xref: /openbmc/qemu/hw/ufs/ufs.c (revision b8116f4c)
1 /*
2  * QEMU Universal Flash Storage (UFS) Controller
3  *
4  * Copyright (c) 2023 Samsung Electronics Co., Ltd. All rights reserved.
5  *
6  * Written by Jeuk Kim <jeuk20.kim@samsung.com>
7  *
8  * SPDX-License-Identifier: GPL-2.0-or-later
9  */
10 
11 /**
12  * Reference Specs: https://www.jedec.org/, 4.0
13  *
14  * Usage
15  * -----
16  *
17  * Add options:
18  *      -drive file=<file>,if=none,id=<drive_id>
19  *      -device ufs,serial=<serial>,id=<bus_name>, \
20  *              nutrs=<N[optional]>,nutmrs=<N[optional]>
21  *      -device ufs-lu,drive=<drive_id>,bus=<bus_name>
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "migration/vmstate.h"
27 #include "scsi/constants.h"
28 #include "trace.h"
29 #include "ufs.h"
30 
31 /* The QEMU-UFS device follows spec version 4.0 */
32 #define UFS_SPEC_VER 0x0400
33 #define UFS_MAX_NUTRS 32
34 #define UFS_MAX_NUTMRS 8
35 #define UFS_MCQ_QCFGPTR 2
36 
37 static void ufs_exec_req(UfsRequest *req);
38 static void ufs_clear_req(UfsRequest *req);
39 
40 static inline uint64_t ufs_mcq_reg_addr(UfsHc *u, int qid)
41 {
42     /* Submission Queue MCQ Registers offset (400h) */
43     return (UFS_MCQ_QCFGPTR * 0x200) + qid * 0x40;
44 }
45 
46 static inline uint64_t ufs_mcq_op_reg_addr(UfsHc *u, int qid)
47 {
48     /* MCQ Operation & Runtime Registers offset (1000h) */
49     return UFS_MCQ_OPR_START + qid * 48;
50 }
51 
52 static inline uint64_t ufs_reg_size(UfsHc *u)
53 {
54     /* Total UFS HCI Register size in bytes */
55     return ufs_mcq_op_reg_addr(u, 0) + sizeof(u->mcq_op_reg);
56 }
57 
58 static inline bool ufs_is_mcq_reg(UfsHc *u, uint64_t addr)
59 {
60     uint64_t mcq_reg_addr = ufs_mcq_reg_addr(u, 0);
61     return addr >= mcq_reg_addr && addr < mcq_reg_addr + sizeof(u->mcq_reg);
62 }
63 
64 static inline bool ufs_is_mcq_op_reg(UfsHc *u, uint64_t addr)
65 {
66     uint64_t mcq_op_reg_addr = ufs_mcq_op_reg_addr(u, 0);
67     return (addr >= mcq_op_reg_addr &&
68             addr < mcq_op_reg_addr + sizeof(u->mcq_op_reg));
69 }
70 
71 static MemTxResult ufs_addr_read(UfsHc *u, hwaddr addr, void *buf, int size)
72 {
73     hwaddr hi = addr + size - 1;
74 
75     if (hi < addr) {
76         return MEMTX_DECODE_ERROR;
77     }
78 
79     if (!FIELD_EX32(u->reg.cap, CAP, 64AS) && (hi >> 32)) {
80         return MEMTX_DECODE_ERROR;
81     }
82 
83     return pci_dma_read(PCI_DEVICE(u), addr, buf, size);
84 }
85 
86 static MemTxResult ufs_addr_write(UfsHc *u, hwaddr addr, const void *buf,
87                                   int size)
88 {
89     hwaddr hi = addr + size - 1;
90     if (hi < addr) {
91         return MEMTX_DECODE_ERROR;
92     }
93 
94     if (!FIELD_EX32(u->reg.cap, CAP, 64AS) && (hi >> 32)) {
95         return MEMTX_DECODE_ERROR;
96     }
97 
98     return pci_dma_write(PCI_DEVICE(u), addr, buf, size);
99 }
100 
101 static inline hwaddr ufs_get_utrd_addr(UfsHc *u, uint32_t slot)
102 {
103     hwaddr utrl_base_addr = (((hwaddr)u->reg.utrlbau) << 32) + u->reg.utrlba;
104     hwaddr utrd_addr = utrl_base_addr + slot * sizeof(UtpTransferReqDesc);
105 
106     return utrd_addr;
107 }
108 
109 static inline hwaddr ufs_get_req_upiu_base_addr(const UtpTransferReqDesc *utrd)
110 {
111     uint32_t cmd_desc_base_addr_lo =
112         le32_to_cpu(utrd->command_desc_base_addr_lo);
113     uint32_t cmd_desc_base_addr_hi =
114         le32_to_cpu(utrd->command_desc_base_addr_hi);
115 
116     return (((hwaddr)cmd_desc_base_addr_hi) << 32) + cmd_desc_base_addr_lo;
117 }
118 
119 static inline hwaddr ufs_get_rsp_upiu_base_addr(const UtpTransferReqDesc *utrd)
120 {
121     hwaddr req_upiu_base_addr = ufs_get_req_upiu_base_addr(utrd);
122     uint32_t rsp_upiu_byte_off =
123         le16_to_cpu(utrd->response_upiu_offset) * sizeof(uint32_t);
124     return req_upiu_base_addr + rsp_upiu_byte_off;
125 }
126 
127 static MemTxResult ufs_dma_read_utrd(UfsRequest *req)
128 {
129     UfsHc *u = req->hc;
130     hwaddr utrd_addr = ufs_get_utrd_addr(u, req->slot);
131     MemTxResult ret;
132 
133     ret = ufs_addr_read(u, utrd_addr, &req->utrd, sizeof(req->utrd));
134     if (ret) {
135         trace_ufs_err_dma_read_utrd(req->slot, utrd_addr);
136     }
137     return ret;
138 }
139 
140 static MemTxResult ufs_dma_read_req_upiu(UfsRequest *req)
141 {
142     UfsHc *u = req->hc;
143     hwaddr req_upiu_base_addr = ufs_get_req_upiu_base_addr(&req->utrd);
144     UtpUpiuReq *req_upiu = &req->req_upiu;
145     uint32_t copy_size;
146     uint16_t data_segment_length;
147     MemTxResult ret;
148 
149     /*
150      * To know the size of the req_upiu, we need to read the
151      * data_segment_length in the header first.
152      */
153     ret = ufs_addr_read(u, req_upiu_base_addr, &req_upiu->header,
154                         sizeof(UtpUpiuHeader));
155     if (ret) {
156         trace_ufs_err_dma_read_req_upiu(req->slot, req_upiu_base_addr);
157         return ret;
158     }
159     data_segment_length = be16_to_cpu(req_upiu->header.data_segment_length);
160 
161     copy_size = sizeof(UtpUpiuHeader) + UFS_TRANSACTION_SPECIFIC_FIELD_SIZE +
162                 data_segment_length;
163 
164     if (copy_size > sizeof(req->req_upiu)) {
165         copy_size = sizeof(req->req_upiu);
166     }
167 
168     ret = ufs_addr_read(u, req_upiu_base_addr, &req->req_upiu, copy_size);
169     if (ret) {
170         trace_ufs_err_dma_read_req_upiu(req->slot, req_upiu_base_addr);
171     }
172     return ret;
173 }
174 
175 static MemTxResult ufs_dma_read_prdt(UfsRequest *req)
176 {
177     UfsHc *u = req->hc;
178     uint16_t prdt_len = le16_to_cpu(req->utrd.prd_table_length);
179     uint16_t prdt_byte_off =
180         le16_to_cpu(req->utrd.prd_table_offset) * sizeof(uint32_t);
181     uint32_t prdt_size = prdt_len * sizeof(UfshcdSgEntry);
182     g_autofree UfshcdSgEntry *prd_entries = NULL;
183     hwaddr req_upiu_base_addr, prdt_base_addr;
184     int err;
185 
186     assert(!req->sg);
187 
188     if (prdt_size == 0) {
189         return MEMTX_OK;
190     }
191     prd_entries = g_new(UfshcdSgEntry, prdt_size);
192 
193     req_upiu_base_addr = ufs_get_req_upiu_base_addr(&req->utrd);
194     prdt_base_addr = req_upiu_base_addr + prdt_byte_off;
195 
196     err = ufs_addr_read(u, prdt_base_addr, prd_entries, prdt_size);
197     if (err) {
198         trace_ufs_err_dma_read_prdt(req->slot, prdt_base_addr);
199         return err;
200     }
201 
202     req->sg = g_malloc0(sizeof(QEMUSGList));
203     pci_dma_sglist_init(req->sg, PCI_DEVICE(u), prdt_len);
204     req->data_len = 0;
205 
206     for (uint16_t i = 0; i < prdt_len; ++i) {
207         hwaddr data_dma_addr = le64_to_cpu(prd_entries[i].addr);
208         uint32_t data_byte_count = le32_to_cpu(prd_entries[i].size) + 1;
209         qemu_sglist_add(req->sg, data_dma_addr, data_byte_count);
210         req->data_len += data_byte_count;
211     }
212     return MEMTX_OK;
213 }
214 
215 static MemTxResult ufs_dma_read_upiu(UfsRequest *req)
216 {
217     MemTxResult ret;
218 
219     /*
220      * In case of MCQ, UTRD has already been read from a SQ, so skip it.
