818 {
819     int packets;
820 
821     trace_usb_ehci_queue_action(q, "reset");
822     packets = ehci_cancel_queue(q);
823     q->dev = NULL;
824     q->qtdaddr = 0;
825     return packets;
826 }
827 
828 static void ehci_free_queue(EHCIQueue *q, const char *warn)
829 {
830     EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
831     int cancelled;
832 
833     trace_usb_ehci_queue_action(q, "free");
834     cancelled = ehci_cancel_queue(q);
835     if (warn && cancelled > 0) {
836         ehci_trace_guest_bug(q->ehci, warn);
837     }
838     QTAILQ_REMOVE(head, q, next);
839     g_free(q);
840 }
841 
842 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
843                                         int async)
844 {
845     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
846     EHCIQueue *q;
847 
848     QTAILQ_FOREACH(q, head, next) {
849         if (addr == q->qhaddr) {
850             return q;
851         }
852     }
853     return NULL;
854 }
855 
856 static void ehci_queues_rip_unused(EHCIState *ehci, int async, int flush)
857 {
858     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
859     const char *warn = (async && !flush) ? "guest unlinked busy QH" : NULL;
860     uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4;
861     EHCIQueue *q, *tmp;
862 
863     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
864         if (q->seen) {
865             q->seen = 0;
866             q->ts = ehci->last_run_ns;
867             continue;
868         }
869         if (!flush && ehci->last_run_ns < q->ts + maxage) {
870             continue;
871         }
872         ehci_free_queue(q, warn);
873     }
874 }
875 
876 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
877 {
878     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
879     EHCIQueue *q, *tmp;
880 
881     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
882         if (q->dev != dev) {
883             continue;
884         }
885         ehci_free_queue(q, NULL);
886     }
887 }
888 
889 static void ehci_queues_rip_all(EHCIState *ehci, int async)
890 {
891     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
892     const char *warn = async ? "guest stopped busy async schedule" : NULL;
893     EHCIQueue *q, *tmp;
894 
895     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
896         ehci_free_queue(q, warn);
897     }
898 }
899 
900 /* Attach or detach a device on root hub */
901 
902 static void ehci_attach(USBPort *port)
903 {
904     EHCIState *s = port->opaque;
905     uint32_t *portsc = &s->portsc[port->index];
906     const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
907 
908     trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc);
909 
910     if (*portsc & PORTSC_POWNER) {
911         USBPort *companion = s->companion_ports[port->index];
912         companion->dev = port->dev;
913         companion->ops->attach(companion);
914         return;
915     }
916 
917     *portsc |= PORTSC_CONNECT;
918     *portsc |= PORTSC_CSC;
919 
920     ehci_raise_irq(s, USBSTS_PCD);
921     ehci_commit_irq(s);
922 }
923 
924 static void ehci_detach(USBPort *port)
925 {
926     EHCIState *s = port->opaque;
927     uint32_t *portsc = &s->portsc[port->index];
928     const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
929 
930     trace_usb_ehci_port_detach(port->index, owner);
931 
932     if (*portsc & PORTSC_POWNER) {
933         USBPort *companion = s->companion_ports[port->index];
934         companion->ops->detach(companion);
935         companion->dev = NULL;
936         /*
937          * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
938          * the port ownership is returned immediately to the EHCI controller."
939          */
940         *portsc &= ~PORTSC_POWNER;
941         return;
942     }
943 
944     ehci_queues_rip_device(s, port->dev, 0);
945     ehci_queues_rip_device(s, port->dev, 1);
946 
947     *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
948     *portsc |= PORTSC_CSC;
949 
950     ehci_raise_irq(s, USBSTS_PCD);
951     ehci_commit_irq(s);
952 }
953 
954 static void ehci_child_detach(USBPort *port, USBDevice *child)
955 {
956     EHCIState *s = port->opaque;
957     uint32_t portsc = s->portsc[port->index];
958 
959     if (portsc & PORTSC_POWNER) {
960         USBPort *companion = s->companion_ports[port->index];
961         companion->ops->child_detach(companion, child);
962         return;
963     }
964 
965     ehci_queues_rip_device(s, child, 0);
966     ehci_queues_rip_device(s, child, 1);
967 }
968 
969 static void ehci_wakeup(USBPort *port)
970 {
971     EHCIState *s = port->opaque;
972     uint32_t portsc = s->portsc[port->index];
973 
974     if (portsc & PORTSC_POWNER) {
975         USBPort *companion = s->companion_ports[port->index];
976         if (companion->ops->wakeup) {
977             companion->ops->wakeup(companion);
978         }
979         return;
980     }
981 
982     qemu_bh_schedule(s->async_bh);
983 }
984 
985 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
986                                    uint32_t portcount, uint32_t firstport)
987 {
988     EHCIState *s = container_of(bus, EHCIState, bus);
989     uint32_t i;
990 
991     if (firstport + portcount > NB_PORTS) {
992         qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
993                       "firstport on masterbus");
994         error_printf_unless_qmp(
995             "firstport value of %u makes companion take ports %u - %u, which "
996             "is outside of the valid range of 0 - %u\n", firstport, firstport,
997             firstport + portcount - 1, NB_PORTS - 1);
998         return -1;
999     }
1000 
1001     for (i = 0; i < portcount; i++) {
1002         if (s->companion_ports[firstport + i]) {
1003             qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
1004                           "an USB masterbus");
1005             error_printf_unless_qmp(
1006                 "port %u on masterbus %s already has a companion assigned\n",
1007                 firstport + i, bus->qbus.name);
1008             return -1;
1009         }
1010     }
1011 
1012     for (i = 0; i < portcount; i++) {
1013         s->companion_ports[firstport + i] = ports[i];
1014         s->ports[firstport + i].speedmask |=
1015             USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
1016         /* Ensure devs attached before the initial reset go to the companion */
1017         s->portsc[firstport + i] = PORTSC_POWNER;
1018     }
1019 
1020     s->companion_count++;
1021     s->mmio[0x05] = (s->companion_count << 4) | portcount;
1022 
1023     return 0;
1024 }
1025 
1026 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
1027 {
1028     USBDevice *dev;
1029     USBPort *port;
1030     int i;
1031 
1032     for (i = 0; i < NB_PORTS; i++) {
1033         port = &ehci->ports[i];
1034         if (!(ehci->portsc[i] & PORTSC_PED)) {
1035             DPRINTF("Port %d not enabled\n", i);
1036             continue;
1037         }
1038         dev = usb_find_device(port, addr);
1039         if (dev != NULL) {
1040             return dev;
1041         }
1042     }
1043     return NULL;
1044 }
1045 
1046 /* 4.1 host controller initialization */
1047 static void ehci_reset(void *opaque)
1048 {
1049     EHCIState *s = opaque;
1050     int i;
1051     USBDevice *devs[NB_PORTS];
1052 
1053     trace_usb_ehci_reset();
1054 
1055     /*
1056      * Do the detach before touching portsc, so that it correctly gets send to
1057      * us or to our companion based on PORTSC_POWNER before the reset.
