xref: /openbmc/qemu/hw/usb/hcd-ehci.c (revision 01afdadc)
1 /*
2  * QEMU USB EHCI Emulation
3  *
4  * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5  *
6  * EHCI project was started by Mark Burkley, with contributions by
7  * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8  * Jan Kiszka and Vincent Palatin contributed bugfixes.
9  *
10  *
11  * This library is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2 of the License, or(at your option) any later version.
15  *
16  * This library is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "hw/hw.h"
26 #include "qemu-timer.h"
27 #include "hw/usb.h"
28 #include "hw/pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32 
33 #define EHCI_DEBUG   0
34 
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40 
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR   (-99)
43 
44 #define MMIO_SIZE        0x1000
45 
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE       0x0000
48 #define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
49 #define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
50 #define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
51 #define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
52 #define EECP             HCCPARAMS + 1
53 #define HCSPPORTROUTE1   CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2   CAPREGBASE + 0x0010
55 
56 #define OPREGBASE        0x0020        // Operational Registers Base Address
57 
58 #define USBCMD           OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
60 #define USBCMD_HCRESET   (1 << 1)      // HC Reset
61 #define USBCMD_FLS       (3 << 2)      // Frame List Size
62 #define USBCMD_FLS_SH    2             // Frame List Size Shift
63 #define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
64 #define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
65 #define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
67 #define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
68 #define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
69 #define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
70 #define USBCMD_ITC_SH    16            // Int Threshold Control Shift
71 
72 #define USBSTS           OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK   0x0000003f
74 #define USBSTS_INT       (1 << 0)      // USB Interrupt
75 #define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
76 #define USBSTS_PCD       (1 << 2)      // Port Change Detect
77 #define USBSTS_FLR       (1 << 3)      // Frame List Rollover
78 #define USBSTS_HSE       (1 << 4)      // Host System Error
79 #define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
80 #define USBSTS_HALT      (1 << 12)     // HC Halted
81 #define USBSTS_REC       (1 << 13)     // Reclamation
82 #define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
83 #define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
84 
85 /*
86  *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
87  *  so no need to redefine here.
88  */
89 #define USBINTR              OPREGBASE + 0x0008
90 #define USBINTR_MASK         0x0000003f
91 
92 #define FRINDEX              OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT        OPREGBASE + 0x0010
94 #define PERIODICLISTBASE     OPREGBASE + 0x0014
95 #define ASYNCLISTADDR        OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK   0xffffffe0
97 
98 #define CONFIGFLAG           OPREGBASE + 0x0040
99 
100 #define PORTSC               (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN         PORTSC
102 #define PORTSC_END           (PORTSC + 4 * NB_PORTS)
103 /*
104  * Bits that are reserved or are read-only are masked out of values
105  * written to us by software
106  */
107 #define PORTSC_RO_MASK       0x007001c0
108 #define PORTSC_RWC_MASK      0x0000002a
109 #define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
110 #define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
112 #define PORTSC_PTC           (15 << 16)   // Port Test Control
113 #define PORTSC_PTC_SH        16           // Port Test Control shift
114 #define PORTSC_PIC           (3 << 14)    // Port Indicator Control
115 #define PORTSC_PIC_SH        14           // Port Indicator Control Shift
116 #define PORTSC_POWNER        (1 << 13)    // Port Owner
117 #define PORTSC_PPOWER        (1 << 12)    // Port Power
118 #define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
119 #define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
120 #define PORTSC_PRESET        (1 << 8)     // Port Reset
121 #define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
122 #define PORTSC_FPRES         (1 << 6)     // Force Port Resume
123 #define PORTSC_OCC           (1 << 5)     // Over Current Change
124 #define PORTSC_OCA           (1 << 4)     // Over Current Active
125 #define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
126 #define PORTSC_PED           (1 << 2)     // Port Enable/Disable
127 #define PORTSC_CSC           (1 << 1)     // Connect Status Change
128 #define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
129 
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
132 
133 #define NB_MAXINTRATE    8        // Max rate at which controller issues ints
134 #define NB_PORTS         6        // Number of downstream ports
135 #define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
136 #define MAX_QH           100      // Max allowable queue heads in a chain
137 
138 /*  Internal periodic / asynchronous schedule state machine states
139  */
140 typedef enum {
141     EST_INACTIVE = 1000,
142     EST_ACTIVE,
143     EST_EXECUTING,
144     EST_SLEEPING,
145     /*  The following states are internal to the state machine function
146     */
147     EST_WAITLISTHEAD,
148     EST_FETCHENTRY,
149     EST_FETCHQH,
150     EST_FETCHITD,
151     EST_FETCHSITD,
152     EST_ADVANCEQUEUE,
153     EST_FETCHQTD,
154     EST_EXECUTE,
155     EST_WRITEBACK,
156     EST_HORIZONTALQH
157 } EHCI_STATES;
158 
159 /* macros for accessing fields within next link pointer entry */
160 #define NLPTR_GET(x)             ((x) & 0xffffffe0)
161 #define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
162 #define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
163 
164 /* link pointer types */
165 #define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
166 #define NLPTR_TYPE_QH            1     // queue head
167 #define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
168 #define NLPTR_TYPE_FSTN          3     // frame span traversal node
169 
170 
171 /*  EHCI spec version 1.0 Section 3.3
172  */
173 typedef struct EHCIitd {
174     uint32_t next;
175 
176     uint32_t transact[8];
177 #define ITD_XACT_ACTIVE          (1 << 31)
178 #define ITD_XACT_DBERROR         (1 << 30)
179 #define ITD_XACT_BABBLE          (1 << 29)
180 #define ITD_XACT_XACTERR         (1 << 28)
181 #define ITD_XACT_LENGTH_MASK     0x0fff0000
182 #define ITD_XACT_LENGTH_SH       16
183 #define ITD_XACT_IOC             (1 << 15)
184 #define ITD_XACT_PGSEL_MASK      0x00007000
185 #define ITD_XACT_PGSEL_SH        12
186 #define ITD_XACT_OFFSET_MASK     0x00000fff
187 
188     uint32_t bufptr[7];
189 #define ITD_BUFPTR_MASK          0xfffff000
190 #define ITD_BUFPTR_SH            12
191 #define ITD_BUFPTR_EP_MASK       0x00000f00
192 #define ITD_BUFPTR_EP_SH         8
193 #define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
194 #define ITD_BUFPTR_DEVADDR_SH    0
195 #define ITD_BUFPTR_DIRECTION     (1 << 11)
196 #define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
197 #define ITD_BUFPTR_MAXPKT_SH     0
198 #define ITD_BUFPTR_MULT_MASK     0x00000003
199 #define ITD_BUFPTR_MULT_SH       0
200 } EHCIitd;
201 
202 /*  EHCI spec version 1.0 Section 3.4
203  */
204 typedef struct EHCIsitd {
205     uint32_t next;                  // Standard next link pointer
206     uint32_t epchar;
207 #define SITD_EPCHAR_IO              (1 << 31)
208 #define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
209 #define SITD_EPCHAR_PORTNUM_SH      24
210 #define SITD_EPCHAR_HUBADD_MASK     0x007f0000
211 #define SITD_EPCHAR_HUBADDR_SH      16
212 #define SITD_EPCHAR_EPNUM_MASK      0x00000f00
213 #define SITD_EPCHAR_EPNUM_SH        8
214 #define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
215 
216     uint32_t uframe;
217 #define SITD_UFRAME_CMASK_MASK      0x0000ff00
218 #define SITD_UFRAME_CMASK_SH        8
219 #define SITD_UFRAME_SMASK_MASK      0x000000ff
220 
221     uint32_t results;
222 #define SITD_RESULTS_IOC              (1 << 31)
223 #define SITD_RESULTS_PGSEL            (1 << 30)
224 #define SITD_RESULTS_TBYTES_MASK      0x03ff0000
225 #define SITD_RESULTS_TYBYTES_SH       16
226 #define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
227 #define SITD_RESULTS_CPROGMASK_SH     8
228 #define SITD_RESULTS_ACTIVE           (1 << 7)
229 #define SITD_RESULTS_ERR              (1 << 6)
230 #define SITD_RESULTS_DBERR            (1 << 5)
231 #define SITD_RESULTS_BABBLE           (1 << 4)
232 #define SITD_RESULTS_XACTERR          (1 << 3)
233 #define SITD_RESULTS_MISSEDUF         (1 << 2)
234 #define SITD_RESULTS_SPLITXSTATE      (1 << 1)
235 
236     uint32_t bufptr[2];
237 #define SITD_BUFPTR_MASK              0xfffff000
238 #define SITD_BUFPTR_CURROFF_MASK      0x00000fff
239 #define SITD_BUFPTR_TPOS_MASK         0x00000018
240 #define SITD_BUFPTR_TPOS_SH           3
241 #define SITD_BUFPTR_TCNT_MASK         0x00000007
242 
243     uint32_t backptr;                 // Standard next link pointer
244 } EHCIsitd;
245 
246 /*  EHCI spec version 1.0 Section 3.5
247  */
248 typedef struct EHCIqtd {
249     uint32_t next;                    // Standard next link pointer
250     uint32_t altnext;                 // Standard next link pointer
251     uint32_t token;
252 #define QTD_TOKEN_DTOGGLE             (1 << 31)
253 #define QTD_TOKEN_TBYTES_MASK         0x7fff0000
254 #define QTD_TOKEN_TBYTES_SH           16
255 #define QTD_TOKEN_IOC                 (1 << 15)
256 #define QTD_TOKEN_CPAGE_MASK          0x00007000
257 #define QTD_TOKEN_CPAGE_SH            12
258 #define QTD_TOKEN_CERR_MASK           0x00000c00
259 #define QTD_TOKEN_CERR_SH             10
260 #define QTD_TOKEN_PID_MASK            0x00000300
261 #define QTD_TOKEN_PID_SH              8
262 #define QTD_TOKEN_ACTIVE              (1 << 7)
263 #define QTD_TOKEN_HALT                (1 << 6)