221      */
222     if (!ufs_mcq_req(req)) {
223         ret = ufs_dma_read_utrd(req);
224         if (ret) {
225             return ret;
226         }
227     }
228 
229     ret = ufs_dma_read_req_upiu(req);
230     if (ret) {
231         return ret;
232     }
233 
234     ret = ufs_dma_read_prdt(req);
235     if (ret) {
236         return ret;
237     }
238 
239     return 0;
240 }
241 
242 static MemTxResult ufs_dma_write_utrd(UfsRequest *req)
243 {
244     UfsHc *u = req->hc;
245     hwaddr utrd_addr = ufs_get_utrd_addr(u, req->slot);
246     MemTxResult ret;
247 
248     ret = ufs_addr_write(u, utrd_addr, &req->utrd, sizeof(req->utrd));
249     if (ret) {
250         trace_ufs_err_dma_write_utrd(req->slot, utrd_addr);
251     }
252     return ret;
253 }
254 
255 static MemTxResult ufs_dma_write_rsp_upiu(UfsRequest *req)
256 {
257     UfsHc *u = req->hc;
258     hwaddr rsp_upiu_base_addr = ufs_get_rsp_upiu_base_addr(&req->utrd);
259     uint32_t rsp_upiu_byte_len =
260         le16_to_cpu(req->utrd.response_upiu_length) * sizeof(uint32_t);
261     uint16_t data_segment_length =
262         be16_to_cpu(req->rsp_upiu.header.data_segment_length);
263     uint32_t copy_size = sizeof(UtpUpiuHeader) +
264                          UFS_TRANSACTION_SPECIFIC_FIELD_SIZE +
265                          data_segment_length;
266     MemTxResult ret;
267 
268     if (copy_size > rsp_upiu_byte_len) {
269         copy_size = rsp_upiu_byte_len;
270     }
271 
272     if (copy_size > sizeof(req->rsp_upiu)) {
273         copy_size = sizeof(req->rsp_upiu);
274     }
275 
276     ret = ufs_addr_write(u, rsp_upiu_base_addr, &req->rsp_upiu, copy_size);
277     if (ret) {
278         trace_ufs_err_dma_write_rsp_upiu(req->slot, rsp_upiu_base_addr);
279     }
280     return ret;
281 }
282 
283 static MemTxResult ufs_dma_write_upiu(UfsRequest *req)
284 {
285     MemTxResult ret;
286 
287     ret = ufs_dma_write_rsp_upiu(req);
288     if (ret) {
289         return ret;
290     }
291 
292     return ufs_dma_write_utrd(req);
293 }
294 
295 static void ufs_irq_check(UfsHc *u)
296 {
297     PCIDevice *pci = PCI_DEVICE(u);
298 
299     if ((u->reg.is & UFS_INTR_MASK) & u->reg.ie) {
300         trace_ufs_irq_raise();
301         pci_irq_assert(pci);
302     } else {
303         trace_ufs_irq_lower();
304         pci_irq_deassert(pci);
305     }
306 }
307 
308 static void ufs_process_db(UfsHc *u, uint32_t val)
309 {
310     DECLARE_BITMAP(doorbell, UFS_MAX_NUTRS);
311     uint32_t slot;
312     uint32_t nutrs = u->params.nutrs;
313     UfsRequest *req;
314 
315     val &= ~u->reg.utrldbr;
316     if (!val) {
317         return;
318     }
319 
320     doorbell[0] = val;
321     slot = find_first_bit(doorbell, nutrs);
322 
323     while (slot < nutrs) {
324         req = &u->req_list[slot];
325         if (req->state == UFS_REQUEST_ERROR) {
326             trace_ufs_err_utrl_slot_error(req->slot);
327             return;
328         }
329 
330         if (req->state != UFS_REQUEST_IDLE) {
331             trace_ufs_err_utrl_slot_busy(req->slot);
332             return;
333         }
334 
335         trace_ufs_process_db(slot);
336         req->state = UFS_REQUEST_READY;
337         slot = find_next_bit(doorbell, nutrs, slot + 1);
338     }
339 
340     qemu_bh_schedule(u->doorbell_bh);
341 }
342 
343 static void ufs_process_uiccmd(UfsHc *u, uint32_t val)
344 {
345     trace_ufs_process_uiccmd(val, u->reg.ucmdarg1, u->reg.ucmdarg2,
346                              u->reg.ucmdarg3);
347     /*
348      * Only the essential uic commands for running drivers on Linux and Windows
349      * are implemented.
350      */
351     switch (val) {
352     case UFS_UIC_CMD_DME_LINK_STARTUP:
353         u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, DP, 1);
354         u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UTRLRDY, 1);
355         u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UTMRLRDY, 1);
356         u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS;
357         break;
358     /* TODO: Revisit it when Power Management is implemented */
359     case UFS_UIC_CMD_DME_HIBER_ENTER:
360         u->reg.is = FIELD_DP32(u->reg.is, IS, UHES, 1);
361         u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UPMCRS, UFS_PWR_LOCAL);
362         u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS;
363         break;
364     case UFS_UIC_CMD_DME_HIBER_EXIT:
365         u->reg.is = FIELD_DP32(u->reg.is, IS, UHXS, 1);
366         u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UPMCRS, UFS_PWR_LOCAL);
367         u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS;
368         break;
369     default:
370         u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_FAILURE;
371     }
372 
373     u->reg.is = FIELD_DP32(u->reg.is, IS, UCCS, 1);
374 
375     ufs_irq_check(u);
376 }
377 
378 static void ufs_mcq_init_req(UfsHc *u, UfsRequest *req, UfsSq *sq)
379 {
380     memset(req, 0, sizeof(*req));
381 
382     req->hc = u;
383     req->state = UFS_REQUEST_IDLE;
384     req->slot = UFS_INVALID_SLOT;
385     req->sq = sq;
386 }
387 
388 static void ufs_mcq_process_sq(void *opaque)
389 {
390     UfsSq *sq = opaque;
391     UfsHc *u = sq->u;
392     UfsSqEntry sqe;
393     UfsRequest *req;
394     hwaddr addr;
395     uint16_t head = ufs_mcq_sq_head(u, sq->sqid);
396     int err;
397 
398     while (!(ufs_mcq_sq_empty(u, sq->sqid) || QTAILQ_EMPTY(&sq->req_list))) {
399         addr = sq->addr + head;
400         err = ufs_addr_read(sq->u, addr, (void *)&sqe, sizeof(sqe));
401         if (err) {
402             trace_ufs_err_dma_read_sq(sq->sqid, addr);
403             return;
404         }
405 
406         head = (head + sizeof(sqe)) % (sq->size * sizeof(sqe));
407         ufs_mcq_update_sq_head(u, sq->sqid, head);
408 
409         req = QTAILQ_FIRST(&sq->req_list);
410         QTAILQ_REMOVE(&sq->req_list, req, entry);
411 
412         ufs_mcq_init_req(sq->u, req, sq);
413         memcpy(&req->utrd, &sqe, sizeof(req->utrd));
414 
415         req->state = UFS_REQUEST_RUNNING;
416         ufs_exec_req(req);
417     }
418 }
419 
420 static void ufs_mcq_process_cq(void *opaque)
421 {
422     UfsCq *cq = opaque;
423     UfsHc *u = cq->u;
424     UfsRequest *req, *next;
425     MemTxResult ret;
426     uint32_t tail = ufs_mcq_cq_tail(u, cq->cqid);
427 
428     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next)
429     {
430         ufs_dma_write_rsp_upiu(req);
431 
432         req->cqe.utp_addr =
433             ((uint64_t)req->utrd.command_desc_base_addr_hi << 32ULL) |
434             req->utrd.command_desc_base_addr_lo;
435         req->cqe.utp_addr |= req->sq->sqid;
436         req->cqe.resp_len = req->utrd.response_upiu_length;
437         req->cqe.resp_off = req->utrd.response_upiu_offset;
438         req->cqe.prdt_len = req->utrd.prd_table_length;
439         req->cqe.prdt_off = req->utrd.prd_table_offset;