1058      */
1059     for(i = 0; i < NB_PORTS; i++) {
1060         devs[i] = s->ports[i].dev;
1061         if (devs[i] && devs[i]->attached) {
1062             usb_detach(&s->ports[i]);
1063         }
1064     }
1065 
1066     memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
1067 
1068     s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
1069     s->usbsts = USBSTS_HALT;
1070     s->usbsts_pending = 0;
1071     s->usbsts_frindex = 0;
1072 
1073     s->astate = EST_INACTIVE;
1074     s->pstate = EST_INACTIVE;
1075 
1076     for(i = 0; i < NB_PORTS; i++) {
1077         if (s->companion_ports[i]) {
1078             s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
1079         } else {
1080             s->portsc[i] = PORTSC_PPOWER;
1081         }
1082         if (devs[i] && devs[i]->attached) {
1083             usb_attach(&s->ports[i]);
1084             usb_device_reset(devs[i]);
1085         }
1086     }
1087     ehci_queues_rip_all(s, 0);
1088     ehci_queues_rip_all(s, 1);
1089     qemu_del_timer(s->frame_timer);
1090     qemu_bh_cancel(s->async_bh);
1091 }
1092 
1093 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
1094 {
1095     EHCIState *s = ptr;
1096     uint32_t val;
1097 
1098     val = s->mmio[addr];
1099 
1100     return val;
1101 }
1102 
1103 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
1104 {
1105     EHCIState *s = ptr;
1106     uint32_t val;
1107 
1108     val = s->mmio[addr] | (s->mmio[addr+1] << 8);
1109 
1110     return val;
1111 }
1112 
1113 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
1114 {
1115     EHCIState *s = ptr;
1116     uint32_t val;
1117 
1118     val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
1119           (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
1120 
1121     trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
1122     return val;
1123 }
1124 
1125 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
1126 {
1127     fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
1128     exit(1);
1129 }
1130 
1131 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
1132 {
1133     fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
1134     exit(1);
1135 }
1136 
1137 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
1138 {
1139     USBDevice *dev = s->ports[port].dev;
1140     uint32_t *portsc = &s->portsc[port];
1141     uint32_t orig;
1142 
1143     if (s->companion_ports[port] == NULL)
1144         return;
1145 
1146     owner = owner & PORTSC_POWNER;
1147     orig  = *portsc & PORTSC_POWNER;
1148 
1149     if (!(owner ^ orig)) {
1150         return;
1151     }
1152 
1153     if (dev && dev->attached) {
1154         usb_detach(&s->ports[port]);
1155     }
1156 
1157     *portsc &= ~PORTSC_POWNER;
1158     *portsc |= owner;
1159 
1160     if (dev && dev->attached) {
1161         usb_attach(&s->ports[port]);
1162     }
1163 }
1164 
1165 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
1166 {
1167     uint32_t *portsc = &s->portsc[port];
1168     USBDevice *dev = s->ports[port].dev;
1169 
1170     /* Clear rwc bits */
1171     *portsc &= ~(val & PORTSC_RWC_MASK);
1172     /* The guest may clear, but not set the PED bit */
1173     *portsc &= val | ~PORTSC_PED;
1174     /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1175     handle_port_owner_write(s, port, val);
1176     /* And finally apply RO_MASK */
1177     val &= PORTSC_RO_MASK;
1178 
1179     if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1180         trace_usb_ehci_port_reset(port, 1);
1181     }
1182 
1183     if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1184         trace_usb_ehci_port_reset(port, 0);
1185         if (dev && dev->attached) {
1186             usb_port_reset(&s->ports[port]);
1187             *portsc &= ~PORTSC_CSC;
1188         }
1189 
1190         /*
1191          *  Table 2.16 Set the enable bit(and enable bit change) to indicate
1192          *  to SW that this port has a high speed device attached
1193          */
1194         if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1195             val |= PORTSC_PED;
1196         }
1197     }
1198 
1199     *portsc &= ~PORTSC_RO_MASK;
1200     *portsc |= val;
1201 }
1202 
1203 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1204 {
1205     EHCIState *s = ptr;
1206     uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1207     uint32_t old = *mmio;
1208     int i;
1209 
1210     trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1211 
1212     /* Only aligned reads are allowed on OHCI */
1213     if (addr & 3) {
1214         fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1215                 TARGET_FMT_plx "\n", addr);
1216         return;
1217     }
1218 
1219     if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1220         handle_port_status_write(s, (addr-PORTSC)/4, val);
1221         trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1222         return;
1223     }
1224 
1225     if (addr < OPREGBASE) {
1226         fprintf(stderr, "usb-ehci: write attempt to read-only register"
1227                 TARGET_FMT_plx "\n", addr);
1228         return;
1229     }
1230 
1231 
1232     /* Do any register specific pre-write processing here.  */
1233     switch(addr) {
1234     case USBCMD:
1235         if (val & USBCMD_HCRESET) {
1236             ehci_reset(s);
1237             val = s->usbcmd;
1238             break;
1239         }
1240 
1241         /* not supporting dynamic frame list size at the moment */
1242         if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1243             fprintf(stderr, "attempt to set frame list size -- value %d\n",
1244                     val & USBCMD_FLS);
1245             val &= ~USBCMD_FLS;
1246         }
1247 
1248         if (val & USBCMD_IAAD) {
1249             /*
1250              * Process IAAD immediately, otherwise the Linux IAAD watchdog may
1251              * trigger and re-use a qh without us seeing the unlink.
1252              */
1253             s->async_stepdown = 0;
1254             qemu_bh_schedule(s->async_bh);
1255             trace_usb_ehci_doorbell_ring();
1256         }
1257 
1258         if (((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & val) !=
1259             ((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & s->usbcmd)) {
1260             if (s->pstate == EST_INACTIVE) {
1261                 SET_LAST_RUN_CLOCK(s);
1262             }
1263             s->usbcmd = val; /* Set usbcmd for ehci_update_halt() */
1264             ehci_update_halt(s);
1265             s->async_stepdown = 0;
1266             qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1267         }
1268         break;
1269 
1270     case USBSTS:
1271         val &= USBSTS_RO_MASK;              // bits 6 through 31 are RO
1272         ehci_clear_usbsts(s, val);          // bits 0 through 5 are R/WC
1273         val = s->usbsts;
1274         ehci_update_irq(s);
1275         break;
1276 
1277     case USBINTR:
1278         val &= USBINTR_MASK;
1279         break;
1280 
1281     case FRINDEX:
1282         val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1283         break;
1284 
1285     case CONFIGFLAG:
1286         val &= 0x1;
1287         if (val) {
1288             for(i = 0; i < NB_PORTS; i++)
1289                 handle_port_owner_write(s, i, 0);
1290         }
1291         break;
1292 
1293     case PERIODICLISTBASE:
1294         if (ehci_periodic_enabled(s)) {
1295             fprintf(stderr,
1296               "ehci: PERIODIC list base register set while periodic schedule\n"
1297               "      is enabled and HC is enabled\n");
1298         }
1299         break;
1300 
1301     case ASYNCLISTADDR:
1302         if (ehci_async_enabled(s)) {
1303             fprintf(stderr,
1304               "ehci: ASYNC list address register set while async schedule\n"
1305               "      is enabled and HC is enabled\n");
1306         }
1307         break;
1308     }
1309 
1310     *mmio = val;
1311     trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1312 }
1313 
1314 
1315 // TODO : Put in common header file, duplication from usb-ohci.c
1316 
1317 /* Get an array of dwords from main memory */
1318 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1319                              uint32_t *buf, int num)
1320 {
1321     int i;
1322 
1323     for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1324         pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1325         *buf = le32_to_cpu(*buf);
1326     }
1327 
1328     return 1;
1329 }
1330 
1331 /* Put an array of dwords in to main memory */
1332 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1333                              uint32_t *buf, int num)
1334 {
1335     int i;
1336 
1337     for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1338         uint32_t tmp = cpu_to_le32(*buf);
1339         pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1340     }
1341 
1342     return 1;
1343 }
1344 
1345 /*
1346  *  Write the qh back to guest physical memory.  This step isn't
1347  *  in the EHCI spec but we need to do it since we don't share
1348  *  physical memory with our guest VM.