264 #define QTD_TOKEN_DBERR               (1 << 5)
265 #define QTD_TOKEN_BABBLE              (1 << 4)
266 #define QTD_TOKEN_XACTERR             (1 << 3)
267 #define QTD_TOKEN_MISSEDUF            (1 << 2)
268 #define QTD_TOKEN_SPLITXSTATE         (1 << 1)
269 #define QTD_TOKEN_PING                (1 << 0)
270 
271     uint32_t bufptr[5];               // Standard buffer pointer
272 #define QTD_BUFPTR_MASK               0xfffff000
273 #define QTD_BUFPTR_SH                 12
274 } EHCIqtd;
275 
276 /*  EHCI spec version 1.0 Section 3.6
277  */
278 typedef struct EHCIqh {
279     uint32_t next;                    // Standard next link pointer
280 
281     /* endpoint characteristics */
282     uint32_t epchar;
283 #define QH_EPCHAR_RL_MASK             0xf0000000
284 #define QH_EPCHAR_RL_SH               28
285 #define QH_EPCHAR_C                   (1 << 27)
286 #define QH_EPCHAR_MPLEN_MASK          0x07FF0000
287 #define QH_EPCHAR_MPLEN_SH            16
288 #define QH_EPCHAR_H                   (1 << 15)
289 #define QH_EPCHAR_DTC                 (1 << 14)
290 #define QH_EPCHAR_EPS_MASK            0x00003000
291 #define QH_EPCHAR_EPS_SH              12
292 #define EHCI_QH_EPS_FULL              0
293 #define EHCI_QH_EPS_LOW               1
294 #define EHCI_QH_EPS_HIGH              2
295 #define EHCI_QH_EPS_RESERVED          3
296 
297 #define QH_EPCHAR_EP_MASK             0x00000f00
298 #define QH_EPCHAR_EP_SH               8
299 #define QH_EPCHAR_I                   (1 << 7)
300 #define QH_EPCHAR_DEVADDR_MASK        0x0000007f
301 #define QH_EPCHAR_DEVADDR_SH          0
302 
303     /* endpoint capabilities */
304     uint32_t epcap;
305 #define QH_EPCAP_MULT_MASK            0xc0000000
306 #define QH_EPCAP_MULT_SH              30
307 #define QH_EPCAP_PORTNUM_MASK         0x3f800000
308 #define QH_EPCAP_PORTNUM_SH           23
309 #define QH_EPCAP_HUBADDR_MASK         0x007f0000
310 #define QH_EPCAP_HUBADDR_SH           16
311 #define QH_EPCAP_CMASK_MASK           0x0000ff00
312 #define QH_EPCAP_CMASK_SH             8
313 #define QH_EPCAP_SMASK_MASK           0x000000ff
314 #define QH_EPCAP_SMASK_SH             0
315 
316     uint32_t current_qtd;             // Standard next link pointer
317     uint32_t next_qtd;                // Standard next link pointer
318     uint32_t altnext_qtd;
319 #define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
320 #define QH_ALTNEXT_NAKCNT_SH          1
321 
322     uint32_t token;                   // Same as QTD token
323     uint32_t bufptr[5];               // Standard buffer pointer
324 #define BUFPTR_CPROGMASK_MASK         0x000000ff
325 #define BUFPTR_FRAMETAG_MASK          0x0000001f
326 #define BUFPTR_SBYTES_MASK            0x00000fe0
327 #define BUFPTR_SBYTES_SH              5
328 } EHCIqh;
329 
330 /*  EHCI spec version 1.0 Section 3.7
331  */
332 typedef struct EHCIfstn {
333     uint32_t next;                    // Standard next link pointer
334     uint32_t backptr;                 // Standard next link pointer
335 } EHCIfstn;
336 
337 typedef struct EHCIPacket EHCIPacket;
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340 
341 enum async_state {
342     EHCI_ASYNC_NONE = 0,
343     EHCI_ASYNC_INFLIGHT,
344     EHCI_ASYNC_FINISHED,
345 };
346 
347 struct EHCIPacket {
348     EHCIQueue *queue;
349     QTAILQ_ENTRY(EHCIPacket) next;
350 
351     EHCIqtd qtd;           /* copy of current QTD (being worked on) */
352     uint32_t qtdaddr;      /* address QTD read from                 */
353 
354     USBPacket packet;
355     QEMUSGList sgl;
356     int pid;
357     uint32_t tbytes;
358     enum async_state async;
359     int usb_status;
360 };
361 
362 struct EHCIQueue {
363     EHCIState *ehci;
364     QTAILQ_ENTRY(EHCIQueue) next;
365     uint32_t seen;
366     uint64_t ts;
367     int async;
368     int revalidate;
369 
370     /* cached data from guest - needs to be flushed
371      * when guest removes an entry (doorbell, handshake sequence)
372      */
373     EHCIqh qh;             /* copy of current QH (being worked on) */
374     uint32_t qhaddr;       /* address QH read from                 */
375     uint32_t qtdaddr;      /* address QTD read from                */
376     USBDevice *dev;
377     QTAILQ_HEAD(, EHCIPacket) packets;
378 };
379 
380 typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
381 
382 struct EHCIState {
383     PCIDevice dev;
384     USBBus bus;
385     qemu_irq irq;
386     MemoryRegion mem;
387     int companion_count;
388 
389     /* properties */
390     uint32_t maxframes;
391 
392     /*
393      *  EHCI spec version 1.0 Section 2.3
394      *  Host Controller Operational Registers
395      */
396     union {
397         uint8_t mmio[MMIO_SIZE];
398         struct {
399             uint8_t cap[OPREGBASE];
400             uint32_t usbcmd;
401             uint32_t usbsts;
402             uint32_t usbintr;
403             uint32_t frindex;
404             uint32_t ctrldssegment;
405             uint32_t periodiclistbase;
406             uint32_t asynclistaddr;
407             uint32_t notused[9];
408             uint32_t configflag;
409             uint32_t portsc[NB_PORTS];
410         };
411     };
412 
413     /*
414      *  Internal states, shadow registers, etc
415      */
416     QEMUTimer *frame_timer;
417     QEMUBH *async_bh;
418     uint32_t astate;         /* Current state in asynchronous schedule */
419     uint32_t pstate;         /* Current state in periodic schedule     */
420     USBPort ports[NB_PORTS];
421     USBPort *companion_ports[NB_PORTS];
422     uint32_t usbsts_pending;
423     uint32_t usbsts_frindex;
424     EHCIQueueHead aqueues;
425     EHCIQueueHead pqueues;
426 
427     /* which address to look at next */
428     uint32_t a_fetch_addr;
429     uint32_t p_fetch_addr;
430 
431     USBPacket ipacket;
432     QEMUSGList isgl;
433 
434     uint64_t last_run_ns;
435     uint32_t async_stepdown;
436 };
437 
438 #define SET_LAST_RUN_CLOCK(s) \
439     (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
440 
441 /* nifty macros from Arnon's EHCI version  */
442 #define get_field(data, field) \
443     (((data) & field##_MASK) >> field##_SH)
444 
445 #define set_field(data, newval, field) do { \
446     uint32_t val = *data; \
447     val &= ~ field##_MASK; \
448     val |= ((newval) << field##_SH) & field##_MASK; \
449     *data = val; \
450     } while(0)
451 
452 static const char *ehci_state_names[] = {
453     [EST_INACTIVE]     = "INACTIVE",
454     [EST_ACTIVE]       = "ACTIVE",
455     [EST_EXECUTING]    = "EXECUTING",
456     [EST_SLEEPING]     = "SLEEPING",
457     [EST_WAITLISTHEAD] = "WAITLISTHEAD",
458     [EST_FETCHENTRY]   = "FETCH ENTRY",
459     [EST_FETCHQH]      = "FETCH QH",
460     [EST_FETCHITD]     = "FETCH ITD",
461     [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
462     [EST_FETCHQTD]     = "FETCH QTD",
463     [EST_EXECUTE]      = "EXECUTE",
464     [EST_WRITEBACK]    = "WRITEBACK",
465     [EST_HORIZONTALQH] = "HORIZONTALQH",
466 };
467 
468 static const char *ehci_mmio_names[] = {
469     [CAPLENGTH]         = "CAPLENGTH",
470     [HCIVERSION]        = "HCIVERSION",
471     [HCSPARAMS]         = "HCSPARAMS",
472     [HCCPARAMS]         = "HCCPARAMS",
473     [USBCMD]            = "USBCMD",
474     [USBSTS]            = "USBSTS",
475     [USBINTR]           = "USBINTR",
476     [FRINDEX]           = "FRINDEX",
477     [PERIODICLISTBASE]  = "P-LIST BASE",
478     [ASYNCLISTADDR]     = "A-LIST ADDR",
479     [PORTSC_BEGIN]      = "PORTSC #0",
480     [PORTSC_BEGIN + 4]  = "PORTSC #1",
481     [PORTSC_BEGIN + 8]  = "PORTSC #2",
482     [PORTSC_BEGIN + 12] = "PORTSC #3",
483     [PORTSC_BEGIN + 16] = "PORTSC #4",
484     [PORTSC_BEGIN + 20] = "PORTSC #5",
485     [CONFIGFLAG]        = "CONFIGFLAG",
486 };
487 
488 static const char *nr2str(const char **n, size_t len, uint32_t nr)
489 {
490     if (nr < len && n[nr] != NULL) {
491         return n[nr];
492     } else {
493         return "unknown";
494     }
495 }
496 
497 static const char *state2str(uint32_t state)
498 {
499     return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
500 }
501 
502 static const char *addr2str(target_phys_addr_t addr)
503 {
504     return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
505 }
506 
507 static void ehci_trace_usbsts(uint32_t mask, int state)
508 {
509     /* interrupts */
510     if (mask & USBSTS_INT) {
511         trace_usb_ehci_usbsts("INT", state);
512     }
513     if (mask & USBSTS_ERRINT) {
514         trace_usb_ehci_usbsts("ERRINT", state);
515     }
516     if (mask & USBSTS_PCD) {
517         trace_usb_ehci_usbsts("PCD", state);
518     }
519     if (mask & USBSTS_FLR) {
520         trace_usb_ehci_usbsts("FLR", state);
521     }
522     if (mask & USBSTS_HSE) {
523         trace_usb_ehci_usbsts("HSE", state);
524     }
525     if (mask & USBSTS_IAA) {
526         trace_usb_ehci_usbsts("IAA", state);
527     }
528 
529     /* status */
530     if (mask & USBSTS_HALT) {
531         trace_usb_ehci_usbsts("HALT", state);
532     }
533     if (mask & USBSTS_REC) {
534         trace_usb_ehci_usbsts("REC", state);
535     }
536     if (mask & USBSTS_PSS) {
537         trace_usb_ehci_usbsts("PSS", state);
538     }
539     if (mask & USBSTS_ASS) {
540         trace_usb_ehci_usbsts("ASS", state);
541     }
542 }
543 
544 static inline void ehci_set_usbsts(EHCIState *s, int mask)
545 {
546     if ((s->usbsts & mask) == mask) {
547         return;
548     }
549     ehci_trace_usbsts(mask, 1);
550     s->usbsts |= mask;
551 }
552 
553 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
554 {
555     if ((s->usbsts & mask) == 0) {
556         return;
557     }
558     ehci_trace_usbsts(mask, 0);
559     s->usbsts &= ~mask;
560 }
561 
562 /* update irq line */
563 static inline void ehci_update_irq(EHCIState *s)
564 {
565     int level = 0;
566 
567     if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
568         level = 1;
569     }
570 
571     trace_usb_ehci_irq(level, s->frindex, s->usbsts, s->usbintr);
572     qemu_set_irq(s->irq, level);
573 }
574 
575 /* flag interrupt condition */
576 static inline void ehci_raise_irq(EHCIState *s, int intr)
577 {
578     s->usbsts_pending |= intr;
579 }
580 
581 /*
582  * Commit pending interrupts (added via ehci_raise_irq),
583  * at the rate allowed by "Interrupt Threshold Control".