440         req->cqe.status = req->utrd.header.dword_2 & 0xf;
441         req->cqe.error = 0;
442 
443         ret = ufs_addr_write(u, cq->addr + tail, &req->cqe, sizeof(req->cqe));
444         if (ret) {
445             trace_ufs_err_dma_write_cq(cq->cqid, cq->addr + tail);
446         }
447         QTAILQ_REMOVE(&cq->req_list, req, entry);
448 
449         tail = (tail + sizeof(req->cqe)) % (cq->size * sizeof(req->cqe));
450         ufs_mcq_update_cq_tail(u, cq->cqid, tail);
451 
452         ufs_clear_req(req);
453         QTAILQ_INSERT_TAIL(&req->sq->req_list, req, entry);
454     }
455 
456     if (!ufs_mcq_cq_empty(u, cq->cqid)) {
457         u->mcq_op_reg[cq->cqid].cq_int.is =
458             FIELD_DP32(u->mcq_op_reg[cq->cqid].cq_int.is, CQIS, TEPS, 1);
459 
460         u->reg.is = FIELD_DP32(u->reg.is, IS, CQES, 1);
461         ufs_irq_check(u);
462     }
463 }
464 
465 static bool ufs_mcq_create_sq(UfsHc *u, uint8_t qid, uint32_t attr)
466 {
467     UfsMcqReg *reg = &u->mcq_reg[qid];
468     UfsSq *sq;
469     uint8_t cqid = FIELD_EX32(attr, SQATTR, CQID);
470 
471     if (qid >= u->params.mcq_maxq) {
472         trace_ufs_err_mcq_create_sq_invalid_sqid(qid);
473         return false;
474     }
475 
476     if (u->sq[qid]) {
477         trace_ufs_err_mcq_create_sq_already_exists(qid);
478         return false;
479     }
480 
481     if (!u->cq[cqid]) {
482         trace_ufs_err_mcq_create_sq_invalid_cqid(qid);
483         return false;
484     }
485 
486     sq = g_malloc0(sizeof(*sq));
487     sq->u = u;
488     sq->sqid = qid;
489     sq->cq = u->cq[cqid];
490     sq->addr = ((uint64_t)reg->squba << 32) | reg->sqlba;
491     sq->size = ((FIELD_EX32(attr, SQATTR, SIZE) + 1) << 2) / sizeof(UfsSqEntry);
492 
493     sq->bh = qemu_bh_new_guarded(ufs_mcq_process_sq, sq,
494                                  &DEVICE(u)->mem_reentrancy_guard);
495     sq->req = g_new0(UfsRequest, sq->size);
496     QTAILQ_INIT(&sq->req_list);
497     for (int i = 0; i < sq->size; i++) {
498         ufs_mcq_init_req(u, &sq->req[i], sq);
499         QTAILQ_INSERT_TAIL(&sq->req_list, &sq->req[i], entry);
500     }
501 
502     u->sq[qid] = sq;
503 
504     trace_ufs_mcq_create_sq(sq->sqid, sq->cq->cqid, sq->addr, sq->size);
505     return true;
506 }
507 
508 static bool ufs_mcq_delete_sq(UfsHc *u, uint8_t qid)
509 {
510     UfsSq *sq;
511 
512     if (qid >= u->params.mcq_maxq) {
513         trace_ufs_err_mcq_delete_sq_invalid_sqid(qid);
514         return false;
515     }
516 
517     if (!u->sq[qid]) {
518         trace_ufs_err_mcq_delete_sq_not_exists(qid);
519         return false;
520     }
521 
522     sq = u->sq[qid];
523 
524     qemu_bh_delete(sq->bh);
525     g_free(sq->req);
526     g_free(sq);
527     u->sq[qid] = NULL;
528     return true;
529 }
530 
531 static bool ufs_mcq_create_cq(UfsHc *u, uint8_t qid, uint32_t attr)
532 {
533     UfsMcqReg *reg = &u->mcq_reg[qid];
534     UfsCq *cq;
535 
536     if (qid >= u->params.mcq_maxq) {
537         trace_ufs_err_mcq_create_cq_invalid_cqid(qid);
538         return false;
539     }
540 
541     if (u->cq[qid]) {
542         trace_ufs_err_mcq_create_cq_already_exists(qid);
543         return false;
544     }
545 
546     cq = g_malloc0(sizeof(*cq));
547     cq->u = u;
548     cq->cqid = qid;
549     cq->addr = ((uint64_t)reg->cquba << 32) | reg->cqlba;
550     cq->size = ((FIELD_EX32(attr, CQATTR, SIZE) + 1) << 2) / sizeof(UfsCqEntry);
551 
552     cq->bh = qemu_bh_new_guarded(ufs_mcq_process_cq, cq,
553                                  &DEVICE(u)->mem_reentrancy_guard);
554     QTAILQ_INIT(&cq->req_list);
555 
556     u->cq[qid] = cq;
557 
558     trace_ufs_mcq_create_cq(cq->cqid, cq->addr, cq->size);
559     return true;
560 }
561 
562 static bool ufs_mcq_delete_cq(UfsHc *u, uint8_t qid)
563 {
564     UfsCq *cq;
565 
566     if (qid >= u->params.mcq_maxq) {
567         trace_ufs_err_mcq_delete_cq_invalid_cqid(qid);
568         return false;
569     }
570 
571     if (!u->cq[qid]) {
572         trace_ufs_err_mcq_delete_cq_not_exists(qid);
573         return false;
574     }
575 
576     for (int i = 0; i < ARRAY_SIZE(u->sq); i++) {
577         if (u->sq[i] && u->sq[i]->cq->cqid == qid) {
578             trace_ufs_err_mcq_delete_cq_sq_not_deleted(i, qid);
579             return false;
580         }
581     }
582 
583     cq = u->cq[qid];
584 
585     qemu_bh_delete(cq->bh);
586     g_free(cq);
587     u->cq[qid] = NULL;
588     return true;
589 }
590 
591 static void ufs_write_reg(UfsHc *u, hwaddr offset, uint32_t data, unsigned size)
592 {
593     switch (offset) {
594     case A_IS:
595         u->reg.is &= ~data;
596         ufs_irq_check(u);
597         break;
598     case A_IE:
599         u->reg.ie = data;
600         ufs_irq_check(u);
601         break;
602     case A_HCE:
603         if (!FIELD_EX32(u->reg.hce, HCE, HCE) && FIELD_EX32(data, HCE, HCE)) {
604             u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UCRDY, 1);
605             u->reg.hce = FIELD_DP32(u->reg.hce, HCE, HCE, 1);
606         } else if (FIELD_EX32(u->reg.hce, HCE, HCE) &&
607                    !FIELD_EX32(data, HCE, HCE)) {
608             u->reg.hcs = 0;
609             u->reg.hce = FIELD_DP32(u->reg.hce, HCE, HCE, 0);
610         }
611         break;
612     case A_UTRLBA:
613         u->reg.utrlba = data & R_UTRLBA_UTRLBA_MASK;
614         break;
615     case A_UTRLBAU:
616         u->reg.utrlbau = data;
617         break;
618     case A_UTRLDBR:
619         ufs_process_db(u, data);
620         u->reg.utrldbr |= data;
621         break;
622     case A_UTRLRSR:
623         u->reg.utrlrsr = data;
624         break;
625     case A_UTRLCNR:
626         u->reg.utrlcnr &= ~data;
627         break;
628     case A_UTMRLBA:
629         u->reg.utmrlba = data & R_UTMRLBA_UTMRLBA_MASK;
630         break;
631     case A_UTMRLBAU:
632         u->reg.utmrlbau = data;
633         break;
634     case A_UICCMD:
635         ufs_process_uiccmd(u, data);
636         break;
637     case A_UCMDARG1:
638         u->reg.ucmdarg1 = data;
639         break;
640     case A_UCMDARG2:
641         u->reg.ucmdarg2 = data;
642         break;
643     case A_UCMDARG3:
644         u->reg.ucmdarg3 = data;
645         break;
646     case A_CONFIG:
647         u->reg.config = data;
648         break;
649     case A_MCQCONFIG:
650         u->reg.mcqconfig = data;
651         break;
652     case A_UTRLCLR:
653     case A_UTMRLDBR:
654     case A_UTMRLCLR:
655     case A_UTMRLRSR:
656         trace_ufs_err_unsupport_register_offset(offset);
657         break;
658     default:
659         trace_ufs_err_invalid_register_offset(offset);
660         break;
661     }
662 }
663 
664 static void ufs_write_mcq_reg(UfsHc *u, hwaddr offset, uint32_t data,
665                               unsigned size)
666 {
667     int qid = offset / sizeof(UfsMcqReg);