1349  *
1350  *  The first three dwords are read-only for the EHCI, so skip them
1351  *  when writing back the qh.
1352  */
1353 static void ehci_flush_qh(EHCIQueue *q)
1354 {
1355     uint32_t *qh = (uint32_t *) &q->qh;
1356     uint32_t dwords = sizeof(EHCIqh) >> 2;
1357     uint32_t addr = NLPTR_GET(q->qhaddr);
1358 
1359     put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1360 }
1361 
1362 // 4.10.2
1363 
1364 static int ehci_qh_do_overlay(EHCIQueue *q)
1365 {
1366     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1367     int i;
1368     int dtoggle;
1369     int ping;
1370     int eps;
1371     int reload;
1372 
1373     assert(p != NULL);
1374     assert(p->qtdaddr == q->qtdaddr);
1375 
1376     // remember values in fields to preserve in qh after overlay
1377 
1378     dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1379     ping    = q->qh.token & QTD_TOKEN_PING;
1380 
1381     q->qh.current_qtd = p->qtdaddr;
1382     q->qh.next_qtd    = p->qtd.next;
1383     q->qh.altnext_qtd = p->qtd.altnext;
1384     q->qh.token       = p->qtd.token;
1385 
1386 
1387     eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1388     if (eps == EHCI_QH_EPS_HIGH) {
1389         q->qh.token &= ~QTD_TOKEN_PING;
1390         q->qh.token |= ping;
1391     }
1392 
1393     reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1394     set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1395 
1396     for (i = 0; i < 5; i++) {
1397         q->qh.bufptr[i] = p->qtd.bufptr[i];
1398     }
1399 
1400     if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1401         // preserve QH DT bit
1402         q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1403         q->qh.token |= dtoggle;
1404     }
1405 
1406     q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1407     q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1408 
1409     ehci_flush_qh(q);
1410 
1411     return 0;
1412 }
1413 
1414 static int ehci_init_transfer(EHCIPacket *p)
1415 {
1416     uint32_t cpage, offset, bytes, plen;
1417     dma_addr_t page;
1418 
1419     cpage  = get_field(p->qtd.token, QTD_TOKEN_CPAGE);
1420     bytes  = get_field(p->qtd.token, QTD_TOKEN_TBYTES);
1421     offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK;
1422     pci_dma_sglist_init(&p->sgl, &p->queue->ehci->dev, 5);
1423 
1424     while (bytes > 0) {
1425         if (cpage > 4) {
1426             fprintf(stderr, "cpage out of range (%d)\n", cpage);
1427             return USB_RET_PROCERR;
1428         }
1429 
1430         page  = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK;
1431         page += offset;
1432         plen  = bytes;
1433         if (plen > 4096 - offset) {
1434             plen = 4096 - offset;
1435             offset = 0;
1436             cpage++;
1437         }
1438 
1439         qemu_sglist_add(&p->sgl, page, plen);
1440         bytes -= plen;
1441     }
1442     return 0;
1443 }
1444 
1445 static void ehci_finish_transfer(EHCIQueue *q, int status)
1446 {
1447     uint32_t cpage, offset;
1448 
1449     if (status > 0) {
1450         /* update cpage & offset */
1451         cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1452         offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1453 
1454         offset += status;
1455         cpage  += offset >> QTD_BUFPTR_SH;
1456         offset &= ~QTD_BUFPTR_MASK;
1457 
1458         set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1459         q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1460         q->qh.bufptr[0] |= offset;
1461     }
1462 }
1463 
1464 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1465 {
1466     EHCIPacket *p;
1467     EHCIState *s = port->opaque;
1468     uint32_t portsc = s->portsc[port->index];
1469 
1470     if (portsc & PORTSC_POWNER) {
1471         USBPort *companion = s->companion_ports[port->index];
1472         companion->ops->complete(companion, packet);
1473         return;
1474     }
1475 
1476     p = container_of(packet, EHCIPacket, packet);
1477     trace_usb_ehci_packet_action(p->queue, p, "wakeup");
1478     assert(p->async == EHCI_ASYNC_INFLIGHT);
1479     p->async = EHCI_ASYNC_FINISHED;
1480     p->usb_status = packet->result;
1481 
1482     if (p->queue->async) {
1483         qemu_bh_schedule(p->queue->ehci->async_bh);
1484     }
1485 }
1486 
1487 static void ehci_execute_complete(EHCIQueue *q)
1488 {
1489     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1490 
1491     assert(p != NULL);
1492     assert(p->qtdaddr == q->qtdaddr);
1493     assert(p->async == EHCI_ASYNC_INITIALIZED ||
1494            p->async == EHCI_ASYNC_FINISHED);
1495 
1496     DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1497             q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1498 
1499     if (p->usb_status < 0) {
1500         switch (p->usb_status) {
1501         case USB_RET_IOERROR:
1502         case USB_RET_NODEV:
1503             q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1504             set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1505             ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1506             break;
1507         case USB_RET_STALL:
1508             q->qh.token |= QTD_TOKEN_HALT;
1509             ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1510             break;
1511         case USB_RET_NAK:
1512             set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1513             return; /* We're not done yet with this transaction */
1514         case USB_RET_BABBLE:
1515             q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1516             ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1517             break;
1518         default:
1519             /* should not be triggerable */
1520             fprintf(stderr, "USB invalid response %d\n", p->usb_status);
1521             assert(0);
1522             break;
1523         }
1524     } else {
1525         // TODO check 4.12 for splits
1526 
1527         if (p->tbytes && p->pid == USB_TOKEN_IN) {
1528             p->tbytes -= p->usb_status;
1529         } else {
1530             p->tbytes = 0;
1531         }
1532 
1533         DPRINTF("updating tbytes to %d\n", p->tbytes);
1534         set_field(&q->qh.token, p->tbytes, QTD_TOKEN_TBYTES);
1535     }
1536     ehci_finish_transfer(q, p->usb_status);
1537     usb_packet_unmap(&p->packet, &p->sgl);
1538     qemu_sglist_destroy(&p->sgl);
1539     p->async = EHCI_ASYNC_NONE;
1540 
1541     q->qh.token ^= QTD_TOKEN_DTOGGLE;
1542     q->qh.token &= ~QTD_TOKEN_ACTIVE;
1543 
1544     if (q->qh.token & QTD_TOKEN_IOC) {
1545         ehci_raise_irq(q->ehci, USBSTS_INT);
1546     }
1547 }
1548 
1549 // 4.10.3
1550 
1551 static int ehci_execute(EHCIPacket *p, const char *action)
1552 {
1553     USBEndpoint *ep;
1554     int ret;
1555     int endp;
1556 
1557     assert(p->async == EHCI_ASYNC_NONE ||
1558            p->async == EHCI_ASYNC_INITIALIZED);
1559 
1560     if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) {
1561         fprintf(stderr, "Attempting to execute inactive qtd\n");
1562         return USB_RET_PROCERR;
1563     }
1564 
1565     p->tbytes = (p->qtd.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1566     if (p->tbytes > BUFF_SIZE) {
1567         ehci_trace_guest_bug(p->queue->ehci,
1568                              "guest requested more bytes than allowed");
1569         return USB_RET_PROCERR;
1570     }
1571 
1572     p->pid = (p->qtd.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1573     switch (p->pid) {
1574     case 0:
1575         p->pid = USB_TOKEN_OUT;
1576         break;
1577     case 1:
1578         p->pid = USB_TOKEN_IN;
1579         break;
1580     case 2:
1581         p->pid = USB_TOKEN_SETUP;
1582         break;
1583     default:
1584         fprintf(stderr, "bad token\n");
1585         break;
1586     }
1587 
1588     endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP);
1589     ep = usb_ep_get(p->queue->dev, p->pid, endp);
1590 
1591     if (p->async == EHCI_ASYNC_NONE) {
1592         if (ehci_init_transfer(p) != 0) {
1593             return USB_RET_PROCERR;
1594         }
1595 
1596         usb_packet_setup(&p->packet, p->pid, ep, p->qtdaddr);
1597         usb_packet_map(&p->packet, &p->sgl);
1598         p->async = EHCI_ASYNC_INITIALIZED;
1599     }
1600 
1601     trace_usb_ehci_packet_action(p->queue, p, action);
1602     ret = usb_handle_packet(p->queue->dev, &p->packet);
1603     DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1604             "(total %d) endp %x ret %d\n",