584  */
585 static inline void ehci_commit_irq(EHCIState *s)
586 {
587     uint32_t itc;
588 
589     if (!s->usbsts_pending) {
590         return;
591     }
592     if (s->usbsts_frindex > s->frindex) {
593         return;
594     }
595 
596     itc = (s->usbcmd >> 16) & 0xff;
597     s->usbsts |= s->usbsts_pending;
598     s->usbsts_pending = 0;
599     s->usbsts_frindex = s->frindex + itc;
600     ehci_update_irq(s);
601 }
602 
603 static void ehci_update_halt(EHCIState *s)
604 {
605     if (s->usbcmd & USBCMD_RUNSTOP) {
606         ehci_clear_usbsts(s, USBSTS_HALT);
607     } else {
608         if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) {
609             ehci_set_usbsts(s, USBSTS_HALT);
610         }
611     }
612 }
613 
614 static void ehci_set_state(EHCIState *s, int async, int state)
615 {
616     if (async) {
617         trace_usb_ehci_state("async", state2str(state));
618         s->astate = state;
619         if (s->astate == EST_INACTIVE) {
620             ehci_clear_usbsts(s, USBSTS_ASS);
621             ehci_update_halt(s);
622         } else {
623             ehci_set_usbsts(s, USBSTS_ASS);
624         }
625     } else {
626         trace_usb_ehci_state("periodic", state2str(state));
627         s->pstate = state;
628         if (s->pstate == EST_INACTIVE) {
629             ehci_clear_usbsts(s, USBSTS_PSS);
630             ehci_update_halt(s);
631         } else {
632             ehci_set_usbsts(s, USBSTS_PSS);
633         }
634     }
635 }
636 
637 static int ehci_get_state(EHCIState *s, int async)
638 {
639     return async ? s->astate : s->pstate;
640 }
641 
642 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
643 {
644     if (async) {
645         s->a_fetch_addr = addr;
646     } else {
647         s->p_fetch_addr = addr;
648     }
649 }
650 
651 static int ehci_get_fetch_addr(EHCIState *s, int async)
652 {
653     return async ? s->a_fetch_addr : s->p_fetch_addr;
654 }
655 
656 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
657 {
658     /* need three here due to argument count limits */
659     trace_usb_ehci_qh_ptrs(q, addr, qh->next,
660                            qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
661     trace_usb_ehci_qh_fields(addr,
662                              get_field(qh->epchar, QH_EPCHAR_RL),
663                              get_field(qh->epchar, QH_EPCHAR_MPLEN),
664                              get_field(qh->epchar, QH_EPCHAR_EPS),
665                              get_field(qh->epchar, QH_EPCHAR_EP),
666                              get_field(qh->epchar, QH_EPCHAR_DEVADDR));
667     trace_usb_ehci_qh_bits(addr,
668                            (bool)(qh->epchar & QH_EPCHAR_C),
669                            (bool)(qh->epchar & QH_EPCHAR_H),
670                            (bool)(qh->epchar & QH_EPCHAR_DTC),
671                            (bool)(qh->epchar & QH_EPCHAR_I));
672 }
673 
674 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
675 {
676     /* need three here due to argument count limits */
677     trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
678     trace_usb_ehci_qtd_fields(addr,
679                               get_field(qtd->token, QTD_TOKEN_TBYTES),
680                               get_field(qtd->token, QTD_TOKEN_CPAGE),
681                               get_field(qtd->token, QTD_TOKEN_CERR),
682                               get_field(qtd->token, QTD_TOKEN_PID));
683     trace_usb_ehci_qtd_bits(addr,
684                             (bool)(qtd->token & QTD_TOKEN_IOC),
685                             (bool)(qtd->token & QTD_TOKEN_ACTIVE),
686                             (bool)(qtd->token & QTD_TOKEN_HALT),
687                             (bool)(qtd->token & QTD_TOKEN_BABBLE),
688                             (bool)(qtd->token & QTD_TOKEN_XACTERR));
689 }
690 
691 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
692 {
693     trace_usb_ehci_itd(addr, itd->next,
694                        get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
695                        get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
696                        get_field(itd->bufptr[0], ITD_BUFPTR_EP),
697                        get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
698 }
699 
700 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
701                             EHCIsitd *sitd)
702 {
703     trace_usb_ehci_sitd(addr, sitd->next,
704                         (bool)(sitd->results & SITD_RESULTS_ACTIVE));
705 }
706 
707 static inline bool ehci_enabled(EHCIState *s)
708 {
709     return s->usbcmd & USBCMD_RUNSTOP;
710 }
711 
712 static inline bool ehci_async_enabled(EHCIState *s)
713 {
714     return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
715 }
716 
717 static inline bool ehci_periodic_enabled(EHCIState *s)
718 {
719     return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
720 }
721 
722 /* packet management */
723 
724 static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
725 {
726     EHCIPacket *p;
727 
728     p = g_new0(EHCIPacket, 1);
729     p->queue = q;
730     usb_packet_init(&p->packet);
731     QTAILQ_INSERT_TAIL(&q->packets, p, next);
732     trace_usb_ehci_packet_action(p->queue, p, "alloc");
733     return p;
734 }
735 
736 static void ehci_free_packet(EHCIPacket *p)
737 {
738     trace_usb_ehci_packet_action(p->queue, p, "free");
739     if (p->async == EHCI_ASYNC_INFLIGHT) {
740         usb_cancel_packet(&p->packet);
741     }
742     QTAILQ_REMOVE(&p->queue->packets, p, next);
743     usb_packet_cleanup(&p->packet);
744     g_free(p);
745 }
746 
747 /* queue management */
748 
749 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
750 {
751     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
752     EHCIQueue *q;
753 
754     q = g_malloc0(sizeof(*q));
755     q->ehci = ehci;
756     q->qhaddr = addr;
757     q->async = async;
758     QTAILQ_INIT(&q->packets);
759     QTAILQ_INSERT_HEAD(head, q, next);
760     trace_usb_ehci_queue_action(q, "alloc");
761     return q;
762 }
763 
764 static void ehci_free_queue(EHCIQueue *q)
765 {
766     EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
767     EHCIPacket *p;
768 
769     trace_usb_ehci_queue_action(q, "free");
770     while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
771         ehci_free_packet(p);
772     }
773     QTAILQ_REMOVE(head, q, next);
774     g_free(q);
775 }
776 
777 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
778                                         int async)
779 {
780     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
781     EHCIQueue *q;
782 
783     QTAILQ_FOREACH(q, head, next) {
784         if (addr == q->qhaddr) {
785             return q;
786         }
787     }
788     return NULL;
789 }
790 
791 static void ehci_queues_tag_unused_async(EHCIState *ehci)
792 {
793     EHCIQueue *q;
794 
795     QTAILQ_FOREACH(q, &ehci->aqueues, next) {
796         if (!q->seen) {
797             q->revalidate = 1;
798         }
799     }
800 }
801 
802 static void ehci_queues_rip_unused(EHCIState *ehci, int async)
803 {
804     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
805     uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4;
806     EHCIQueue *q, *tmp;
807 
808     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
809         if (q->seen) {
810             q->seen = 0;
811             q->ts = ehci->last_run_ns;
812             continue;
813         }
814         if (ehci->last_run_ns < q->ts + maxage) {
815             continue;
816         }
817         ehci_free_queue(q);
818     }
819 }
820 
821 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
822 {
823     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
824     EHCIQueue *q, *tmp;
825 
826     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
827         if (q->dev != dev) {
828             continue;
829         }
830         ehci_free_queue(q);
831     }
832 }
833 
834 static void ehci_queues_rip_all(EHCIState *ehci, int async)
835 {
836     EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
837     EHCIQueue *q, *tmp;
838 
839     QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
840         ehci_free_queue(q);
841     }
842 }
843 
844 /* Attach or detach a device on root hub */
845 
846 static void ehci_attach(USBPort *port)
847 {
848     EHCIState *s = port->opaque;
849     uint32_t *portsc = &s->portsc[port->index];
850     const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
851 
852     trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc);
853 
854     if (*portsc & PORTSC_POWNER) {
855         USBPort *companion = s->companion_ports[port->index];
856         companion->dev = port->dev;
857         companion->ops->attach(companion);
858         return;
859     }
860 
861     *portsc |= PORTSC_CONNECT;
862     *portsc |= PORTSC_CSC;
863 
864     ehci_raise_irq(s, USBSTS_PCD);
865     ehci_commit_irq(s);
866 }
867 
868 static void ehci_detach(USBPort *port)
869 {
870     EHCIState *s = port->opaque;
871     uint32_t *portsc = &s->portsc[port->index];
872     const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
873 
874     trace_usb_ehci_port_detach(port->index, owner);
875 
876     if (*portsc & PORTSC_POWNER) {
877         USBPort *companion = s->companion_ports[port->index];
878         companion->ops->detach(companion);
879         companion->dev = NULL;
880         /*
881          * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
882          * the port ownership is returned immediately to the EHCI controller."