668     UfsMcqReg *reg = &u->mcq_reg[qid];
669 
670     switch (offset % sizeof(UfsMcqReg)) {
671     case A_SQATTR:
672         if (!FIELD_EX32(reg->sqattr, SQATTR, SQEN) &&
673             FIELD_EX32(data, SQATTR, SQEN)) {
674             if (!ufs_mcq_create_sq(u, qid, data)) {
675                 break;
676             }
677         } else if (FIELD_EX32(reg->sqattr, SQATTR, SQEN) &&
678                    !FIELD_EX32(data, SQATTR, SQEN)) {
679             if (!ufs_mcq_delete_sq(u, qid)) {
680                 break;
681             }
682         }
683         reg->sqattr = data;
684         break;
685     case A_SQLBA:
686         reg->sqlba = data;
687         break;
688     case A_SQUBA:
689         reg->squba = data;
690         break;
691     case A_SQCFG:
692         reg->sqcfg = data;
693         break;
694     case A_CQATTR:
695         if (!FIELD_EX32(reg->cqattr, CQATTR, CQEN) &&
696             FIELD_EX32(data, CQATTR, CQEN)) {
697             if (!ufs_mcq_create_cq(u, qid, data)) {
698                 break;
699             }
700         } else if (FIELD_EX32(reg->cqattr, CQATTR, CQEN) &&
701                    !FIELD_EX32(data, CQATTR, CQEN)) {
702             if (!ufs_mcq_delete_cq(u, qid)) {
703                 break;
704             }
705         }
706         reg->cqattr = data;
707         break;
708     case A_CQLBA:
709         reg->cqlba = data;
710         break;
711     case A_CQUBA:
712         reg->cquba = data;
713         break;
714     case A_CQCFG:
715         reg->cqcfg = data;
716         break;
717     case A_SQDAO:
718     case A_SQISAO:
719     case A_CQDAO:
720     case A_CQISAO:
721         trace_ufs_err_unsupport_register_offset(offset);
722         break;
723     default:
724         trace_ufs_err_invalid_register_offset(offset);
725         break;
726     }
727 }
728 
729 static void ufs_mcq_process_db(UfsHc *u, uint8_t qid, uint32_t db)
730 {
731     UfsSq *sq;
732 
733     if (qid >= u->params.mcq_maxq) {
734         trace_ufs_err_mcq_db_wr_invalid_sqid(qid);
735         return;
736     }
737 
738     sq = u->sq[qid];
739     if (sq->size * sizeof(UfsSqEntry) <= db) {
740         trace_ufs_err_mcq_db_wr_invalid_db(qid, db);
741         return;
742     }
743 
744     ufs_mcq_update_sq_tail(u, sq->sqid, db);
745     qemu_bh_schedule(sq->bh);
746 }
747 
748 static void ufs_write_mcq_op_reg(UfsHc *u, hwaddr offset, uint32_t data,
749                                  unsigned size)
750 {
751     int qid = offset / sizeof(UfsMcqOpReg);
752     UfsMcqOpReg *opr = &u->mcq_op_reg[qid];
753 
754     switch (offset % sizeof(UfsMcqOpReg)) {
755     case offsetof(UfsMcqOpReg, sq.tp):
756         if (opr->sq.tp != data) {
757             ufs_mcq_process_db(u, qid, data);
758         }
759         opr->sq.tp = data;
760         break;
761     case offsetof(UfsMcqOpReg, cq.hp):
762         opr->cq.hp = data;
763         ufs_mcq_update_cq_head(u, qid, data);
764         break;
765     case offsetof(UfsMcqOpReg, cq_int.is):
766         opr->cq_int.is &= ~data;
767         break;
768     default:
769         trace_ufs_err_invalid_register_offset(offset);
770         break;
771     }
772 }
773 
774 static uint64_t ufs_mmio_read(void *opaque, hwaddr addr, unsigned size)
775 {
776     UfsHc *u = (UfsHc *)opaque;
777     uint8_t *ptr;
778     uint64_t value;
779     uint64_t offset;
780 
781     if (addr < sizeof(u->reg)) {
782         offset = addr;
783         ptr = (uint8_t *)&u->reg;
784     } else if (ufs_is_mcq_reg(u, addr)) {
785         offset = addr - ufs_mcq_reg_addr(u, 0);
786         ptr = (uint8_t *)&u->mcq_reg;
787     } else if (ufs_is_mcq_op_reg(u, addr)) {
788         offset = addr - ufs_mcq_op_reg_addr(u, 0);
789         ptr = (uint8_t *)&u->mcq_op_reg;
790     } else {
791         trace_ufs_err_invalid_register_offset(addr);
792         return 0;
793     }
794 
795     value = *(uint32_t *)(ptr + offset);
796     trace_ufs_mmio_read(addr, value, size);
797     return value;
798 }
799 
800 static void ufs_mmio_write(void *opaque, hwaddr addr, uint64_t data,
801                            unsigned size)
802 {
803     UfsHc *u = (UfsHc *)opaque;
804 
805     trace_ufs_mmio_write(addr, data, size);
806 
807     if (addr < sizeof(u->reg)) {
808         ufs_write_reg(u, addr, data, size);
809     } else if (ufs_is_mcq_reg(u, addr)) {
810         ufs_write_mcq_reg(u, addr - ufs_mcq_reg_addr(u, 0), data, size);
811     } else if (ufs_is_mcq_op_reg(u, addr)) {
812         ufs_write_mcq_op_reg(u, addr - ufs_mcq_op_reg_addr(u, 0), data, size);
813     } else {
814         trace_ufs_err_invalid_register_offset(addr);
815     }
816 }
817 
818 static const MemoryRegionOps ufs_mmio_ops = {
819     .read = ufs_mmio_read,
820     .write = ufs_mmio_write,
821     .endianness = DEVICE_LITTLE_ENDIAN,
822     .impl = {
823         .min_access_size = 4,
824         .max_access_size = 4,
825     },
826 };
827 
828 
829 void ufs_build_upiu_header(UfsRequest *req, uint8_t trans_type, uint8_t flags,
830                            uint8_t response, uint8_t scsi_status,
831                            uint16_t data_segment_length)
832 {
833     memcpy(&req->rsp_upiu.header, &req->req_upiu.header, sizeof(UtpUpiuHeader));
834     req->rsp_upiu.header.trans_type = trans_type;
835     req->rsp_upiu.header.flags = flags;
836     req->rsp_upiu.header.response = response;
837     req->rsp_upiu.header.scsi_status = scsi_status;
838     req->rsp_upiu.header.data_segment_length = cpu_to_be16(data_segment_length);
839 }
840 
841 static UfsReqResult ufs_exec_scsi_cmd(UfsRequest *req)
842 {
843     UfsHc *u = req->hc;
844     uint8_t lun = req->req_upiu.header.lun;
845 
846     UfsLu *lu = NULL;
847 
848     trace_ufs_exec_scsi_cmd(req->slot, lun, req->req_upiu.sc.cdb[0]);
849 
850     if (!is_wlun(lun) && (lun >= UFS_MAX_LUS || u->lus[lun] == NULL)) {
851         trace_ufs_err_scsi_cmd_invalid_lun(lun);
852         return UFS_REQUEST_FAIL;
853     }
854 
855     switch (lun) {
856     case UFS_UPIU_REPORT_LUNS_WLUN:
857         lu = &u->report_wlu;
858         break;
859     case UFS_UPIU_UFS_DEVICE_WLUN:
860         lu = &u->dev_wlu;
861         break;
862     case UFS_UPIU_BOOT_WLUN:
863         lu = &u->boot_wlu;
864         break;
865     case UFS_UPIU_RPMB_WLUN:
866         lu = &u->rpmb_wlu;
867         break;
868     default:
869         lu = u->lus[lun];
870     }
871 
872     return lu->scsi_op(lu, req);
873 }
874 
875 static UfsReqResult ufs_exec_nop_cmd(UfsRequest *req)
876 {
877     trace_ufs_exec_nop_cmd(req->slot);
878     ufs_build_upiu_header(req, UFS_UPIU_TRANSACTION_NOP_IN, 0, 0, 0, 0);
879     return UFS_REQUEST_SUCCESS;
880 }
881 
882 /*
883  * This defines the permission of flags based on their IDN. There are some
884  * things that are declared read-only, which is inconsistent with the ufs spec,
885  * because we want to return an error for features that are not yet supported.