1605             q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1606             q->packet.iov.size, q->tbytes, endp, ret);
1607 
1608     if (ret > BUFF_SIZE) {
1609         fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1610         return USB_RET_PROCERR;
1611     }
1612 
1613     return ret;
1614 }
1615 
1616 /*  4.7.2
1617  */
1618 
1619 static int ehci_process_itd(EHCIState *ehci,
1620                             EHCIitd *itd,
1621                             uint32_t addr)
1622 {
1623     USBDevice *dev;
1624     USBEndpoint *ep;
1625     int ret;
1626     uint32_t i, len, pid, dir, devaddr, endp;
1627     uint32_t pg, off, ptr1, ptr2, max, mult;
1628 
1629     dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1630     devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1631     endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1632     max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1633     mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1634 
1635     for(i = 0; i < 8; i++) {
1636         if (itd->transact[i] & ITD_XACT_ACTIVE) {
1637             pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1638             off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1639             ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1640             ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1641             len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1642 
1643             if (len > max * mult) {
1644                 len = max * mult;
1645             }
1646 
1647             if (len > BUFF_SIZE) {
1648                 return USB_RET_PROCERR;
1649             }
1650 
1651             pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1652             if (off + len > 4096) {
1653                 /* transfer crosses page border */
1654                 uint32_t len2 = off + len - 4096;
1655                 uint32_t len1 = len - len2;
1656                 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1657                 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1658             } else {
1659                 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1660             }
1661 
1662             pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1663 
1664             dev = ehci_find_device(ehci, devaddr);
1665             ep = usb_ep_get(dev, pid, endp);
1666             if (ep && ep->type == USB_ENDPOINT_XFER_ISOC) {
1667                 usb_packet_setup(&ehci->ipacket, pid, ep, addr);
1668                 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1669                 ret = usb_handle_packet(dev, &ehci->ipacket);
1670                 assert(ret != USB_RET_ASYNC);
1671                 usb_packet_unmap(&ehci->ipacket, &ehci->isgl);
1672             } else {
1673                 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1674                 ret = USB_RET_NAK;
1675             }
1676             qemu_sglist_destroy(&ehci->isgl);
1677 
1678             if (ret < 0) {
1679                 switch (ret) {
1680                 default:
1681                     fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1682                     /* Fall through */
1683                 case USB_RET_IOERROR:
1684                 case USB_RET_NODEV:
1685                     /* 3.3.2: XACTERR is only allowed on IN transactions */
1686                     if (dir) {
1687                         itd->transact[i] |= ITD_XACT_XACTERR;
1688                         ehci_raise_irq(ehci, USBSTS_ERRINT);
1689                     }
1690                     break;
1691                 case USB_RET_BABBLE:
1692                     itd->transact[i] |= ITD_XACT_BABBLE;
1693                     ehci_raise_irq(ehci, USBSTS_ERRINT);
1694                     break;
1695                 case USB_RET_NAK:
1696                     /* no data for us, so do a zero-length transfer */
1697                     ret = 0;
1698                     break;
1699                 }
1700             }
1701             if (ret >= 0) {
1702                 if (!dir) {
1703                     /* OUT */
1704                     set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1705                 } else {
1706                     /* IN */
1707                     set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1708                 }
1709             }
1710             if (itd->transact[i] & ITD_XACT_IOC) {
1711                 ehci_raise_irq(ehci, USBSTS_INT);
1712             }
1713             itd->transact[i] &= ~ITD_XACT_ACTIVE;
1714         }
1715     }
1716     return 0;
1717 }
1718 
1719 
1720 /*  This state is the entry point for asynchronous schedule
1721  *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1722  */
1723 static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1724 {
1725     EHCIqh qh;
1726     int i = 0;
1727     int again = 0;
1728     uint32_t entry = ehci->asynclistaddr;
1729 
1730     /* set reclamation flag at start event (4.8.6) */
1731     if (async) {
1732         ehci_set_usbsts(ehci, USBSTS_REC);
1733     }
1734 
1735     ehci_queues_rip_unused(ehci, async, 0);
1736 
1737     /*  Find the head of the list (4.9.1.1) */
1738     for(i = 0; i < MAX_QH; i++) {
1739         get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1740                    sizeof(EHCIqh) >> 2);
1741         ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1742 
1743         if (qh.epchar & QH_EPCHAR_H) {
1744             if (async) {
1745                 entry |= (NLPTR_TYPE_QH << 1);
1746             }
1747 
1748             ehci_set_fetch_addr(ehci, async, entry);
1749             ehci_set_state(ehci, async, EST_FETCHENTRY);
1750             again = 1;
1751             goto out;
1752         }
1753 
1754         entry = qh.next;
1755         if (entry == ehci->asynclistaddr) {
1756             break;
1757         }
1758     }
1759 
1760     /* no head found for list. */
1761 
1762     ehci_set_state(ehci, async, EST_ACTIVE);
1763 
1764 out:
1765     return again;
1766 }
1767 
1768 
1769 /*  This state is the entry point for periodic schedule processing as
1770  *  well as being a continuation state for async processing.
1771  */
1772 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1773 {
1774     int again = 0;
1775     uint32_t entry = ehci_get_fetch_addr(ehci, async);
1776 
1777     if (NLPTR_TBIT(entry)) {
1778         ehci_set_state(ehci, async, EST_ACTIVE);
1779         goto out;
1780     }
1781 
1782     /* section 4.8, only QH in async schedule */
1783     if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1784         fprintf(stderr, "non queue head request in async schedule\n");
1785         return -1;
1786     }
1787 
1788     switch (NLPTR_TYPE_GET(entry)) {
1789     case NLPTR_TYPE_QH:
1790         ehci_set_state(ehci, async, EST_FETCHQH);
1791         again = 1;
1792         break;
1793 
1794     case NLPTR_TYPE_ITD:
1795         ehci_set_state(ehci, async, EST_FETCHITD);
1796         again = 1;
1797         break;
1798 
1799     case NLPTR_TYPE_STITD:
1800         ehci_set_state(ehci, async, EST_FETCHSITD);
1801         again = 1;
1802         break;
1803 
1804     default:
1805         /* TODO: handle FSTN type */
1806         fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1807                 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1808         return -1;
1809     }
1810 
1811 out:
1812     return again;
1813 }
1814 
1815 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1816 {
1817     EHCIPacket *p;
1818     uint32_t entry, devaddr, endp;
1819     EHCIQueue *q;
1820     EHCIqh qh;
1821 
1822     entry = ehci_get_fetch_addr(ehci, async);
1823     q = ehci_find_queue_by_qh(ehci, entry, async);
1824     if (NULL == q) {
1825         q = ehci_alloc_queue(ehci, entry, async);
1826     }
1827     p = QTAILQ_FIRST(&q->packets);
1828 
1829     q->seen++;
1830     if (q->seen > 1) {
1831         /* we are going in circles -- stop processing */
1832         ehci_set_state(ehci, async, EST_ACTIVE);
1833         q = NULL;
1834         goto out;
1835     }
1836 
1837     get_dwords(ehci, NLPTR_GET(q->qhaddr),
1838                (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1839     ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &qh);
1840 
1841     /*
1842      * The overlay area of the qh should never be changed by the guest,
1843      * except when idle, in which case the reset is a nop.