883          */
884         *portsc &= ~PORTSC_POWNER;
885         return;
886     }
887 
888     ehci_queues_rip_device(s, port->dev, 0);
889     ehci_queues_rip_device(s, port->dev, 1);
890 
891     *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
892     *portsc |= PORTSC_CSC;
893 
894     ehci_raise_irq(s, USBSTS_PCD);
895     ehci_commit_irq(s);
896 }
897 
898 static void ehci_child_detach(USBPort *port, USBDevice *child)
899 {
900     EHCIState *s = port->opaque;
901     uint32_t portsc = s->portsc[port->index];
902 
903     if (portsc & PORTSC_POWNER) {
904         USBPort *companion = s->companion_ports[port->index];
905         companion->ops->child_detach(companion, child);
906         return;
907     }
908 
909     ehci_queues_rip_device(s, child, 0);
910     ehci_queues_rip_device(s, child, 1);
911 }
912 
913 static void ehci_wakeup(USBPort *port)
914 {
915     EHCIState *s = port->opaque;
916     uint32_t portsc = s->portsc[port->index];
917 
918     if (portsc & PORTSC_POWNER) {
919         USBPort *companion = s->companion_ports[port->index];
920         if (companion->ops->wakeup) {
921             companion->ops->wakeup(companion);
922         }
923         return;
924     }
925 
926     qemu_bh_schedule(s->async_bh);
927 }
928 
929 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
930                                    uint32_t portcount, uint32_t firstport)
931 {
932     EHCIState *s = container_of(bus, EHCIState, bus);
933     uint32_t i;
934 
935     if (firstport + portcount > NB_PORTS) {
936         qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
937                       "firstport on masterbus");
938         error_printf_unless_qmp(
939             "firstport value of %u makes companion take ports %u - %u, which "
940             "is outside of the valid range of 0 - %u\n", firstport, firstport,
941             firstport + portcount - 1, NB_PORTS - 1);
942         return -1;
943     }
944 
945     for (i = 0; i < portcount; i++) {
946         if (s->companion_ports[firstport + i]) {
947             qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
948                           "an USB masterbus");
949             error_printf_unless_qmp(
950                 "port %u on masterbus %s already has a companion assigned\n",
951                 firstport + i, bus->qbus.name);
952             return -1;
953         }
954     }
955 
956     for (i = 0; i < portcount; i++) {
957         s->companion_ports[firstport + i] = ports[i];
958         s->ports[firstport + i].speedmask |=
959             USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
960         /* Ensure devs attached before the initial reset go to the companion */
961         s->portsc[firstport + i] = PORTSC_POWNER;
962     }
963 
964     s->companion_count++;
965     s->mmio[0x05] = (s->companion_count << 4) | portcount;
966 
967     return 0;
968 }
969 
970 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
971 {
972     USBDevice *dev;
973     USBPort *port;
974     int i;
975 
976     for (i = 0; i < NB_PORTS; i++) {
977         port = &ehci->ports[i];
978         if (!(ehci->portsc[i] & PORTSC_PED)) {
979             DPRINTF("Port %d not enabled\n", i);
980             continue;
981         }
982         dev = usb_find_device(port, addr);
983         if (dev != NULL) {
984             return dev;
985         }
986     }
987     return NULL;
988 }
989 
990 /* 4.1 host controller initialization */
991 static void ehci_reset(void *opaque)
992 {
993     EHCIState *s = opaque;
994     int i;
995     USBDevice *devs[NB_PORTS];
996 
997     trace_usb_ehci_reset();
998 
999     /*
1000      * Do the detach before touching portsc, so that it correctly gets send to
1001      * us or to our companion based on PORTSC_POWNER before the reset.
1002      */
1003     for(i = 0; i < NB_PORTS; i++) {
1004         devs[i] = s->ports[i].dev;
1005         if (devs[i] && devs[i]->attached) {
1006             usb_detach(&s->ports[i]);
1007         }
1008     }
1009 
1010     memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
1011 
1012     s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
1013     s->usbsts = USBSTS_HALT;
1014     s->usbsts_pending = 0;
1015     s->usbsts_frindex = 0;
1016 
1017     s->astate = EST_INACTIVE;
1018     s->pstate = EST_INACTIVE;
1019 
1020     for(i = 0; i < NB_PORTS; i++) {
1021         if (s->companion_ports[i]) {
1022             s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
1023         } else {
1024             s->portsc[i] = PORTSC_PPOWER;
1025         }
1026         if (devs[i] && devs[i]->attached) {
1027             usb_attach(&s->ports[i]);
1028             usb_device_reset(devs[i]);
1029         }
1030     }
1031     ehci_queues_rip_all(s, 0);
1032     ehci_queues_rip_all(s, 1);
1033     qemu_del_timer(s->frame_timer);
1034     qemu_bh_cancel(s->async_bh);
1035 }
1036 
1037 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
1038 {
1039     EHCIState *s = ptr;
1040     uint32_t val;
1041 
1042     val = s->mmio[addr];
1043 
1044     return val;
1045 }
1046 
1047 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
1048 {
1049     EHCIState *s = ptr;
1050     uint32_t val;
1051 
1052     val = s->mmio[addr] | (s->mmio[addr+1] << 8);
1053 
1054     return val;
1055 }
1056 
1057 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
1058 {
1059     EHCIState *s = ptr;
1060     uint32_t val;
1061 
1062     val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
1063           (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
1064 
1065     trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
1066     return val;
1067 }
1068 
1069 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
1070 {
1071     fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
1072     exit(1);
1073 }
1074 
1075 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
1076 {
1077     fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
1078     exit(1);
1079 }
1080 
1081 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
1082 {
1083     USBDevice *dev = s->ports[port].dev;
1084     uint32_t *portsc = &s->portsc[port];
1085     uint32_t orig;
1086 
1087     if (s->companion_ports[port] == NULL)
1088         return;
1089 
1090     owner = owner & PORTSC_POWNER;
1091     orig  = *portsc & PORTSC_POWNER;
1092 
1093     if (!(owner ^ orig)) {
1094         return;
1095     }
1096 
1097     if (dev && dev->attached) {
1098         usb_detach(&s->ports[port]);
1099     }
1100 
1101     *portsc &= ~PORTSC_POWNER;
1102     *portsc |= owner;
1103 
1104     if (dev && dev->attached) {
1105         usb_attach(&s->ports[port]);
1106     }
1107 }
1108 
1109 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
1110 {
1111     uint32_t *portsc = &s->portsc[port];
1112     USBDevice *dev = s->ports[port].dev;
1113 
1114     /* Clear rwc bits */
1115     *portsc &= ~(val & PORTSC_RWC_MASK);
1116     /* The guest may clear, but not set the PED bit */
1117     *portsc &= val | ~PORTSC_PED;
1118     /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1119     handle_port_owner_write(s, port, val);
1120     /* And finally apply RO_MASK */
1121     val &= PORTSC_RO_MASK;
1122 
1123     if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1124         trace_usb_ehci_port_reset(port, 1);
1125     }
1126 
1127     if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1128         trace_usb_ehci_port_reset(port, 0);
1129         if (dev && dev->attached) {
1130             usb_port_reset(&s->ports[port]);
1131             *portsc &= ~PORTSC_CSC;
1132         }
1133 
1134         /*
1135          *  Table 2.16 Set the enable bit(and enable bit change) to indicate
1136          *  to SW that this port has a high speed device attached
1137          */
1138         if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1139             val |= PORTSC_PED;
1140         }
1141     }
1142 
1143     *portsc &= ~PORTSC_RO_MASK;
1144     *portsc |= val;
1145 }
1146 
1147 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1148 {
1149     EHCIState *s = ptr;
1150     uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1151     uint32_t old = *mmio;
1152     int i;
1153 
1154     trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1155 
1156     /* Only aligned reads are allowed on OHCI */
1157     if (addr & 3) {
1158         fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1159                 TARGET_FMT_plx "\n", addr);
1160         return;
1161     }
1162 
1163     if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1164         handle_port_status_write(s, (addr-PORTSC)/4, val);
1165         trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1166         return;
1167     }
1168 
1169     if (addr < OPREGBASE) {
1170         fprintf(stderr, "usb-ehci: write attempt to read-only register"
1171                 TARGET_FMT_plx "\n", addr);
1172         return;
1173     }
1174 
1175 
1176     /* Do any register specific pre-write processing here.  */
1177     switch(addr) {
1178     case USBCMD:
1179         if (val & USBCMD_HCRESET) {
1180             ehci_reset(s);
1181             val = s->usbcmd;
1182             break;
1183         }
1184 
1185         if (((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & val) !=
1186             ((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & s->usbcmd)) {
1187             if (s->pstate == EST_INACTIVE) {
1188                 SET_LAST_RUN_CLOCK(s);
1189             }
1190             ehci_update_halt(s);
1191             s->async_stepdown = 0;
1192             qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1193         }
1194 
1195         /* not supporting dynamic frame list size at the moment */
1196         if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1197             fprintf(stderr, "attempt to set frame list size -- value %d\n",
1198                     val & USBCMD_FLS);
1199             val &= ~USBCMD_FLS;
1200         }
1201         break;
1202 
1203     case USBSTS:
1204         val &= USBSTS_RO_MASK;              // bits 6 through 31 are RO
1205         ehci_clear_usbsts(s, val);          // bits 0 through 5 are R/WC
1206         val = s->usbsts;
1207         ehci_update_irq(s);
1208         break;
1209 
1210     case USBINTR:
1211         val &= USBINTR_MASK;
1212         break;
1213 
1214     case FRINDEX:
1215         val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1216         break;
1217 
1218     case CONFIGFLAG:
1219         val &= 0x1;
1220         if (val) {
1221             for(i = 0; i < NB_PORTS; i++)
1222                 handle_port_owner_write(s, i, 0);
1223         }
1224         break;
1225 
1226     case PERIODICLISTBASE:
1227         if (ehci_periodic_enabled(s)) {
1228             fprintf(stderr,
1229               "ehci: PERIODIC list base register set while periodic schedule\n"
1230               "      is enabled and HC is enabled\n");
1231         }
1232         break;
1233 
1234     case ASYNCLISTADDR:
1235         if (ehci_async_enabled(s)) {
1236             fprintf(stderr,
1237               "ehci: ASYNC list address register set while async schedule\n"
1238               "      is enabled and HC is enabled\n");
1239         }
1240         break;
1241     }
1242 
1243     *mmio = val;
1244     trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1245 }
1246 
1247 
1248 // TODO : Put in common header file, duplication from usb-ohci.c
1249 
1250 /* Get an array of dwords from main memory */
1251 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1252                              uint32_t *buf, int num)
1253 {
1254     int i;
1255 
1256     for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1257         pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1258         *buf = le32_to_cpu(*buf);
1259     }
1260 
1261     return 1;
1262 }
1263 
1264 /* Put an array of dwords in to main memory */
1265 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1266                              uint32_t *buf, int num)
1267 {
1268     int i;
1269 
1270     for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1271         uint32_t tmp = cpu_to_le32(*buf);
1272         pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1273     }
1274 
1275     return 1;
1276 }
1277 
1278 /*
1279  *  Write the qh back to guest physical memory.  This step isn't
1280  *  in the EHCI spec but we need to do it since we don't share
1281  *  physical memory with our guest VM.
1282  *
1283  *  The first three dwords are read-only for the EHCI, so skip them
1284  *  when writing back the qh.