886  */
887 static const int flag_permission[UFS_QUERY_FLAG_IDN_COUNT] = {
888     [UFS_QUERY_FLAG_IDN_FDEVICEINIT] = UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET,
889     /* Write protection is not supported */
890     [UFS_QUERY_FLAG_IDN_PERMANENT_WPE] = UFS_QUERY_FLAG_READ,
891     [UFS_QUERY_FLAG_IDN_PWR_ON_WPE] = UFS_QUERY_FLAG_READ,
892     [UFS_QUERY_FLAG_IDN_BKOPS_EN] = UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET |
893                                     UFS_QUERY_FLAG_CLEAR |
894                                     UFS_QUERY_FLAG_TOGGLE,
895     [UFS_QUERY_FLAG_IDN_LIFE_SPAN_MODE_ENABLE] =
896         UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET | UFS_QUERY_FLAG_CLEAR |
897         UFS_QUERY_FLAG_TOGGLE,
898     /* Purge Operation is not supported */
899     [UFS_QUERY_FLAG_IDN_PURGE_ENABLE] = UFS_QUERY_FLAG_NONE,
900     /* Refresh Operation is not supported */
901     [UFS_QUERY_FLAG_IDN_REFRESH_ENABLE] = UFS_QUERY_FLAG_NONE,
902     /* Physical Resource Removal is not supported */
903     [UFS_QUERY_FLAG_IDN_FPHYRESOURCEREMOVAL] = UFS_QUERY_FLAG_READ,
904     [UFS_QUERY_FLAG_IDN_BUSY_RTC] = UFS_QUERY_FLAG_READ,
905     [UFS_QUERY_FLAG_IDN_PERMANENTLY_DISABLE_FW_UPDATE] = UFS_QUERY_FLAG_READ,
906     /* Write Booster is not supported */
907     [UFS_QUERY_FLAG_IDN_WB_EN] = UFS_QUERY_FLAG_READ,
908     [UFS_QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN] = UFS_QUERY_FLAG_READ,
909     [UFS_QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8] = UFS_QUERY_FLAG_READ,
910 };
911 
912 static inline QueryRespCode ufs_flag_check_idn_valid(uint8_t idn, int op)
913 {
914     if (idn >= UFS_QUERY_FLAG_IDN_COUNT) {
915         return UFS_QUERY_RESULT_INVALID_IDN;
916     }
917 
918     if (!(flag_permission[idn] & op)) {
919         if (op == UFS_QUERY_FLAG_READ) {
920             trace_ufs_err_query_flag_not_readable(idn);
921             return UFS_QUERY_RESULT_NOT_READABLE;
922         }
923         trace_ufs_err_query_flag_not_writable(idn);
924         return UFS_QUERY_RESULT_NOT_WRITEABLE;
925     }
926 
927     return UFS_QUERY_RESULT_SUCCESS;
928 }
929 
930 static const int attr_permission[UFS_QUERY_ATTR_IDN_COUNT] = {
931     /* booting is not supported */
932     [UFS_QUERY_ATTR_IDN_BOOT_LU_EN] = UFS_QUERY_ATTR_READ,
933     [UFS_QUERY_ATTR_IDN_POWER_MODE] = UFS_QUERY_ATTR_READ,
934     [UFS_QUERY_ATTR_IDN_ACTIVE_ICC_LVL] =
935         UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
936     [UFS_QUERY_ATTR_IDN_OOO_DATA_EN] = UFS_QUERY_ATTR_READ,
937     [UFS_QUERY_ATTR_IDN_BKOPS_STATUS] = UFS_QUERY_ATTR_READ,
938     [UFS_QUERY_ATTR_IDN_PURGE_STATUS] = UFS_QUERY_ATTR_READ,
939     [UFS_QUERY_ATTR_IDN_MAX_DATA_IN] =
940         UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
941     [UFS_QUERY_ATTR_IDN_MAX_DATA_OUT] =
942         UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
943     [UFS_QUERY_ATTR_IDN_DYN_CAP_NEEDED] = UFS_QUERY_ATTR_READ,
944     [UFS_QUERY_ATTR_IDN_REF_CLK_FREQ] =
945         UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
946     [UFS_QUERY_ATTR_IDN_CONF_DESC_LOCK] = UFS_QUERY_ATTR_READ,
947     [UFS_QUERY_ATTR_IDN_MAX_NUM_OF_RTT] =
948         UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
949     [UFS_QUERY_ATTR_IDN_EE_CONTROL] =
950         UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
951     [UFS_QUERY_ATTR_IDN_EE_STATUS] = UFS_QUERY_ATTR_READ,
952     [UFS_QUERY_ATTR_IDN_SECONDS_PASSED] = UFS_QUERY_ATTR_WRITE,
953     [UFS_QUERY_ATTR_IDN_CNTX_CONF] = UFS_QUERY_ATTR_READ,
954     [UFS_QUERY_ATTR_IDN_FFU_STATUS] = UFS_QUERY_ATTR_READ,
955     [UFS_QUERY_ATTR_IDN_PSA_STATE] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
956     [UFS_QUERY_ATTR_IDN_PSA_DATA_SIZE] =
957         UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
958     [UFS_QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME] = UFS_QUERY_ATTR_READ,
959     [UFS_QUERY_ATTR_IDN_CASE_ROUGH_TEMP] = UFS_QUERY_ATTR_READ,
960     [UFS_QUERY_ATTR_IDN_HIGH_TEMP_BOUND] = UFS_QUERY_ATTR_READ,
961     [UFS_QUERY_ATTR_IDN_LOW_TEMP_BOUND] = UFS_QUERY_ATTR_READ,
962     [UFS_QUERY_ATTR_IDN_THROTTLING_STATUS] = UFS_QUERY_ATTR_READ,
963     [UFS_QUERY_ATTR_IDN_WB_FLUSH_STATUS] = UFS_QUERY_ATTR_READ,
964     [UFS_QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE] = UFS_QUERY_ATTR_READ,
965     [UFS_QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST] = UFS_QUERY_ATTR_READ,
966     [UFS_QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE] = UFS_QUERY_ATTR_READ,
967     /* refresh operation is not supported */
968     [UFS_QUERY_ATTR_IDN_REFRESH_STATUS] = UFS_QUERY_ATTR_READ,
969     [UFS_QUERY_ATTR_IDN_REFRESH_FREQ] = UFS_QUERY_ATTR_READ,
970     [UFS_QUERY_ATTR_IDN_REFRESH_UNIT] = UFS_QUERY_ATTR_READ,
971 };
972 
973 static inline QueryRespCode ufs_attr_check_idn_valid(uint8_t idn, int op)
974 {
975     if (idn >= UFS_QUERY_ATTR_IDN_COUNT) {
976         return UFS_QUERY_RESULT_INVALID_IDN;
977     }
978 
979     if (!(attr_permission[idn] & op)) {
980         if (op == UFS_QUERY_ATTR_READ) {
981             trace_ufs_err_query_attr_not_readable(idn);
982             return UFS_QUERY_RESULT_NOT_READABLE;
983         }
984         trace_ufs_err_query_attr_not_writable(idn);
985         return UFS_QUERY_RESULT_NOT_WRITEABLE;
986     }
987 
988     return UFS_QUERY_RESULT_SUCCESS;
989 }
990 
991 static QueryRespCode ufs_exec_query_flag(UfsRequest *req, int op)
992 {
993     UfsHc *u = req->hc;
994     uint8_t idn = req->req_upiu.qr.idn;
995     uint32_t value;
996     QueryRespCode ret;
997 
998     ret = ufs_flag_check_idn_valid(idn, op);
999     if (ret) {
1000         return ret;
1001     }
1002 
1003     if (idn == UFS_QUERY_FLAG_IDN_FDEVICEINIT) {
1004         value = 0;
1005     } else if (op == UFS_QUERY_FLAG_READ) {
1006         value = *(((uint8_t *)&u->flags) + idn);
1007     } else if (op == UFS_QUERY_FLAG_SET) {
1008         value = 1;
1009     } else if (op == UFS_QUERY_FLAG_CLEAR) {
1010         value = 0;
1011     } else if (op == UFS_QUERY_FLAG_TOGGLE) {
1012         value = *(((uint8_t *)&u->flags) + idn);
1013         value = !value;
1014     } else {
1015         trace_ufs_err_query_invalid_opcode(op);
1016         return UFS_QUERY_RESULT_INVALID_OPCODE;
1017     }
1018 
1019     *(((uint8_t *)&u->flags) + idn) = value;
1020     req->rsp_upiu.qr.value = cpu_to_be32(value);
1021     return UFS_QUERY_RESULT_SUCCESS;
1022 }
1023 
1024 static uint32_t ufs_read_attr_value(UfsHc *u, uint8_t idn)
1025 {
1026     switch (idn) {
1027     case UFS_QUERY_ATTR_IDN_BOOT_LU_EN:
1028         return u->attributes.boot_lun_en;
1029     case UFS_QUERY_ATTR_IDN_POWER_MODE:
1030         return u->attributes.current_power_mode;