1844      */
1845     devaddr = get_field(qh.epchar, QH_EPCHAR_DEVADDR);
1846     endp    = get_field(qh.epchar, QH_EPCHAR_EP);
1847     if ((devaddr != get_field(q->qh.epchar, QH_EPCHAR_DEVADDR)) ||
1848         (endp    != get_field(q->qh.epchar, QH_EPCHAR_EP)) ||
1849         (memcmp(&qh.current_qtd, &q->qh.current_qtd,
1850                                  9 * sizeof(uint32_t)) != 0) ||
1851         (q->dev != NULL && q->dev->addr != devaddr)) {
1852         if (ehci_reset_queue(q) > 0) {
1853             ehci_trace_guest_bug(ehci, "guest updated active QH");
1854         }
1855         p = NULL;
1856     }
1857     q->qh = qh;
1858 
1859     if (q->dev == NULL) {
1860         q->dev = ehci_find_device(q->ehci, devaddr);
1861     }
1862 
1863     if (p && p->async == EHCI_ASYNC_FINISHED) {
1864         /* I/O finished -- continue processing queue */
1865         trace_usb_ehci_packet_action(p->queue, p, "complete");
1866         ehci_set_state(ehci, async, EST_EXECUTING);
1867         goto out;
1868     }
1869 
1870     if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1871 
1872         /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1873         if (ehci->usbsts & USBSTS_REC) {
1874             ehci_clear_usbsts(ehci, USBSTS_REC);
1875         } else {
1876             DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1877                        " - done processing\n", q->qhaddr);
1878             ehci_set_state(ehci, async, EST_ACTIVE);
1879             q = NULL;
1880             goto out;
1881         }
1882     }
1883 
1884 #if EHCI_DEBUG
1885     if (q->qhaddr != q->qh.next) {
1886     DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1887                q->qhaddr,
1888                q->qh.epchar & QH_EPCHAR_H,
1889                q->qh.token & QTD_TOKEN_HALT,
1890                q->qh.token & QTD_TOKEN_ACTIVE,
1891                q->qh.next);
1892     }
1893 #endif
1894 
1895     if (q->qh.token & QTD_TOKEN_HALT) {
1896         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1897 
1898     } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1899                (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1900         q->qtdaddr = q->qh.current_qtd;
1901         ehci_set_state(ehci, async, EST_FETCHQTD);
1902 
1903     } else {
1904         /*  EHCI spec version 1.0 Section 4.10.2 */
1905         ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1906     }
1907 
1908 out:
1909     return q;
1910 }
1911 
1912 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1913 {
1914     uint32_t entry;
1915     EHCIitd itd;
1916 
1917     assert(!async);
1918     entry = ehci_get_fetch_addr(ehci, async);
1919 
1920     get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1921                sizeof(EHCIitd) >> 2);
1922     ehci_trace_itd(ehci, entry, &itd);
1923 
1924     if (ehci_process_itd(ehci, &itd, entry) != 0) {
1925         return -1;
1926     }
1927 
1928     put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1929                sizeof(EHCIitd) >> 2);
1930     ehci_set_fetch_addr(ehci, async, itd.next);
1931     ehci_set_state(ehci, async, EST_FETCHENTRY);
1932 
1933     return 1;
1934 }
1935 
1936 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1937 {
1938     uint32_t entry;
1939     EHCIsitd sitd;
1940 
1941     assert(!async);
1942     entry = ehci_get_fetch_addr(ehci, async);
1943 
1944     get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1945                sizeof(EHCIsitd) >> 2);
1946     ehci_trace_sitd(ehci, entry, &sitd);
1947 
1948     if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1949         /* siTD is not active, nothing to do */;
1950     } else {
1951         /* TODO: split transfers are not implemented */
1952         fprintf(stderr, "WARNING: Skipping active siTD\n");
1953     }
1954 
1955     ehci_set_fetch_addr(ehci, async, sitd.next);
1956     ehci_set_state(ehci, async, EST_FETCHENTRY);
1957     return 1;
1958 }
1959 
1960 /* Section 4.10.2 - paragraph 3 */
1961 static int ehci_state_advqueue(EHCIQueue *q)
1962 {
1963 #if 0
1964     /* TO-DO: 4.10.2 - paragraph 2
1965      * if I-bit is set to 1 and QH is not active
1966      * go to horizontal QH
1967      */
1968     if (I-bit set) {
1969         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1970         goto out;
1971     }
1972 #endif
1973 
1974     /*
1975      * want data and alt-next qTD is valid
1976      */
1977     if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1978         (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1979         q->qtdaddr = q->qh.altnext_qtd;
1980         ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1981 
1982     /*
1983      *  next qTD is valid
1984      */
1985     } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1986         q->qtdaddr = q->qh.next_qtd;
1987         ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1988 
1989     /*
1990      *  no valid qTD, try next QH
1991      */
1992     } else {
1993         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1994     }
1995 
1996     return 1;
1997 }
1998 
1999 /* Section 4.10.2 - paragraph 4 */
2000 static int ehci_state_fetchqtd(EHCIQueue *q)
2001 {
2002     EHCIqtd qtd;
2003     EHCIPacket *p;
2004     int again = 0;
2005 
2006     get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd,
2007                sizeof(EHCIqtd) >> 2);
2008     ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
2009 
2010     p = QTAILQ_FIRST(&q->packets);
2011     if (p != NULL) {
2012         if (p->qtdaddr != q->qtdaddr ||
2013             (!NLPTR_TBIT(p->qtd.next) && (p->qtd.next != qtd.next)) ||
2014             (!NLPTR_TBIT(p->qtd.altnext) && (p->qtd.altnext != qtd.altnext)) ||
2015             p->qtd.bufptr[0] != qtd.bufptr[0]) {
2016             ehci_cancel_queue(q);
2017             ehci_trace_guest_bug(q->ehci, "guest updated active QH or qTD");
2018             p = NULL;
2019         } else {
2020             p->qtd = qtd;
2021             ehci_qh_do_overlay(q);
2022         }
2023     }
2024 
2025     if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
2026         if (p != NULL) {
2027             /* transfer canceled by guest (clear active) */
2028             ehci_cancel_queue(q);
2029             p = NULL;
2030         }
2031         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2032         again = 1;
2033     } else if (p != NULL) {
2034         switch (p->async) {
2035         case EHCI_ASYNC_NONE:
2036             /* Should never happen packet should at least be initialized */
2037             assert(0);
2038             break;
2039         case EHCI_ASYNC_INITIALIZED:
2040             /* Previously nacked packet (likely interrupt ep) */
2041             ehci_set_state(q->ehci, q->async, EST_EXECUTE);
2042             break;
2043         case EHCI_ASYNC_INFLIGHT:
2044             /* Unfinished async handled packet, go horizontal */
2045             ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2046             break;
2047         case EHCI_ASYNC_FINISHED:
2048             /*
2049              * We get here when advqueue moves to a packet which is already
2050              * finished, which can happen with packets queued up by fill_queue
2051              */
2052             ehci_set_state(q->ehci, q->async, EST_EXECUTING);
2053             break;
2054         }
2055         again = 1;
2056     } else {
2057         p = ehci_alloc_packet(q);
2058         p->qtdaddr = q->qtdaddr;
2059         p->qtd = qtd;
2060         ehci_set_state(q->ehci, q->async, EST_EXECUTE);
2061         again = 1;
2062     }
2063 
2064     return again;
2065 }
2066 
2067 static int ehci_state_horizqh(EHCIQueue *q)
2068 {
2069     int again = 0;
2070 
2071     if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
2072         ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
2073         ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
2074         again = 1;
2075     } else {
2076         ehci_set_state(q->ehci, q->async, EST_ACTIVE);
2077     }
2078 
2079     return again;
2080 }
2081 
2082 static int ehci_fill_queue(EHCIPacket *p)
2083 {
2084     EHCIQueue *q = p->queue;
2085     EHCIqtd qtd = p->qtd;
2086     uint32_t qtdaddr;
2087 
2088     for (;;) {
2089         if (NLPTR_TBIT(qtd.altnext) == 0) {
2090             break;
2091         }
2092         if (NLPTR_TBIT(qtd.next) != 0) {
2093             break;
2094         }
2095         qtdaddr = qtd.next;
2096         get_dwords(q->ehci, NLPTR_GET(qtdaddr),
2097                    (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
2098         ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd);