1285  */
1286 static void ehci_flush_qh(EHCIQueue *q)
1287 {
1288     uint32_t *qh = (uint32_t *) &q->qh;
1289     uint32_t dwords = sizeof(EHCIqh) >> 2;
1290     uint32_t addr = NLPTR_GET(q->qhaddr);
1291 
1292     put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1293 }
1294 
1295 // 4.10.2
1296 
1297 static int ehci_qh_do_overlay(EHCIQueue *q)
1298 {
1299     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1300     int i;
1301     int dtoggle;
1302     int ping;
1303     int eps;
1304     int reload;
1305 
1306     assert(p != NULL);
1307     assert(p->qtdaddr == q->qtdaddr);
1308 
1309     // remember values in fields to preserve in qh after overlay
1310 
1311     dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1312     ping    = q->qh.token & QTD_TOKEN_PING;
1313 
1314     q->qh.current_qtd = p->qtdaddr;
1315     q->qh.next_qtd    = p->qtd.next;
1316     q->qh.altnext_qtd = p->qtd.altnext;
1317     q->qh.token       = p->qtd.token;
1318 
1319 
1320     eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1321     if (eps == EHCI_QH_EPS_HIGH) {
1322         q->qh.token &= ~QTD_TOKEN_PING;
1323         q->qh.token |= ping;
1324     }
1325 
1326     reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1327     set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1328 
1329     for (i = 0; i < 5; i++) {
1330         q->qh.bufptr[i] = p->qtd.bufptr[i];
1331     }
1332 
1333     if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1334         // preserve QH DT bit
1335         q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1336         q->qh.token |= dtoggle;
1337     }
1338 
1339     q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1340     q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1341 
1342     ehci_flush_qh(q);
1343 
1344     return 0;
1345 }
1346 
1347 static int ehci_init_transfer(EHCIPacket *p)
1348 {
1349     uint32_t cpage, offset, bytes, plen;
1350     dma_addr_t page;
1351 
1352     cpage  = get_field(p->qtd.token, QTD_TOKEN_CPAGE);
1353     bytes  = get_field(p->qtd.token, QTD_TOKEN_TBYTES);
1354     offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK;
1355     pci_dma_sglist_init(&p->sgl, &p->queue->ehci->dev, 5);
1356 
1357     while (bytes > 0) {
1358         if (cpage > 4) {
1359             fprintf(stderr, "cpage out of range (%d)\n", cpage);
1360             return USB_RET_PROCERR;
1361         }
1362 
1363         page  = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK;
1364         page += offset;
1365         plen  = bytes;
1366         if (plen > 4096 - offset) {
1367             plen = 4096 - offset;
1368             offset = 0;
1369             cpage++;
1370         }
1371 
1372         qemu_sglist_add(&p->sgl, page, plen);
1373         bytes -= plen;
1374     }
1375     return 0;
1376 }
1377 
1378 static void ehci_finish_transfer(EHCIQueue *q, int status)
1379 {
1380     uint32_t cpage, offset;
1381 
1382     if (status > 0) {
1383         /* update cpage & offset */
1384         cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1385         offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1386 
1387         offset += status;
1388         cpage  += offset >> QTD_BUFPTR_SH;
1389         offset &= ~QTD_BUFPTR_MASK;
1390 
1391         set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1392         q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1393         q->qh.bufptr[0] |= offset;
1394     }
1395 }
1396 
1397 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1398 {
1399     EHCIPacket *p;
1400     EHCIState *s = port->opaque;
1401     uint32_t portsc = s->portsc[port->index];
1402 
1403     if (portsc & PORTSC_POWNER) {
1404         USBPort *companion = s->companion_ports[port->index];
1405         companion->ops->complete(companion, packet);
1406         return;
1407     }
1408 
1409     p = container_of(packet, EHCIPacket, packet);
1410     trace_usb_ehci_packet_action(p->queue, p, "wakeup");
1411     assert(p->async == EHCI_ASYNC_INFLIGHT);
1412     p->async = EHCI_ASYNC_FINISHED;
1413     p->usb_status = packet->result;
1414 
1415     if (p->queue->async) {
1416         qemu_bh_schedule(p->queue->ehci->async_bh);
1417     }
1418 }
1419 
1420 static void ehci_execute_complete(EHCIQueue *q)
1421 {
1422     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1423 
1424     assert(p != NULL);
1425     assert(p->qtdaddr == q->qtdaddr);
1426     assert(p->async != EHCI_ASYNC_INFLIGHT);
1427     p->async = EHCI_ASYNC_NONE;
1428 
1429     DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1430             q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1431 
1432     if (p->usb_status < 0) {
1433         switch (p->usb_status) {
1434         case USB_RET_IOERROR:
1435         case USB_RET_NODEV:
1436             q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1437             set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1438             ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1439             break;
1440         case USB_RET_STALL:
1441             q->qh.token |= QTD_TOKEN_HALT;
1442             ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1443             break;
1444         case USB_RET_NAK:
1445             set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1446             return; /* We're not done yet with this transaction */
1447         case USB_RET_BABBLE:
1448             q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1449             ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1450             break;
1451         default:
1452             /* should not be triggerable */
1453             fprintf(stderr, "USB invalid response %d\n", p->usb_status);
1454             assert(0);
1455             break;
1456         }
1457     } else if ((p->usb_status > p->tbytes) && (p->pid == USB_TOKEN_IN)) {
1458         p->usb_status = USB_RET_BABBLE;
1459         q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1460         ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1461     } else {
1462         // TODO check 4.12 for splits
1463 
1464         if (p->tbytes && p->pid == USB_TOKEN_IN) {
1465             p->tbytes -= p->usb_status;
1466         } else {
1467             p->tbytes = 0;
1468         }
1469 
1470         DPRINTF("updating tbytes to %d\n", p->tbytes);
1471         set_field(&q->qh.token, p->tbytes, QTD_TOKEN_TBYTES);
1472     }
1473     ehci_finish_transfer(q, p->usb_status);
1474     usb_packet_unmap(&p->packet, &p->sgl);
1475     qemu_sglist_destroy(&p->sgl);
1476 
1477     q->qh.token ^= QTD_TOKEN_DTOGGLE;
1478     q->qh.token &= ~QTD_TOKEN_ACTIVE;
1479 
1480     if (q->qh.token & QTD_TOKEN_IOC) {
1481         ehci_raise_irq(q->ehci, USBSTS_INT);
1482     }
1483 }
1484 
1485 // 4.10.3
1486 
1487 static int ehci_execute(EHCIPacket *p, const char *action)
1488 {
1489     USBEndpoint *ep;
1490     int ret;
1491     int endp;
1492 
1493     if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) {
1494         fprintf(stderr, "Attempting to execute inactive qtd\n");
1495         return USB_RET_PROCERR;
1496     }
1497 
1498     p->tbytes = (p->qtd.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1499     if (p->tbytes > BUFF_SIZE) {
1500         fprintf(stderr, "Request for more bytes than allowed\n");
1501         return USB_RET_PROCERR;
1502     }
1503 
1504     p->pid = (p->qtd.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1505     switch (p->pid) {
1506     case 0:
1507         p->pid = USB_TOKEN_OUT;
1508         break;
1509     case 1:
1510         p->pid = USB_TOKEN_IN;
1511         break;
1512     case 2:
1513         p->pid = USB_TOKEN_SETUP;
1514         break;
1515     default:
1516         fprintf(stderr, "bad token\n");
1517         break;
1518     }
1519 
1520     if (ehci_init_transfer(p) != 0) {
1521         return USB_RET_PROCERR;
1522     }
1523 
1524     endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP);
1525     ep = usb_ep_get(p->queue->dev, p->pid, endp);
1526 
1527     usb_packet_setup(&p->packet, p->pid, ep);
1528     usb_packet_map(&p->packet, &p->sgl);
1529 
1530     trace_usb_ehci_packet_action(p->queue, p, action);
1531     ret = usb_handle_packet(p->queue->dev, &p->packet);
1532     DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1533             "(total %d) endp %x ret %d\n",
1534             q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1535             q->packet.iov.size, q->tbytes, endp, ret);
1536 
1537     if (ret > BUFF_SIZE) {
1538         fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1539         return USB_RET_PROCERR;
1540     }
1541 
1542     return ret;
1543 }
1544 
1545 /*  4.7.2
1546  */
1547 
1548 static int ehci_process_itd(EHCIState *ehci,
1549                             EHCIitd *itd)
1550 {
1551     USBDevice *dev;
1552     USBEndpoint *ep;
1553     int ret;
1554     uint32_t i, len, pid, dir, devaddr, endp;
1555     uint32_t pg, off, ptr1, ptr2, max, mult;
1556 
1557     dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1558     devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1559     endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1560     max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1561     mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1562 
1563     for(i = 0; i < 8; i++) {
1564         if (itd->transact[i] & ITD_XACT_ACTIVE) {
1565             pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1566             off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1567             ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1568             ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1569             len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1570 
1571             if (len > max * mult) {
1572                 len = max * mult;
1573             }
1574 
1575             if (len > BUFF_SIZE) {
1576                 return USB_RET_PROCERR;
1577             }
1578 
1579             pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1580             if (off + len > 4096) {
1581                 /* transfer crosses page border */
1582                 uint32_t len2 = off + len - 4096;
1583                 uint32_t len1 = len - len2;
1584                 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1585                 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1586             } else {
1587                 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1588             }
1589 
1590             pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1591 
1592             dev = ehci_find_device(ehci, devaddr);
1593             ep = usb_ep_get(dev, pid, endp);
1594             if (ep->type == USB_ENDPOINT_XFER_ISOC) {
1595                 usb_packet_setup(&ehci->ipacket, pid, ep);
1596                 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1597                 ret = usb_handle_packet(dev, &ehci->ipacket);
1598                 assert(ret != USB_RET_ASYNC);
1599                 usb_packet_unmap(&ehci->ipacket, &ehci->isgl);
1600             } else {
1601                 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1602                 ret = USB_RET_NAK;
1603             }
1604             qemu_sglist_destroy(&ehci->isgl);
1605 
1606             if (ret < 0) {
1607                 switch (ret) {
1608                 default:
1609                     fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1610                     /* Fall through */
1611                 case USB_RET_IOERROR:
1612                 case USB_RET_NODEV:
1613                     /* 3.3.2: XACTERR is only allowed on IN transactions */
1614                     if (dir) {
1615                         itd->transact[i] |= ITD_XACT_XACTERR;
1616                         ehci_raise_irq(ehci, USBSTS_ERRINT);
1617                     }
1618                     break;
1619                 case USB_RET_BABBLE:
1620                     itd->transact[i] |= ITD_XACT_BABBLE;
1621                     ehci_raise_irq(ehci, USBSTS_ERRINT);
1622                     break;
1623                 case USB_RET_NAK:
1624                     /* no data for us, so do a zero-length transfer */
1625                     ret = 0;
1626                     break;
1627                 }
1628             }
1629             if (ret >= 0) {
1630                 if (!dir) {
1631                     /* OUT */
1632                     set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1633                 } else {
1634                     /* IN */
1635                     set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1636                 }
1637             }
1638             if (itd->transact[i] & ITD_XACT_IOC) {
1639                 ehci_raise_irq(ehci, USBSTS_INT);
1640             }
1641             itd->transact[i] &= ~ITD_XACT_ACTIVE;
1642         }
1643     }
1644     return 0;
1645 }
1646 
1647 
1648 /*  This state is the entry point for asynchronous schedule
1649  *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1650  */
1651 static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1652 {
1653     EHCIqh qh;
1654     int i = 0;
1655     int again = 0;
1656     uint32_t entry = ehci->asynclistaddr;
1657 
1658     /* set reclamation flag at start event (4.8.6) */
1659     if (async) {
1660         ehci_set_usbsts(ehci, USBSTS_REC);
1661     }
1662 
1663     ehci_queues_rip_unused(ehci, async);
1664 
1665     /*  Find the head of the list (4.9.1.1) */
1666     for(i = 0; i < MAX_QH; i++) {
1667         get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1668                    sizeof(EHCIqh) >> 2);
1669         ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1670 
1671         if (qh.epchar & QH_EPCHAR_H) {
1672             if (async) {
1673                 entry |= (NLPTR_TYPE_QH << 1);
1674             }
1675 
1676             ehci_set_fetch_addr(ehci, async, entry);
1677             ehci_set_state(ehci, async, EST_FETCHENTRY);
1678             again = 1;
1679             goto out;
1680         }
1681 
1682         entry = qh.next;
1683         if (entry == ehci->asynclistaddr) {
1684             break;
1685         }
1686     }
1687 
1688     /* no head found for list. */
1689 
1690     ehci_set_state(ehci, async, EST_ACTIVE);
1691 
1692 out:
1693     return again;
1694 }
1695 
1696 
1697 /*  This state is the entry point for periodic schedule processing as
1698  *  well as being a continuation state for async processing.