1031     case UFS_QUERY_ATTR_IDN_ACTIVE_ICC_LVL:
1032         return u->attributes.active_icc_level;
1033     case UFS_QUERY_ATTR_IDN_OOO_DATA_EN:
1034         return u->attributes.out_of_order_data_en;
1035     case UFS_QUERY_ATTR_IDN_BKOPS_STATUS:
1036         return u->attributes.background_op_status;
1037     case UFS_QUERY_ATTR_IDN_PURGE_STATUS:
1038         return u->attributes.purge_status;
1039     case UFS_QUERY_ATTR_IDN_MAX_DATA_IN:
1040         return u->attributes.max_data_in_size;
1041     case UFS_QUERY_ATTR_IDN_MAX_DATA_OUT:
1042         return u->attributes.max_data_out_size;
1043     case UFS_QUERY_ATTR_IDN_DYN_CAP_NEEDED:
1044         return be32_to_cpu(u->attributes.dyn_cap_needed);
1045     case UFS_QUERY_ATTR_IDN_REF_CLK_FREQ:
1046         return u->attributes.ref_clk_freq;
1047     case UFS_QUERY_ATTR_IDN_CONF_DESC_LOCK:
1048         return u->attributes.config_descr_lock;
1049     case UFS_QUERY_ATTR_IDN_MAX_NUM_OF_RTT:
1050         return u->attributes.max_num_of_rtt;
1051     case UFS_QUERY_ATTR_IDN_EE_CONTROL:
1052         return be16_to_cpu(u->attributes.exception_event_control);
1053     case UFS_QUERY_ATTR_IDN_EE_STATUS:
1054         return be16_to_cpu(u->attributes.exception_event_status);
1055     case UFS_QUERY_ATTR_IDN_SECONDS_PASSED:
1056         return be32_to_cpu(u->attributes.seconds_passed);
1057     case UFS_QUERY_ATTR_IDN_CNTX_CONF:
1058         return be16_to_cpu(u->attributes.context_conf);
1059     case UFS_QUERY_ATTR_IDN_FFU_STATUS:
1060         return u->attributes.device_ffu_status;
1061     case UFS_QUERY_ATTR_IDN_PSA_STATE:
1062         return be32_to_cpu(u->attributes.psa_state);
1063     case UFS_QUERY_ATTR_IDN_PSA_DATA_SIZE:
1064         return be32_to_cpu(u->attributes.psa_data_size);
1065     case UFS_QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME:
1066         return u->attributes.ref_clk_gating_wait_time;
1067     case UFS_QUERY_ATTR_IDN_CASE_ROUGH_TEMP:
1068         return u->attributes.device_case_rough_temperaure;
1069     case UFS_QUERY_ATTR_IDN_HIGH_TEMP_BOUND:
1070         return u->attributes.device_too_high_temp_boundary;
1071     case UFS_QUERY_ATTR_IDN_LOW_TEMP_BOUND:
1072         return u->attributes.device_too_low_temp_boundary;
1073     case UFS_QUERY_ATTR_IDN_THROTTLING_STATUS:
1074         return u->attributes.throttling_status;
1075     case UFS_QUERY_ATTR_IDN_WB_FLUSH_STATUS:
1076         return u->attributes.wb_buffer_flush_status;
1077     case UFS_QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE:
1078         return u->attributes.available_wb_buffer_size;
1079     case UFS_QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST:
1080         return u->attributes.wb_buffer_life_time_est;
1081     case UFS_QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE:
1082         return be32_to_cpu(u->attributes.current_wb_buffer_size);
1083     case UFS_QUERY_ATTR_IDN_REFRESH_STATUS:
1084         return u->attributes.refresh_status;
1085     case UFS_QUERY_ATTR_IDN_REFRESH_FREQ:
1086         return u->attributes.refresh_freq;
1087     case UFS_QUERY_ATTR_IDN_REFRESH_UNIT:
1088         return u->attributes.refresh_unit;
1089     }
1090     return 0;
1091 }
1092 
1093 static void ufs_write_attr_value(UfsHc *u, uint8_t idn, uint32_t value)
1094 {
1095     switch (idn) {
1096     case UFS_QUERY_ATTR_IDN_ACTIVE_ICC_LVL:
1097         u->attributes.active_icc_level = value;
1098         break;
1099     case UFS_QUERY_ATTR_IDN_MAX_DATA_IN:
1100         u->attributes.max_data_in_size = value;
1101         break;
1102     case UFS_QUERY_ATTR_IDN_MAX_DATA_OUT:
1103         u->attributes.max_data_out_size = value;
1104         break;
1105     case UFS_QUERY_ATTR_IDN_REF_CLK_FREQ:
1106         u->attributes.ref_clk_freq = value;
1107         break;
1108     case UFS_QUERY_ATTR_IDN_MAX_NUM_OF_RTT:
1109         u->attributes.max_num_of_rtt = value;
1110         break;
1111     case UFS_QUERY_ATTR_IDN_EE_CONTROL:
1112         u->attributes.exception_event_control = cpu_to_be16(value);
1113         break;
1114     case UFS_QUERY_ATTR_IDN_SECONDS_PASSED:
1115         u->attributes.seconds_passed = cpu_to_be32(value);
1116         break;
1117     case UFS_QUERY_ATTR_IDN_PSA_STATE:
1118         u->attributes.psa_state = value;
1119         break;
1120     case UFS_QUERY_ATTR_IDN_PSA_DATA_SIZE:
1121         u->attributes.psa_data_size = cpu_to_be32(value);
1122         break;
1123     }
1124 }
1125 
1126 static QueryRespCode ufs_exec_query_attr(UfsRequest *req, int op)
1127 {
1128     UfsHc *u = req->hc;
1129     uint8_t idn = req->req_upiu.qr.idn;
1130     uint32_t value;
1131     QueryRespCode ret;
1132 
1133     ret = ufs_attr_check_idn_valid(idn, op);
1134     if (ret) {
1135         return ret;
1136     }
1137 
1138     if (op == UFS_QUERY_ATTR_READ) {
1139         value = ufs_read_attr_value(u, idn);
1140     } else {
1141         value = be32_to_cpu(req->req_upiu.qr.value);
1142         ufs_write_attr_value(u, idn, value);
1143     }
1144 
1145     req->rsp_upiu.qr.value = cpu_to_be32(value);
1146     return UFS_QUERY_RESULT_SUCCESS;
1147 }
1148 
1149 static const RpmbUnitDescriptor rpmb_unit_desc = {
1150     .length = sizeof(RpmbUnitDescriptor),
1151     .descriptor_idn = 2,
1152     .unit_index = UFS_UPIU_RPMB_WLUN,
1153     .lu_enable = 0,
1154 };
1155 
1156 static QueryRespCode ufs_read_unit_desc(UfsRequest *req)
1157 {
1158     UfsHc *u = req->hc;
1159     uint8_t lun = req->req_upiu.qr.index;
1160 
1161     if (lun != UFS_UPIU_RPMB_WLUN &&
1162         (lun >= UFS_MAX_LUS || u->lus[lun] == NULL)) {
1163         trace_ufs_err_query_invalid_index(req->req_upiu.qr.opcode, lun);
1164         return UFS_QUERY_RESULT_INVALID_INDEX;
1165     }
1166 
1167     if (lun == UFS_UPIU_RPMB_WLUN) {
1168         memcpy(&req->rsp_upiu.qr.data, &rpmb_unit_desc, rpmb_unit_desc.length);
1169     } else {
1170         memcpy(&req->rsp_upiu.qr.data, &u->lus[lun]->unit_desc,
1171                sizeof(u->lus[lun]->unit_desc));
1172     }
1173 
1174     return UFS_QUERY_RESULT_SUCCESS;
1175 }
1176 
1177 static inline StringDescriptor manufacturer_str_desc(void)
1178 {
1179     StringDescriptor desc = {
1180         .length = 0x12,
1181         .descriptor_idn = UFS_QUERY_DESC_IDN_STRING,
1182     };
1183     desc.UC[0] = cpu_to_be16('R');
1184     desc.UC[1] = cpu_to_be16('E');
1185     desc.UC[2] = cpu_to_be16('D');
1186     desc.UC[3] = cpu_to_be16('H');
1187     desc.UC[4] = cpu_to_be16('A');
1188     desc.UC[5] = cpu_to_be16('T');
1189     return desc;
1190 }
1191 
1192 static inline StringDescriptor product_name_str_desc(void)
1193 {
1194     StringDescriptor desc = {
1195         .length = 0x22,
1196         .descriptor_idn = UFS_QUERY_DESC_IDN_STRING,