2099         if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
2100             break;
2101         }
2102         p = ehci_alloc_packet(q);
2103         p->qtdaddr = qtdaddr;
2104         p->qtd = qtd;
2105         p->usb_status = ehci_execute(p, "queue");
2106         if (p->usb_status == USB_RET_PROCERR) {
2107             break;
2108         }
2109         assert(p->usb_status == USB_RET_ASYNC);
2110         p->async = EHCI_ASYNC_INFLIGHT;
2111     }
2112     return p->usb_status;
2113 }
2114 
2115 static int ehci_state_execute(EHCIQueue *q)
2116 {
2117     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2118     int again = 0;
2119 
2120     assert(p != NULL);
2121     assert(p->qtdaddr == q->qtdaddr);
2122 
2123     if (ehci_qh_do_overlay(q) != 0) {
2124         return -1;
2125     }
2126 
2127     // TODO verify enough time remains in the uframe as in 4.4.1.1
2128     // TODO write back ptr to async list when done or out of time
2129     // TODO Windows does not seem to ever set the MULT field
2130 
2131     if (!q->async) {
2132         int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2133         if (!transactCtr) {
2134             ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2135             again = 1;
2136             goto out;
2137         }
2138     }
2139 
2140     if (q->async) {
2141         ehci_set_usbsts(q->ehci, USBSTS_REC);
2142     }
2143 
2144     p->usb_status = ehci_execute(p, "process");
2145     if (p->usb_status == USB_RET_PROCERR) {
2146         again = -1;
2147         goto out;
2148     }
2149     if (p->usb_status == USB_RET_ASYNC) {
2150         ehci_flush_qh(q);
2151         trace_usb_ehci_packet_action(p->queue, p, "async");
2152         p->async = EHCI_ASYNC_INFLIGHT;
2153         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2154         again = (ehci_fill_queue(p) == USB_RET_PROCERR) ? -1 : 1;
2155         goto out;
2156     }
2157 
2158     ehci_set_state(q->ehci, q->async, EST_EXECUTING);
2159     again = 1;
2160 
2161 out:
2162     return again;
2163 }
2164 
2165 static int ehci_state_executing(EHCIQueue *q)
2166 {
2167     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2168 
2169     assert(p != NULL);
2170     assert(p->qtdaddr == q->qtdaddr);
2171 
2172     ehci_execute_complete(q);
2173 
2174     // 4.10.3
2175     if (!q->async) {
2176         int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2177         transactCtr--;
2178         set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
2179         // 4.10.3, bottom of page 82, should exit this state when transaction
2180         // counter decrements to 0
2181     }
2182 
2183     /* 4.10.5 */
2184     if (p->usb_status == USB_RET_NAK) {
2185         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2186     } else {
2187         ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
2188     }
2189 
2190     ehci_flush_qh(q);
2191     return 1;
2192 }
2193 
2194 
2195 static int ehci_state_writeback(EHCIQueue *q)
2196 {
2197     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2198     uint32_t *qtd, addr;
2199     int again = 0;
2200 
2201     /*  Write back the QTD from the QH area */
2202     assert(p != NULL);
2203     assert(p->qtdaddr == q->qtdaddr);
2204 
2205     ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd);
2206     qtd = (uint32_t *) &q->qh.next_qtd;
2207     addr = NLPTR_GET(p->qtdaddr);
2208     put_dwords(q->ehci, addr + 2 * sizeof(uint32_t), qtd + 2, 2);
2209     ehci_free_packet(p);
2210 
2211     /*
2212      * EHCI specs say go horizontal here.
2213      *
2214      * We can also advance the queue here for performance reasons.  We
2215      * need to take care to only take that shortcut in case we've
2216      * processed the qtd just written back without errors, i.e. halt
2217      * bit is clear.
2218      */
2219     if (q->qh.token & QTD_TOKEN_HALT) {
2220         /*
2221          * We should not do any further processing on a halted queue!
2222          * This is esp. important for bulk endpoints with pipelining enabled
2223          * (redirection to a real USB device), where we must cancel all the
2224          * transfers after this one so that:
2225          * 1) If they've completed already, they are not processed further
2226          *    causing more stalls, originating from the same failed transfer
2227          * 2) If still in flight, they are cancelled before the guest does
2228          *    a clear stall, otherwise the guest and device can loose sync!
2229          */
2230         while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
2231             ehci_free_packet(p);
2232         }
2233         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2234         again = 1;
2235     } else {
2236         ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
2237         again = 1;
2238     }
2239     return again;
2240 }
2241 
2242 /*
2243  * This is the state machine that is common to both async and periodic
2244  */
2245 
2246 static void ehci_advance_state(EHCIState *ehci, int async)
2247 {
2248     EHCIQueue *q = NULL;
2249     int again;
2250 
2251     do {
2252         switch(ehci_get_state(ehci, async)) {
2253         case EST_WAITLISTHEAD:
2254             again = ehci_state_waitlisthead(ehci, async);
2255             break;
2256 
2257         case EST_FETCHENTRY:
2258             again = ehci_state_fetchentry(ehci, async);
2259             break;
2260 
2261         case EST_FETCHQH:
2262             q = ehci_state_fetchqh(ehci, async);
2263             if (q != NULL) {
2264                 assert(q->async == async);
2265                 again = 1;
2266             } else {
2267                 again = 0;
2268             }
2269             break;
2270 
2271         case EST_FETCHITD:
2272             again = ehci_state_fetchitd(ehci, async);
2273             break;
2274 
2275         case EST_FETCHSITD:
2276             again = ehci_state_fetchsitd(ehci, async);
2277             break;
2278 
2279         case EST_ADVANCEQUEUE:
2280             again = ehci_state_advqueue(q);
2281             break;
2282 
2283         case EST_FETCHQTD:
2284             again = ehci_state_fetchqtd(q);
2285             break;
2286 
2287         case EST_HORIZONTALQH:
2288             again = ehci_state_horizqh(q);
2289             break;
2290 
2291         case EST_EXECUTE:
2292             again = ehci_state_execute(q);
2293             if (async) {
2294                 ehci->async_stepdown = 0;
2295             }
2296             break;
2297 
2298         case EST_EXECUTING:
2299             assert(q != NULL);
2300             if (async) {
2301                 ehci->async_stepdown = 0;
2302             }
2303             again = ehci_state_executing(q);
2304             break;
2305 
2306         case EST_WRITEBACK:
2307             assert(q != NULL);
2308             again = ehci_state_writeback(q);
2309             break;
2310 
2311         default:
2312             fprintf(stderr, "Bad state!\n");
2313             again = -1;
2314             assert(0);
2315             break;
2316         }
2317 
2318         if (again < 0) {
2319             fprintf(stderr, "processing error - resetting ehci HC\n");
2320             ehci_reset(ehci);
2321             again = 0;
2322         }
2323     }
2324     while (again);
2325 }
2326 
2327 static void ehci_advance_async_state(EHCIState *ehci)
2328 {
2329     const int async = 1;
2330 
2331     switch(ehci_get_state(ehci, async)) {
2332     case EST_INACTIVE:
2333         if (!ehci_async_enabled(ehci)) {
2334             break;
2335         }
2336         ehci_set_state(ehci, async, EST_ACTIVE);
2337         // No break, fall through to ACTIVE
2338 
2339     case EST_ACTIVE:
2340         if (!ehci_async_enabled(ehci)) {
2341             ehci_queues_rip_all(ehci, async);
2342             ehci_set_state(ehci, async, EST_INACTIVE);
2343             break;
2344         }
2345 
2346         /* make sure guest has acknowledged the doorbell interrupt */
2347         /* TO-DO: is this really needed? */
2348         if (ehci->usbsts & USBSTS_IAA) {
2349             DPRINTF("IAA status bit still set.\n");
2350             break;
2351         }
2352 
2353         /* check that address register has been set */
2354         if (ehci->asynclistaddr == 0) {
2355             break;
2356         }
2357 
2358         ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2359         ehci_advance_state(ehci, async);
2360 
2361         /* If the doorbell is set, the guest wants to make a change to the
2362          * schedule. The host controller needs to release cached data.