1699  */
1700 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1701 {
1702     int again = 0;
1703     uint32_t entry = ehci_get_fetch_addr(ehci, async);
1704 
1705     if (NLPTR_TBIT(entry)) {
1706         ehci_set_state(ehci, async, EST_ACTIVE);
1707         goto out;
1708     }
1709 
1710     /* section 4.8, only QH in async schedule */
1711     if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1712         fprintf(stderr, "non queue head request in async schedule\n");
1713         return -1;
1714     }
1715 
1716     switch (NLPTR_TYPE_GET(entry)) {
1717     case NLPTR_TYPE_QH:
1718         ehci_set_state(ehci, async, EST_FETCHQH);
1719         again = 1;
1720         break;
1721 
1722     case NLPTR_TYPE_ITD:
1723         ehci_set_state(ehci, async, EST_FETCHITD);
1724         again = 1;
1725         break;
1726 
1727     case NLPTR_TYPE_STITD:
1728         ehci_set_state(ehci, async, EST_FETCHSITD);
1729         again = 1;
1730         break;
1731 
1732     default:
1733         /* TODO: handle FSTN type */
1734         fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1735                 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1736         return -1;
1737     }
1738 
1739 out:
1740     return again;
1741 }
1742 
1743 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1744 {
1745     EHCIPacket *p;
1746     uint32_t entry, devaddr;
1747     EHCIQueue *q;
1748     EHCIqh qh;
1749 
1750     entry = ehci_get_fetch_addr(ehci, async);
1751     q = ehci_find_queue_by_qh(ehci, entry, async);
1752     if (NULL == q) {
1753         q = ehci_alloc_queue(ehci, entry, async);
1754     }
1755     p = QTAILQ_FIRST(&q->packets);
1756 
1757     q->seen++;
1758     if (q->seen > 1) {
1759         /* we are going in circles -- stop processing */
1760         ehci_set_state(ehci, async, EST_ACTIVE);
1761         q = NULL;
1762         goto out;
1763     }
1764 
1765     get_dwords(ehci, NLPTR_GET(q->qhaddr),
1766                (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1767     if (q->revalidate && (q->qh.epchar      != qh.epchar ||
1768                           q->qh.epcap       != qh.epcap  ||
1769                           q->qh.current_qtd != qh.current_qtd)) {
1770         ehci_free_queue(q);
1771         q = ehci_alloc_queue(ehci, entry, async);
1772         q->seen++;
1773         p = NULL;
1774     }
1775     q->qh = qh;
1776     q->revalidate = 0;
1777     ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1778 
1779     devaddr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1780     if (q->dev != NULL && q->dev->addr != devaddr) {
1781         if (!QTAILQ_EMPTY(&q->packets)) {
1782             /* should not happen (guest bug) */
1783             while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
1784                 ehci_free_packet(p);
1785             }
1786         }
1787         q->dev = NULL;
1788     }
1789     if (q->dev == NULL) {
1790         q->dev = ehci_find_device(q->ehci, devaddr);
1791     }
1792 
1793     if (p && p->async == EHCI_ASYNC_INFLIGHT) {
1794         /* I/O still in progress -- skip queue */
1795         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1796         goto out;
1797     }
1798     if (p && p->async == EHCI_ASYNC_FINISHED) {
1799         /* I/O finished -- continue processing queue */
1800         trace_usb_ehci_packet_action(p->queue, p, "complete");
1801         ehci_set_state(ehci, async, EST_EXECUTING);
1802         goto out;
1803     }
1804 
1805     if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1806 
1807         /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1808         if (ehci->usbsts & USBSTS_REC) {
1809             ehci_clear_usbsts(ehci, USBSTS_REC);
1810         } else {
1811             DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1812                        " - done processing\n", q->qhaddr);
1813             ehci_set_state(ehci, async, EST_ACTIVE);
1814             q = NULL;
1815             goto out;
1816         }
1817     }
1818 
1819 #if EHCI_DEBUG
1820     if (q->qhaddr != q->qh.next) {
1821     DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1822                q->qhaddr,
1823                q->qh.epchar & QH_EPCHAR_H,
1824                q->qh.token & QTD_TOKEN_HALT,
1825                q->qh.token & QTD_TOKEN_ACTIVE,
1826                q->qh.next);
1827     }
1828 #endif
1829 
1830     if (q->qh.token & QTD_TOKEN_HALT) {
1831         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1832 
1833     } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1834                (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1835         q->qtdaddr = q->qh.current_qtd;
1836         ehci_set_state(ehci, async, EST_FETCHQTD);
1837 
1838     } else {
1839         /*  EHCI spec version 1.0 Section 4.10.2 */
1840         ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1841     }
1842 
1843 out:
1844     return q;
1845 }
1846 
1847 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1848 {
1849     uint32_t entry;
1850     EHCIitd itd;
1851 
1852     assert(!async);
1853     entry = ehci_get_fetch_addr(ehci, async);
1854 
1855     get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1856                sizeof(EHCIitd) >> 2);
1857     ehci_trace_itd(ehci, entry, &itd);
1858 
1859     if (ehci_process_itd(ehci, &itd) != 0) {
1860         return -1;
1861     }
1862 
1863     put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1864                sizeof(EHCIitd) >> 2);
1865     ehci_set_fetch_addr(ehci, async, itd.next);
1866     ehci_set_state(ehci, async, EST_FETCHENTRY);
1867 
1868     return 1;
1869 }
1870 
1871 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1872 {
1873     uint32_t entry;
1874     EHCIsitd sitd;
1875 
1876     assert(!async);
1877     entry = ehci_get_fetch_addr(ehci, async);
1878 
1879     get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1880                sizeof(EHCIsitd) >> 2);
1881     ehci_trace_sitd(ehci, entry, &sitd);
1882 
1883     if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1884         /* siTD is not active, nothing to do */;
1885     } else {
1886         /* TODO: split transfers are not implemented */
1887         fprintf(stderr, "WARNING: Skipping active siTD\n");
1888     }
1889 
1890     ehci_set_fetch_addr(ehci, async, sitd.next);
1891     ehci_set_state(ehci, async, EST_FETCHENTRY);
1892     return 1;
1893 }
1894 
1895 /* Section 4.10.2 - paragraph 3 */
1896 static int ehci_state_advqueue(EHCIQueue *q)
1897 {
1898 #if 0
1899     /* TO-DO: 4.10.2 - paragraph 2
1900      * if I-bit is set to 1 and QH is not active
1901      * go to horizontal QH
1902      */
1903     if (I-bit set) {
1904         ehci_set_state(ehci, async, EST_HORIZONTALQH);
1905         goto out;
1906     }
1907 #endif
1908 
1909     /*
1910      * want data and alt-next qTD is valid
1911      */
1912     if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1913         (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1914         q->qtdaddr = q->qh.altnext_qtd;
1915         ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1916 
1917     /*
1918      *  next qTD is valid
1919      */
1920     } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1921         q->qtdaddr = q->qh.next_qtd;
1922         ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1923 
1924     /*
1925      *  no valid qTD, try next QH
1926      */
1927     } else {
1928         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1929     }
1930 
1931     return 1;
1932 }
1933 
1934 /* Section 4.10.2 - paragraph 4 */
1935 static int ehci_state_fetchqtd(EHCIQueue *q)
1936 {
1937     EHCIqtd qtd;
1938     EHCIPacket *p;
1939     int again = 0;
1940 
1941     get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd,
1942                sizeof(EHCIqtd) >> 2);
1943     ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
1944 
1945     p = QTAILQ_FIRST(&q->packets);
1946     while (p != NULL && p->qtdaddr != q->qtdaddr) {
1947         /* should not happen (guest bug) */
1948         ehci_free_packet(p);
1949         p = QTAILQ_FIRST(&q->packets);
1950     }
1951     if (p != NULL) {
1952         ehci_qh_do_overlay(q);
1953         ehci_flush_qh(q);
1954         if (p->async == EHCI_ASYNC_INFLIGHT) {
1955             ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1956         } else {
1957             ehci_set_state(q->ehci, q->async, EST_EXECUTING);
1958         }
1959         again = 1;
1960     } else if (qtd.token & QTD_TOKEN_ACTIVE) {
1961         p = ehci_alloc_packet(q);
1962         p->qtdaddr = q->qtdaddr;
1963         p->qtd = qtd;
1964         ehci_set_state(q->ehci, q->async, EST_EXECUTE);
1965         again = 1;
1966     } else {
1967         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1968         again = 1;
1969     }
1970 
1971     return again;
1972 }
1973 
1974 static int ehci_state_horizqh(EHCIQueue *q)