2363          * (section 4.8.2)
2364          */
2365         if (ehci->usbcmd & USBCMD_IAAD) {
2366             /* Remove all unseen qhs from the async qhs queue */
2367             ehci_queues_rip_unused(ehci, async, 1);
2368             trace_usb_ehci_doorbell_ack();
2369             ehci->usbcmd &= ~USBCMD_IAAD;
2370             ehci_raise_irq(ehci, USBSTS_IAA);
2371         }
2372         break;
2373 
2374     default:
2375         /* this should only be due to a developer mistake */
2376         fprintf(stderr, "ehci: Bad asynchronous state %d. "
2377                 "Resetting to active\n", ehci->astate);
2378         assert(0);
2379     }
2380 }
2381 
2382 static void ehci_advance_periodic_state(EHCIState *ehci)
2383 {
2384     uint32_t entry;
2385     uint32_t list;
2386     const int async = 0;
2387 
2388     // 4.6
2389 
2390     switch(ehci_get_state(ehci, async)) {
2391     case EST_INACTIVE:
2392         if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
2393             ehci_set_state(ehci, async, EST_ACTIVE);
2394             // No break, fall through to ACTIVE
2395         } else
2396             break;
2397 
2398     case EST_ACTIVE:
2399         if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
2400             ehci_queues_rip_all(ehci, async);
2401             ehci_set_state(ehci, async, EST_INACTIVE);
2402             break;
2403         }
2404 
2405         list = ehci->periodiclistbase & 0xfffff000;
2406         /* check that register has been set */
2407         if (list == 0) {
2408             break;
2409         }
2410         list |= ((ehci->frindex & 0x1ff8) >> 1);
2411 
2412         pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2413         entry = le32_to_cpu(entry);
2414 
2415         DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2416                 ehci->frindex / 8, list, entry);
2417         ehci_set_fetch_addr(ehci, async,entry);
2418         ehci_set_state(ehci, async, EST_FETCHENTRY);
2419         ehci_advance_state(ehci, async);
2420         ehci_queues_rip_unused(ehci, async, 0);
2421         break;
2422 
2423     default:
2424         /* this should only be due to a developer mistake */
2425         fprintf(stderr, "ehci: Bad periodic state %d. "
2426                 "Resetting to active\n", ehci->pstate);
2427         assert(0);
2428     }
2429 }
2430 
2431 static void ehci_update_frindex(EHCIState *ehci, int frames)
2432 {
2433     int i;
2434 
2435     if (!ehci_enabled(ehci)) {
2436         return;
2437     }
2438 
2439     for (i = 0; i < frames; i++) {
2440         ehci->frindex += 8;
2441 
2442         if (ehci->frindex == 0x00002000) {
2443             ehci_raise_irq(ehci, USBSTS_FLR);
2444         }
2445 
2446         if (ehci->frindex == 0x00004000) {
2447             ehci_raise_irq(ehci, USBSTS_FLR);
2448             ehci->frindex = 0;
2449             if (ehci->usbsts_frindex > 0x00004000) {
2450                 ehci->usbsts_frindex -= 0x00004000;
2451             } else {
2452                 ehci->usbsts_frindex = 0;
2453             }
2454         }
2455     }
2456 }
2457 
2458 static void ehci_frame_timer(void *opaque)
2459 {
2460     EHCIState *ehci = opaque;
2461     int need_timer = 0;
2462     int64_t expire_time, t_now;
2463     uint64_t ns_elapsed;
2464     int frames, skipped_frames;
2465     int i;
2466 
2467     t_now = qemu_get_clock_ns(vm_clock);
2468     ns_elapsed = t_now - ehci->last_run_ns;
2469     frames = ns_elapsed / FRAME_TIMER_NS;
2470 
2471     if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) {
2472         need_timer++;
2473         ehci->async_stepdown = 0;
2474 
2475         if (frames > ehci->maxframes) {
2476             skipped_frames = frames - ehci->maxframes;
2477             ehci_update_frindex(ehci, skipped_frames);
2478             ehci->last_run_ns += FRAME_TIMER_NS * skipped_frames;
2479             frames -= skipped_frames;
2480             DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2481         }
2482 
2483         for (i = 0; i < frames; i++) {
2484             ehci_update_frindex(ehci, 1);
2485             ehci_advance_periodic_state(ehci);
2486             ehci->last_run_ns += FRAME_TIMER_NS;
2487         }
2488     } else {
2489         if (ehci->async_stepdown < ehci->maxframes / 2) {
2490             ehci->async_stepdown++;
2491         }
2492         ehci_update_frindex(ehci, frames);
2493         ehci->last_run_ns += FRAME_TIMER_NS * frames;
2494     }
2495 
2496     /*  Async is not inside loop since it executes everything it can once
2497      *  called
2498      */
2499     if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) {
2500         need_timer++;
2501         ehci_advance_async_state(ehci);
2502     }
2503 
2504     ehci_commit_irq(ehci);
2505     if (ehci->usbsts_pending) {
2506         need_timer++;
2507         ehci->async_stepdown = 0;
2508     }
2509 
2510     if (need_timer) {
2511         expire_time = t_now + (get_ticks_per_sec()
2512                                * (ehci->async_stepdown+1) / FRAME_TIMER_FREQ);
2513         qemu_mod_timer(ehci->frame_timer, expire_time);
2514     }
2515 }
2516 
2517 static void ehci_async_bh(void *opaque)
2518 {
2519     EHCIState *ehci = opaque;
2520     ehci_advance_async_state(ehci);
2521 }
2522 
2523 static const MemoryRegionOps ehci_mem_ops = {
2524     .old_mmio = {
2525         .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2526         .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2527     },
2528     .endianness = DEVICE_LITTLE_ENDIAN,
2529 };
2530 
2531 static int usb_ehci_initfn(PCIDevice *dev);
2532 
2533 static USBPortOps ehci_port_ops = {
2534     .attach = ehci_attach,
2535     .detach = ehci_detach,
2536     .child_detach = ehci_child_detach,
2537     .wakeup = ehci_wakeup,
2538     .complete = ehci_async_complete_packet,
2539 };
2540 
2541 static USBBusOps ehci_bus_ops = {
2542     .register_companion = ehci_register_companion,
2543 };
2544 
2545 static int usb_ehci_post_load(void *opaque, int version_id)
2546 {
2547     EHCIState *s = opaque;
2548     int i;
2549 
2550     for (i = 0; i < NB_PORTS; i++) {
2551         USBPort *companion = s->companion_ports[i];
2552         if (companion == NULL) {
2553             continue;
2554         }
2555         if (s->portsc[i] & PORTSC_POWNER) {