1975 {
1976     int again = 0;
1977 
1978     if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
1979         ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
1980         ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
1981         again = 1;
1982     } else {
1983         ehci_set_state(q->ehci, q->async, EST_ACTIVE);
1984     }
1985 
1986     return again;
1987 }
1988 
1989 static void ehci_fill_queue(EHCIPacket *p)
1990 {
1991     EHCIQueue *q = p->queue;
1992     EHCIqtd qtd = p->qtd;
1993     uint32_t qtdaddr;
1994 
1995     for (;;) {
1996         if (NLPTR_TBIT(qtd.altnext) == 0) {
1997             break;
1998         }
1999         if (NLPTR_TBIT(qtd.next) != 0) {
2000             break;
2001         }
2002         qtdaddr = qtd.next;
2003         get_dwords(q->ehci, NLPTR_GET(qtdaddr),
2004                    (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
2005         ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd);
2006         if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
2007             break;
2008         }
2009         p = ehci_alloc_packet(q);
2010         p->qtdaddr = qtdaddr;
2011         p->qtd = qtd;
2012         p->usb_status = ehci_execute(p, "queue");
2013         assert(p->usb_status = USB_RET_ASYNC);
2014         p->async = EHCI_ASYNC_INFLIGHT;
2015     }
2016 }
2017 
2018 static int ehci_state_execute(EHCIQueue *q)
2019 {
2020     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2021     int again = 0;
2022 
2023     assert(p != NULL);
2024     assert(p->qtdaddr == q->qtdaddr);
2025 
2026     if (ehci_qh_do_overlay(q) != 0) {
2027         return -1;
2028     }
2029 
2030     // TODO verify enough time remains in the uframe as in 4.4.1.1
2031     // TODO write back ptr to async list when done or out of time
2032     // TODO Windows does not seem to ever set the MULT field
2033 
2034     if (!q->async) {
2035         int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2036         if (!transactCtr) {
2037             ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2038             again = 1;
2039             goto out;
2040         }
2041     }
2042 
2043     if (q->async) {
2044         ehci_set_usbsts(q->ehci, USBSTS_REC);
2045     }
2046 
2047     p->usb_status = ehci_execute(p, "process");
2048     if (p->usb_status == USB_RET_PROCERR) {
2049         again = -1;
2050         goto out;
2051     }
2052     if (p->usb_status == USB_RET_ASYNC) {
2053         ehci_flush_qh(q);
2054         trace_usb_ehci_packet_action(p->queue, p, "async");
2055         p->async = EHCI_ASYNC_INFLIGHT;
2056         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2057         again = 1;
2058         ehci_fill_queue(p);
2059         goto out;
2060     }
2061 
2062     ehci_set_state(q->ehci, q->async, EST_EXECUTING);
2063     again = 1;
2064 
2065 out:
2066     return again;
2067 }
2068 
2069 static int ehci_state_executing(EHCIQueue *q)
2070 {
2071     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2072     int again = 0;
2073 
2074     assert(p != NULL);
2075     assert(p->qtdaddr == q->qtdaddr);
2076 
2077     ehci_execute_complete(q);
2078     if (p->usb_status == USB_RET_ASYNC) {
2079         goto out;
2080     }
2081     if (p->usb_status == USB_RET_PROCERR) {
2082         again = -1;
2083         goto out;
2084     }
2085 
2086     // 4.10.3
2087     if (!q->async) {
2088         int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2089         transactCtr--;
2090         set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
2091         // 4.10.3, bottom of page 82, should exit this state when transaction
2092         // counter decrements to 0
2093     }
2094 
2095     /* 4.10.5 */
2096     if (p->usb_status == USB_RET_NAK) {
2097         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2098     } else {
2099         ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
2100     }
2101 
2102     again = 1;
2103 
2104 out:
2105     ehci_flush_qh(q);
2106     return again;
2107 }
2108 
2109 
2110 static int ehci_state_writeback(EHCIQueue *q)
2111 {
2112     EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2113     uint32_t *qtd, addr;
2114     int again = 0;
2115 
2116     /*  Write back the QTD from the QH area */
2117     assert(p != NULL);
2118     assert(p->qtdaddr == q->qtdaddr);
2119 
2120     ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd);
2121     qtd = (uint32_t *) &q->qh.next_qtd;
2122     addr = NLPTR_GET(p->qtdaddr);
2123     put_dwords(q->ehci, addr + 2 * sizeof(uint32_t), qtd + 2, 2);
2124     ehci_free_packet(p);
2125 
2126     /*
2127      * EHCI specs say go horizontal here.
2128      *
2129      * We can also advance the queue here for performance reasons.  We
2130      * need to take care to only take that shortcut in case we've
2131      * processed the qtd just written back without errors, i.e. halt
2132      * bit is clear.
2133      */
2134     if (q->qh.token & QTD_TOKEN_HALT) {
2135         ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2136         again = 1;
2137     } else {
2138         ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
2139         again = 1;
2140     }
2141     return again;
2142 }
2143 
2144 /*
2145  * This is the state machine that is common to both async and periodic
2146  */
2147 
2148 static void ehci_advance_state(EHCIState *ehci, int async)
2149 {
2150     EHCIQueue *q = NULL;
2151     int again;
2152 
2153     do {
2154         switch(ehci_get_state(ehci, async)) {
2155         case EST_WAITLISTHEAD:
2156             again = ehci_state_waitlisthead(ehci, async);
2157             break;
2158 
2159         case EST_FETCHENTRY:
2160             again = ehci_state_fetchentry(ehci, async);
2161             break;
2162 
2163         case EST_FETCHQH:
2164             q = ehci_state_fetchqh(ehci, async);
2165             if (q != NULL) {
2166                 assert(q->async == async);
2167                 again = 1;
2168             } else {
2169                 again = 0;
2170             }
2171             break;
2172 
2173         case EST_FETCHITD:
2174             again = ehci_state_fetchitd(ehci, async);
2175             break;
2176 
2177         case EST_FETCHSITD:
2178             again = ehci_state_fetchsitd(ehci, async);
2179             break;
2180 
2181         case EST_ADVANCEQUEUE:
2182             again = ehci_state_advqueue(q);
2183             break;
2184 
2185         case EST_FETCHQTD:
2186             again = ehci_state_fetchqtd(q);
2187             break;
2188 
2189         case EST_HORIZONTALQH:
2190             again = ehci_state_horizqh(q);
2191             break;
2192 
2193         case EST_EXECUTE:
2194             again = ehci_state_execute(q);
2195             if (async) {
2196                 ehci->async_stepdown = 0;
2197             }
2198             break;
2199 
2200         case EST_EXECUTING:
2201             assert(q != NULL);
2202             if (async) {
2203                 ehci->async_stepdown = 0;
2204             }
2205             again = ehci_state_executing(q);
2206             break;
2207 
2208         case EST_WRITEBACK:
2209             assert(q != NULL);
2210             again = ehci_state_writeback(q);
2211             break;
2212 
2213         default:
2214             fprintf(stderr, "Bad state!\n");
2215             again = -1;
2216             assert(0);
2217             break;
2218         }
2219 
2220         if (again < 0) {
2221             fprintf(stderr, "processing error - resetting ehci HC\n");
2222             ehci_reset(ehci);
2223             again = 0;
2224         }
2225     }
2226     while (again);
2227 }
2228 
2229 static void ehci_advance_async_state(EHCIState *ehci)
2230 {
2231     const int async = 1;
2232 
2233     switch(ehci_get_state(ehci, async)) {
2234     case EST_INACTIVE:
2235         if (!ehci_async_enabled(ehci)) {
2236             break;
2237         }
2238         ehci_set_state(ehci, async, EST_ACTIVE);
2239         // No break, fall through to ACTIVE
2240 
2241     case EST_ACTIVE:
2242         if (!ehci_async_enabled(ehci)) {
2243             ehci_queues_rip_all(ehci, async);
2244             ehci_set_state(ehci, async, EST_INACTIVE);
2245             break;
2246         }
2247 
2248         /* make sure guest has acknowledged the doorbell interrupt */
2249         /* TO-DO: is this really needed? */
2250         if (ehci->usbsts & USBSTS_IAA) {
2251             DPRINTF("IAA status bit still set.\n");
2252             break;
2253         }
2254 
2255         /* check that address register has been set */
2256         if (ehci->asynclistaddr == 0) {
2257             break;
2258         }
2259 
2260         ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2261         ehci_advance_state(ehci, async);
2262 
2263         /* If the doorbell is set, the guest wants to make a change to the
2264          * schedule. The host controller needs to release cached data.