2556             companion->dev = s->ports[i].dev;
2557         } else {
2558             companion->dev = NULL;
2559         }
2560     }
2561 
2562     return 0;
2563 }
2564 
2565 static const VMStateDescription vmstate_ehci = {
2566     .name        = "ehci",
2567     .version_id  = 2,
2568     .minimum_version_id  = 1,
2569     .post_load   = usb_ehci_post_load,
2570     .fields      = (VMStateField[]) {
2571         VMSTATE_PCI_DEVICE(dev, EHCIState),
2572         /* mmio registers */
2573         VMSTATE_UINT32(usbcmd, EHCIState),
2574         VMSTATE_UINT32(usbsts, EHCIState),
2575         VMSTATE_UINT32_V(usbsts_pending, EHCIState, 2),
2576         VMSTATE_UINT32_V(usbsts_frindex, EHCIState, 2),
2577         VMSTATE_UINT32(usbintr, EHCIState),
2578         VMSTATE_UINT32(frindex, EHCIState),
2579         VMSTATE_UINT32(ctrldssegment, EHCIState),
2580         VMSTATE_UINT32(periodiclistbase, EHCIState),
2581         VMSTATE_UINT32(asynclistaddr, EHCIState),
2582         VMSTATE_UINT32(configflag, EHCIState),
2583         VMSTATE_UINT32(portsc[0], EHCIState),
2584         VMSTATE_UINT32(portsc[1], EHCIState),
2585         VMSTATE_UINT32(portsc[2], EHCIState),
2586         VMSTATE_UINT32(portsc[3], EHCIState),
2587         VMSTATE_UINT32(portsc[4], EHCIState),
2588         VMSTATE_UINT32(portsc[5], EHCIState),
2589         /* frame timer */
2590         VMSTATE_TIMER(frame_timer, EHCIState),
2591         VMSTATE_UINT64(last_run_ns, EHCIState),
2592         VMSTATE_UINT32(async_stepdown, EHCIState),
2593         /* schedule state */
2594         VMSTATE_UINT32(astate, EHCIState),
2595         VMSTATE_UINT32(pstate, EHCIState),
2596         VMSTATE_UINT32(a_fetch_addr, EHCIState),
2597         VMSTATE_UINT32(p_fetch_addr, EHCIState),
2598         VMSTATE_END_OF_LIST()
2599     }
2600 };
2601 
2602 static Property ehci_properties[] = {
2603     DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2604     DEFINE_PROP_END_OF_LIST(),
2605 };
2606 
2607 static void ehci_class_init(ObjectClass *klass, void *data)
2608 {
2609     DeviceClass *dc = DEVICE_CLASS(klass);
2610     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2611 
2612     k->init = usb_ehci_initfn;
2613     k->vendor_id = PCI_VENDOR_ID_INTEL;
2614     k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2615     k->revision = 0x10;
2616     k->class_id = PCI_CLASS_SERIAL_USB;
2617     dc->vmsd = &vmstate_ehci;
2618     dc->props = ehci_properties;
2619 }
2620 
2621 static TypeInfo ehci_info = {
2622     .name          = "usb-ehci",
2623     .parent        = TYPE_PCI_DEVICE,
2624     .instance_size = sizeof(EHCIState),
2625     .class_init    = ehci_class_init,
2626 };
2627 
2628 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2629 {
2630     DeviceClass *dc = DEVICE_CLASS(klass);
2631     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2632 
2633     k->init = usb_ehci_initfn;
2634     k->vendor_id = PCI_VENDOR_ID_INTEL;
2635     k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2636     k->revision = 0x03;
2637     k->class_id = PCI_CLASS_SERIAL_USB;
2638     dc->vmsd = &vmstate_ehci;
2639     dc->props = ehci_properties;
2640 }
2641 
2642 static TypeInfo ich9_ehci_info = {
2643     .name          = "ich9-usb-ehci1",
2644     .parent        = TYPE_PCI_DEVICE,
2645     .instance_size = sizeof(EHCIState),
2646     .class_init    = ich9_ehci_class_init,
2647 };
2648 
2649 static int usb_ehci_initfn(PCIDevice *dev)
2650 {
2651     EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2652     uint8_t *pci_conf = s->dev.config;
2653     int i;
2654 
2655     pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2656 
2657     /* capabilities pointer */
2658     pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2659     //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2660 
2661     pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2662     pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2663     pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2664 
2665     // pci_conf[0x50] = 0x01; // power management caps
2666 
2667     pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2668     pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2669     pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2670 
2671     pci_conf[0x64] = 0x00;
2672     pci_conf[0x65] = 0x00;
2673     pci_conf[0x66] = 0x00;
2674     pci_conf[0x67] = 0x00;
2675     pci_conf[0x68] = 0x01;
2676     pci_conf[0x69] = 0x00;
2677     pci_conf[0x6a] = 0x00;
2678     pci_conf[0x6b] = 0x00;  // USBLEGSUP
2679     pci_conf[0x6c] = 0x00;
2680     pci_conf[0x6d] = 0x00;
2681     pci_conf[0x6e] = 0x00;
2682     pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2683 
2684     // 2.2 host controller interface version
2685     s->mmio[0x00] = (uint8_t) OPREGBASE;
2686     s->mmio[0x01] = 0x00;
2687     s->mmio[0x02] = 0x00;
2688     s->mmio[0x03] = 0x01;        // HC version
2689     s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2690     s->mmio[0x05] = 0x00;        // No companion ports at present
2691     s->mmio[0x06] = 0x00;
2692     s->mmio[0x07] = 0x00;
2693     s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2694     s->mmio[0x09] = 0x68;        // EECP
2695     s->mmio[0x0a] = 0x00;
2696     s->mmio[0x0b] = 0x00;
2697 
2698     s->irq = s->dev.irq[3];
2699 
2700     usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2701     for(i = 0; i < NB_PORTS; i++) {
2702         usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2703                           USB_SPEED_MASK_HIGH);
2704         s->ports[i].dev = 0;
2705     }
2706 
2707     s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2708     s->async_bh = qemu_bh_new(ehci_async_bh, s);
2709     QTAILQ_INIT(&s->aqueues);
2710     QTAILQ_INIT(&s->pqueues);
2711     usb_packet_init(&s->ipacket);
2712 
2713     qemu_register_reset(ehci_reset, s);
2714 
2715     memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2716     pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2717 
2718     return 0;
2719 }
2720 
2721 static void ehci_register_types(void)
2722 {
2723     type_register_static(&ehci_info);
2724     type_register_static(&ich9_ehci_info);
2725 }
2726 
2727 type_init(ehci_register_types)
2728 
2729 /*
2730  * vim: expandtab ts=4
2731  */
2732