2265          * (section 4.8.2)
2266          */
2267         if (ehci->usbcmd & USBCMD_IAAD) {
2268             /* Remove all unseen qhs from the async qhs queue */
2269             ehci_queues_tag_unused_async(ehci);
2270             DPRINTF("ASYNC: doorbell request acknowledged\n");
2271             ehci->usbcmd &= ~USBCMD_IAAD;
2272             ehci_raise_irq(ehci, USBSTS_IAA);
2273         }
2274         break;
2275 
2276     default:
2277         /* this should only be due to a developer mistake */
2278         fprintf(stderr, "ehci: Bad asynchronous state %d. "
2279                 "Resetting to active\n", ehci->astate);
2280         assert(0);
2281     }
2282 }
2283 
2284 static void ehci_advance_periodic_state(EHCIState *ehci)
2285 {
2286     uint32_t entry;
2287     uint32_t list;
2288     const int async = 0;
2289 
2290     // 4.6
2291 
2292     switch(ehci_get_state(ehci, async)) {
2293     case EST_INACTIVE:
2294         if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
2295             ehci_set_state(ehci, async, EST_ACTIVE);
2296             // No break, fall through to ACTIVE
2297         } else
2298             break;
2299 
2300     case EST_ACTIVE:
2301         if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
2302             ehci_queues_rip_all(ehci, async);
2303             ehci_set_state(ehci, async, EST_INACTIVE);
2304             break;
2305         }
2306 
2307         list = ehci->periodiclistbase & 0xfffff000;
2308         /* check that register has been set */
2309         if (list == 0) {
2310             break;
2311         }
2312         list |= ((ehci->frindex & 0x1ff8) >> 1);
2313 
2314         pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2315         entry = le32_to_cpu(entry);
2316 
2317         DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2318                 ehci->frindex / 8, list, entry);
2319         ehci_set_fetch_addr(ehci, async,entry);
2320         ehci_set_state(ehci, async, EST_FETCHENTRY);
2321         ehci_advance_state(ehci, async);
2322         ehci_queues_rip_unused(ehci, async);
2323         break;
2324 
2325     default:
2326         /* this should only be due to a developer mistake */
2327         fprintf(stderr, "ehci: Bad periodic state %d. "
2328                 "Resetting to active\n", ehci->pstate);
2329         assert(0);
2330     }
2331 }
2332 
2333 static void ehci_update_frindex(EHCIState *ehci, int frames)
2334 {
2335     int i;
2336 
2337     if (!ehci_enabled(ehci)) {
2338         return;
2339     }
2340 
2341     for (i = 0; i < frames; i++) {
2342         ehci->frindex += 8;
2343 
2344         if (ehci->frindex == 0x00002000) {
2345             ehci_raise_irq(ehci, USBSTS_FLR);
2346         }
2347 
2348         if (ehci->frindex == 0x00004000) {
2349             ehci_raise_irq(ehci, USBSTS_FLR);
2350             ehci->frindex = 0;
2351             if (ehci->usbsts_frindex > 0x00004000) {
2352                 ehci->usbsts_frindex -= 0x00004000;
2353             } else {
2354                 ehci->usbsts_frindex = 0;
2355             }
2356         }
2357     }
2358 }
2359 
2360 static void ehci_frame_timer(void *opaque)
2361 {
2362     EHCIState *ehci = opaque;
2363     int need_timer = 0;
2364     int64_t expire_time, t_now;
2365     uint64_t ns_elapsed;
2366     int frames, skipped_frames;
2367     int i;
2368 
2369     t_now = qemu_get_clock_ns(vm_clock);
2370     ns_elapsed = t_now - ehci->last_run_ns;
2371     frames = ns_elapsed / FRAME_TIMER_NS;
2372 
2373     if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) {
2374         need_timer++;
2375         ehci->async_stepdown = 0;
2376 
2377         if (frames > ehci->maxframes) {
2378             skipped_frames = frames - ehci->maxframes;
2379             ehci_update_frindex(ehci, skipped_frames);
2380             ehci->last_run_ns += FRAME_TIMER_NS * skipped_frames;
2381             frames -= skipped_frames;
2382             DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2383         }
2384 
2385         for (i = 0; i < frames; i++) {
2386             ehci_update_frindex(ehci, 1);
2387             ehci_advance_periodic_state(ehci);
2388             ehci->last_run_ns += FRAME_TIMER_NS;
2389         }
2390     } else {
2391         if (ehci->async_stepdown < ehci->maxframes / 2) {
2392             ehci->async_stepdown++;
2393         }
2394         ehci_update_frindex(ehci, frames);
2395         ehci->last_run_ns += FRAME_TIMER_NS * frames;
2396     }
2397 
2398     /*  Async is not inside loop since it executes everything it can once
2399      *  called
2400      */
2401     if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) {
2402         need_timer++;
2403         ehci_advance_async_state(ehci);
2404     }
2405 
2406     ehci_commit_irq(ehci);
2407     if (ehci->usbsts_pending) {
2408         need_timer++;
2409         ehci->async_stepdown = 0;
2410     }
2411 
2412     if (need_timer) {
2413         expire_time = t_now + (get_ticks_per_sec()
2414                                * (ehci->async_stepdown+1) / FRAME_TIMER_FREQ);
2415         qemu_mod_timer(ehci->frame_timer, expire_time);
2416     }
2417 }
2418 
2419 static void ehci_async_bh(void *opaque)
2420 {
2421     EHCIState *ehci = opaque;
2422     ehci_advance_async_state(ehci);
2423 }
2424 
2425 static const MemoryRegionOps ehci_mem_ops = {
2426     .old_mmio = {
2427         .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2428         .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2429     },
2430     .endianness = DEVICE_LITTLE_ENDIAN,
2431 };
2432 
2433 static int usb_ehci_initfn(PCIDevice *dev);
2434 
2435 static USBPortOps ehci_port_ops = {
2436     .attach = ehci_attach,
2437     .detach = ehci_detach,
2438     .child_detach = ehci_child_detach,
2439     .wakeup = ehci_wakeup,
2440     .complete = ehci_async_complete_packet,
2441 };
2442 
2443 static USBBusOps ehci_bus_ops = {
2444     .register_companion = ehci_register_companion,
2445 };
2446 
2447 static int usb_ehci_post_load(void *opaque, int version_id)
2448 {
2449     EHCIState *s = opaque;
2450     int i;
2451 
2452     for (i = 0; i < NB_PORTS; i++) {
2453         USBPort *companion = s->companion_ports[i];
2454         if (companion == NULL) {
2455             continue;
2456         }
2457         if (s->portsc[i] & PORTSC_POWNER) {
2458             companion->dev = s->ports[i].dev;
2459         } else {
2460             companion->dev = NULL;
2461         }
2462     }
2463 
2464     return 0;
2465 }
2466 
2467 static const VMStateDescription vmstate_ehci = {
2468     .name        = "ehci",
2469     .version_id  = 1,
2470     .post_load   = usb_ehci_post_load,
2471     .fields      = (VMStateField[]) {
2472         VMSTATE_PCI_DEVICE(dev, EHCIState),
2473         /* mmio registers */
2474         VMSTATE_UINT32(usbcmd, EHCIState),
2475         VMSTATE_UINT32(usbsts, EHCIState),
2476         VMSTATE_UINT32(usbintr, EHCIState),
2477         VMSTATE_UINT32(frindex, EHCIState),
2478         VMSTATE_UINT32(ctrldssegment, EHCIState),
2479         VMSTATE_UINT32(periodiclistbase, EHCIState),
2480         VMSTATE_UINT32(asynclistaddr, EHCIState),
2481         VMSTATE_UINT32(configflag, EHCIState),
2482         VMSTATE_UINT32(portsc[0], EHCIState),
2483         VMSTATE_UINT32(portsc[1], EHCIState),
2484         VMSTATE_UINT32(portsc[2], EHCIState),
2485         VMSTATE_UINT32(portsc[3], EHCIState),
2486         VMSTATE_UINT32(portsc[4], EHCIState),
2487         VMSTATE_UINT32(portsc[5], EHCIState),
2488         /* frame timer */
2489         VMSTATE_TIMER(frame_timer, EHCIState),
2490         VMSTATE_UINT64(last_run_ns, EHCIState),
2491         VMSTATE_UINT32(async_stepdown, EHCIState),
2492         /* schedule state */
2493         VMSTATE_UINT32(astate, EHCIState),
2494         VMSTATE_UINT32(pstate, EHCIState),
2495         VMSTATE_UINT32(a_fetch_addr, EHCIState),
2496         VMSTATE_UINT32(p_fetch_addr, EHCIState),
2497         VMSTATE_END_OF_LIST()
2498     }
2499 };
2500 
2501 static Property ehci_properties[] = {
2502     DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2503     DEFINE_PROP_END_OF_LIST(),
2504 };
2505 
2506 static void ehci_class_init(ObjectClass *klass, void *data)
2507 {
2508     DeviceClass *dc = DEVICE_CLASS(klass);
2509     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2510 
2511     k->init = usb_ehci_initfn;
2512     k->vendor_id = PCI_VENDOR_ID_INTEL;
2513     k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2514     k->revision = 0x10;
2515     k->class_id = PCI_CLASS_SERIAL_USB;
2516     dc->vmsd = &vmstate_ehci;
2517     dc->props = ehci_properties;
2518 }
2519 
2520 static TypeInfo ehci_info = {
2521     .name          = "usb-ehci",
2522     .parent        = TYPE_PCI_DEVICE,
2523     .instance_size = sizeof(EHCIState),
2524     .class_init    = ehci_class_init,
2525 };
2526 
2527 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2528 {
2529     DeviceClass *dc = DEVICE_CLASS(klass);
2530     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2531 
2532     k->init = usb_ehci_initfn;
2533     k->vendor_id = PCI_VENDOR_ID_INTEL;
2534     k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2535     k->revision = 0x03;
2536     k->class_id = PCI_CLASS_SERIAL_USB;
2537     dc->vmsd = &vmstate_ehci;
2538     dc->props = ehci_properties;
2539 }
2540 
2541 static TypeInfo ich9_ehci_info = {
2542     .name          = "ich9-usb-ehci1",
2543     .parent        = TYPE_PCI_DEVICE,
2544     .instance_size = sizeof(EHCIState),
2545     .class_init    = ich9_ehci_class_init,
2546 };
2547 
2548 static int usb_ehci_initfn(PCIDevice *dev)
2549 {
2550     EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2551     uint8_t *pci_conf = s->dev.config;
2552     int i;
2553 
2554     pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2555 
2556     /* capabilities pointer */
2557     pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2558     //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2559 
2560     pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2561     pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2562     pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2563 
2564     // pci_conf[0x50] = 0x01; // power management caps
2565 
2566     pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2567     pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2568     pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2569 
2570     pci_conf[0x64] = 0x00;
2571     pci_conf[0x65] = 0x00;
2572     pci_conf[0x66] = 0x00;
2573     pci_conf[0x67] = 0x00;
2574     pci_conf[0x68] = 0x01;
2575     pci_conf[0x69] = 0x00;
2576     pci_conf[0x6a] = 0x00;
2577     pci_conf[0x6b] = 0x00;  // USBLEGSUP
2578     pci_conf[0x6c] = 0x00;
2579     pci_conf[0x6d] = 0x00;
2580     pci_conf[0x6e] = 0x00;
2581     pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2582 
2583     // 2.2 host controller interface version
2584     s->mmio[0x00] = (uint8_t) OPREGBASE;
2585     s->mmio[0x01] = 0x00;
2586     s->mmio[0x02] = 0x00;
2587     s->mmio[0x03] = 0x01;        // HC version
2588     s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2589     s->mmio[0x05] = 0x00;        // No companion ports at present
2590     s->mmio[0x06] = 0x00;
2591     s->mmio[0x07] = 0x00;
2592     s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2593     s->mmio[0x09] = 0x68;        // EECP
2594     s->mmio[0x0a] = 0x00;
2595     s->mmio[0x0b] = 0x00;
2596 
2597     s->irq = s->dev.irq[3];
2598 
2599     usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2600     for(i = 0; i < NB_PORTS; i++) {
2601         usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2602                           USB_SPEED_MASK_HIGH);
2603         s->ports[i].dev = 0;
2604     }
2605 
2606     s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2607     s->async_bh = qemu_bh_new(ehci_async_bh, s);
2608     QTAILQ_INIT(&s->aqueues);
2609     QTAILQ_INIT(&s->pqueues);
2610     usb_packet_init(&s->ipacket);
2611 
2612     qemu_register_reset(ehci_reset, s);
2613 
2614     memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2615     pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2616 
2617     return 0;
2618 }
2619 
2620 static void ehci_register_types(void)
2621 {
2622     type_register_static(&ehci_info);
2623     type_register_static(&ich9_ehci_info);
2624 }
2625 
2626 type_init(ehci_register_types)
2627 
2628 /*
2629  * vim: expandtab ts=4
2630  */
2631