1197     };
1198     desc.UC[0] = cpu_to_be16('Q');
1199     desc.UC[1] = cpu_to_be16('E');
1200     desc.UC[2] = cpu_to_be16('M');
1201     desc.UC[3] = cpu_to_be16('U');
1202     desc.UC[4] = cpu_to_be16(' ');
1203     desc.UC[5] = cpu_to_be16('U');
1204     desc.UC[6] = cpu_to_be16('F');
1205     desc.UC[7] = cpu_to_be16('S');
1206     return desc;
1207 }
1208 
1209 static inline StringDescriptor product_rev_level_str_desc(void)
1210 {
1211     StringDescriptor desc = {
1212         .length = 0x0a,
1213         .descriptor_idn = UFS_QUERY_DESC_IDN_STRING,
1214     };
1215     desc.UC[0] = cpu_to_be16('0');
1216     desc.UC[1] = cpu_to_be16('0');
1217     desc.UC[2] = cpu_to_be16('0');
1218     desc.UC[3] = cpu_to_be16('1');
1219     return desc;
1220 }
1221 
1222 static const StringDescriptor null_str_desc = {
1223     .length = 0x02,
1224     .descriptor_idn = UFS_QUERY_DESC_IDN_STRING,
1225 };
1226 
1227 static QueryRespCode ufs_read_string_desc(UfsRequest *req)
1228 {
1229     UfsHc *u = req->hc;
1230     uint8_t index = req->req_upiu.qr.index;
1231     StringDescriptor desc;
1232 
1233     if (index == u->device_desc.manufacturer_name) {
1234         desc = manufacturer_str_desc();
1235         memcpy(&req->rsp_upiu.qr.data, &desc, desc.length);
1236     } else if (index == u->device_desc.product_name) {
1237         desc = product_name_str_desc();
1238         memcpy(&req->rsp_upiu.qr.data, &desc, desc.length);
1239     } else if (index == u->device_desc.serial_number) {
1240         memcpy(&req->rsp_upiu.qr.data, &null_str_desc, null_str_desc.length);
1241     } else if (index == u->device_desc.oem_id) {
1242         memcpy(&req->rsp_upiu.qr.data, &null_str_desc, null_str_desc.length);
1243     } else if (index == u->device_desc.product_revision_level) {
1244         desc = product_rev_level_str_desc();
1245         memcpy(&req->rsp_upiu.qr.data, &desc, desc.length);
1246     } else {
1247         trace_ufs_err_query_invalid_index(req->req_upiu.qr.opcode, index);
1248         return UFS_QUERY_RESULT_INVALID_INDEX;
1249     }
1250     return UFS_QUERY_RESULT_SUCCESS;
1251 }
1252 
1253 static inline InterconnectDescriptor interconnect_desc(void)
1254 {
1255     InterconnectDescriptor desc = {
1256         .length = sizeof(InterconnectDescriptor),
1257         .descriptor_idn = UFS_QUERY_DESC_IDN_INTERCONNECT,
1258     };
1259     desc.bcd_unipro_version = cpu_to_be16(0x180);
1260     desc.bcd_mphy_version = cpu_to_be16(0x410);
1261     return desc;
1262 }
1263 
1264 static QueryRespCode ufs_read_desc(UfsRequest *req)
1265 {
1266     UfsHc *u = req->hc;
1267     QueryRespCode status;
1268     uint8_t idn = req->req_upiu.qr.idn;
1269     uint16_t length = be16_to_cpu(req->req_upiu.qr.length);
1270     InterconnectDescriptor desc;
1271 
1272     switch (idn) {
1273     case UFS_QUERY_DESC_IDN_DEVICE:
1274         memcpy(&req->rsp_upiu.qr.data, &u->device_desc, sizeof(u->device_desc));
1275         status = UFS_QUERY_RESULT_SUCCESS;
1276         break;
1277     case UFS_QUERY_DESC_IDN_UNIT:
1278         status = ufs_read_unit_desc(req);
1279         break;
1280     case UFS_QUERY_DESC_IDN_GEOMETRY:
1281         memcpy(&req->rsp_upiu.qr.data, &u->geometry_desc,
1282                sizeof(u->geometry_desc));
1283         status = UFS_QUERY_RESULT_SUCCESS;
1284         break;
1285     case UFS_QUERY_DESC_IDN_INTERCONNECT: {
1286         desc = interconnect_desc();
1287         memcpy(&req->rsp_upiu.qr.data, &desc, sizeof(InterconnectDescriptor));
1288         status = UFS_QUERY_RESULT_SUCCESS;
1289         break;
1290     }
1291     case UFS_QUERY_DESC_IDN_STRING:
1292         status = ufs_read_string_desc(req);
1293         break;
1294     case UFS_QUERY_DESC_IDN_POWER:
1295         /* mocking of power descriptor is not supported */
1296         memset(&req->rsp_upiu.qr.data, 0, sizeof(PowerParametersDescriptor));
1297         req->rsp_upiu.qr.data[0] = sizeof(PowerParametersDescriptor);
1298         req->rsp_upiu.qr.data[1] = UFS_QUERY_DESC_IDN_POWER;
1299         status = UFS_QUERY_RESULT_SUCCESS;
1300         break;
1301     case UFS_QUERY_DESC_IDN_HEALTH:
1302         /* mocking of health descriptor is not supported */
1303         memset(&req->rsp_upiu.qr.data, 0, sizeof(DeviceHealthDescriptor));
1304         req->rsp_upiu.qr.data[0] = sizeof(DeviceHealthDescriptor);
1305         req->rsp_upiu.qr.data[1] = UFS_QUERY_DESC_IDN_HEALTH;
1306         status = UFS_QUERY_RESULT_SUCCESS;
1307         break;
1308     default:
1309         length = 0;
1310         trace_ufs_err_query_invalid_idn(req->req_upiu.qr.opcode, idn);
1311         status = UFS_QUERY_RESULT_INVALID_IDN;
1312     }
1313 
1314     if (length > req->rsp_upiu.qr.data[0]) {
1315         length = req->rsp_upiu.qr.data[0];
1316     }
1317     req->rsp_upiu.qr.opcode = req->req_upiu.qr.opcode;
1318     req->rsp_upiu.qr.idn = req->req_upiu.qr.idn;
1319     req->rsp_upiu.qr.index = req->req_upiu.qr.index;
1320     req->rsp_upiu.qr.selector = req->req_upiu.qr.selector;
1321     req->rsp_upiu.qr.length = cpu_to_be16(length);
1322 
1323     return status;
1324 }
1325 
1326 static QueryRespCode ufs_exec_query_read(UfsRequest *req)
1327 {
1328     QueryRespCode status;
1329     switch (req->req_upiu.qr.opcode) {
1330     case UFS_UPIU_QUERY_OPCODE_NOP:
1331         status = UFS_QUERY_RESULT_SUCCESS;
1332         break;
1333     case UFS_UPIU_QUERY_OPCODE_READ_DESC:
1334         status = ufs_read_desc(req);
1335         break;
1336     case UFS_UPIU_QUERY_OPCODE_READ_ATTR:
1337         status = ufs_exec_query_attr(req, UFS_QUERY_ATTR_READ);
1338         break;
1339     case UFS_UPIU_QUERY_OPCODE_READ_FLAG:
1340         status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_READ);
1341         break;
1342     default:
1343         trace_ufs_err_query_invalid_opcode(req->req_upiu.qr.opcode);
1344         status = UFS_QUERY_RESULT_INVALID_OPCODE;
1345         break;
1346     }
1347 
1348     return status;
1349 }
1350 
1351 static QueryRespCode ufs_exec_query_write(UfsRequest *req)
1352 {
1353     QueryRespCode status;
1354     switch (req->req_upiu.qr.opcode) {
1355     case UFS_UPIU_QUERY_OPCODE_NOP:
1356         status = UFS_QUERY_RESULT_SUCCESS;
1357         break;
1358     case UFS_UPIU_QUERY_OPCODE_WRITE_DESC:
1359         /* write descriptor is not supported */
1360         status = UFS_QUERY_RESULT_NOT_WRITEABLE;
1361         break;
1362     case UFS_UPIU_QUERY_OPCODE_WRITE_ATTR:
1363         status = ufs_exec_query_attr(req, UFS_QUERY_ATTR_WRITE);
1364         break;
1365     case UFS_UPIU_QUERY_OPCODE_SET_FLAG:
1366         status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_SET);
1367         break;
1368     case UFS_UPIU_QUERY_OPCODE_CLEAR_FLAG:
1369         status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_CLEAR);
1370         break;
1371     case UFS_UPIU_QUERY_OPCODE_TOGGLE_FLAG:
1372         status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_TOGGLE);
1373         break;
1374     default:
1375         trace_ufs_err_query_invalid_opcode(req->req_upiu.qr.opcode);
1376         status = UFS_QUERY_RESULT_INVALID_OPCODE;
1377         break;
1378     }
1379 
1380     return status;
1381 }
1382 
1383 static UfsReqResult ufs_exec_query_cmd(UfsRequest *req)
1384 {
1385     uint8_t query_func = req->req_upiu.header.query_func;
1386     uint16_t data_segment_length;
1387     QueryRespCode status;
1388 
1389     trace_ufs_exec_query_cmd(req->slot, req->req_upiu.qr.opcode);
1390     if (query_func == UFS_UPIU_QUERY_FUNC_STANDARD_READ_REQUEST) {
1391         status = ufs_exec_query_read(req);
1392     } else if (query_func == UFS_UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST) {
1393         status = ufs_exec_query_write(req);
1394     } else {
1395         status = UFS_QUERY_RESULT_GENERAL_FAILURE;
1396     }
1397 
1398     data_segment_length = be16_to_cpu(req->rsp_upiu.qr.length);
1399     ufs_build_upiu_header(req, UFS_UPIU_TRANSACTION_QUERY_RSP, 0, status, 0,
1400                           data_segment_length);
1401 
1402     if (status != UFS_QUERY_RESULT_SUCCESS) {
1403         return UFS_REQUEST_FAIL;
1404     }
1405     return UFS_REQUEST_SUCCESS;
1406 }
1407 
1408 static void ufs_exec_req(UfsRequest *req)
1409 {
1410     UfsReqResult req_result;
1411 
1412     if (ufs_dma_read_upiu(req)) {
1413         return;
1414     }
1415 
1416     switch (req->req_upiu.header.trans_type) {
1417     case UFS_UPIU_TRANSACTION_NOP_OUT:
1418         req_result = ufs_exec_nop_cmd(req);
1419         break;
1420     case UFS_UPIU_TRANSACTION_COMMAND:
1421         req_result = ufs_exec_scsi_cmd(req);
1422         break;
1423     case UFS_UPIU_TRANSACTION_QUERY_REQ:
1424         req_result = ufs_exec_query_cmd(req);
1425         break;
1426     default:
1427         trace_ufs_err_invalid_trans_code(req->slot,
1428                                          req->req_upiu.header.trans_type);
1429         req_result = UFS_REQUEST_FAIL;
1430     }
1431 
1432     /*
1433      * The ufs_complete_req for scsi commands is handled by the
1434      * ufs_scsi_command_complete() callback function. Therefore, to avoid
1435      * duplicate processing, ufs_complete_req() is not called for scsi commands.
1436      */
1437     if (req_result != UFS_REQUEST_NO_COMPLETE) {
1438         ufs_complete_req(req, req_result);
1439     }
1440 }
1441 
1442 static void ufs_process_req(void *opaque)
1443 {
1444     UfsHc *u = opaque;
1445     UfsRequest *req;
1446     int slot;
1447 
1448     for (slot = 0; slot < u->params.nutrs; slot++) {
1449         req = &u->req_list[slot];
1450 
1451         if (req->state != UFS_REQUEST_READY) {
1452             continue;
1453         }
1454         trace_ufs_process_req(slot);
1455         req->state = UFS_REQUEST_RUNNING;
1456 
1457         ufs_exec_req(req);
1458     }
1459 }
1460 
1461 void ufs_complete_req(UfsRequest *req, UfsReqResult req_result)
1462 {
1463     UfsHc *u = req->hc;
1464     assert(req->state == UFS_REQUEST_RUNNING);
1465 
1466     if (req_result == UFS_REQUEST_SUCCESS) {
1467         req->utrd.header.dword_2 = cpu_to_le32(UFS_OCS_SUCCESS);
1468     } else {
1469         req->utrd.header.dword_2 = cpu_to_le32(UFS_OCS_INVALID_CMD_TABLE_ATTR);
1470     }
1471 
1472     req->state = UFS_REQUEST_COMPLETE;
1473 
1474     if (ufs_mcq_req(req)) {
1475         trace_ufs_mcq_complete_req(req->sq->sqid);
1476         QTAILQ_INSERT_TAIL(&req->sq->cq->req_list, req, entry);
1477         qemu_bh_schedule(req->sq->cq->bh);
1478     } else {
1479         trace_ufs_complete_req(req->slot);
1480         qemu_bh_schedule(u->complete_bh);
1481     }
1482 }
1483 
1484 static void ufs_clear_req(UfsRequest *req)
1485 {
1486     if (req->sg != NULL) {
1487         qemu_sglist_destroy(req->sg);
1488         g_free(req->sg);
1489         req->sg = NULL;
1490         req->data_len = 0;
1491     }
1492 
1493     memset(&req->utrd, 0, sizeof(req->utrd));
1494     memset(&req->req_upiu, 0, sizeof(req->req_upiu));
1495     memset(&req->rsp_upiu, 0, sizeof(req->rsp_upiu));
1496 }
1497 
1498 static void ufs_sendback_req(void *opaque)
1499 {
1500     UfsHc *u = opaque;
1501     UfsRequest *req;
1502     int slot;
1503 
1504     for (slot = 0; slot < u->params.nutrs; slot++) {
1505         req = &u->req_list[slot];
1506 
1507         if (req->state != UFS_REQUEST_COMPLETE) {
1508             continue;
1509         }
1510 
1511         if (ufs_dma_write_upiu(req)) {
1512             req->state = UFS_REQUEST_ERROR;
1513             continue;
1514         }
1515 
1516         /*
1517          * TODO: UTP Transfer Request Interrupt Aggregation Control is not yet
1518          * supported
1519          */
1520         if (le32_to_cpu(req->utrd.header.dword_2) != UFS_OCS_SUCCESS ||
1521             le32_to_cpu(req->utrd.header.dword_0) & UFS_UTP_REQ_DESC_INT_CMD) {
1522             u->reg.is = FIELD_DP32(u->reg.is, IS, UTRCS, 1);
1523         }
1524 
1525         u->reg.utrldbr &= ~(1 << slot);
1526         u->reg.utrlcnr |= (1 << slot);
1527 
1528         trace_ufs_sendback_req(req->slot);
1529 
1530         ufs_clear_req(req);
1531         req->state = UFS_REQUEST_IDLE;
1532     }
1533 
1534     ufs_irq_check(u);
1535 }
1536 
1537 static bool ufs_check_constraints(UfsHc *u, Error **errp)
1538 {
1539     if (u->params.nutrs > UFS_MAX_NUTRS) {
1540         error_setg(errp, "nutrs must be less than or equal to %d",
1541                    UFS_MAX_NUTRS);
1542         return false;
1543     }
1544 
1545     if (u->params.nutmrs > UFS_MAX_NUTMRS) {
1546         error_setg(errp, "nutmrs must be less than or equal to %d",
1547                    UFS_MAX_NUTMRS);
1548         return false;
1549     }
1550 
1551     if (u->params.mcq_maxq >= UFS_MAX_MCQ_QNUM) {
1552         error_setg(errp, "mcq-maxq must be less than %d", UFS_MAX_MCQ_QNUM);
1553         return false;
1554     }
1555 
1556     return true;
1557 }
1558 
1559 static void ufs_init_pci(UfsHc *u, PCIDevice *pci_dev)
1560 {
1561     uint8_t *pci_conf = pci_dev->config;
1562 
1563     pci_conf[PCI_INTERRUPT_PIN] = 1;
1564     pci_config_set_prog_interface(pci_conf, 0x1);
1565 
1566     memory_region_init_io(&u->iomem, OBJECT(u), &ufs_mmio_ops, u, "ufs",
1567                           u->reg_size);
1568     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &u->iomem);
1569     u->irq = pci_allocate_irq(pci_dev);
1570 }
1571 
1572 static void ufs_init_state(UfsHc *u)
1573 {
1574     u->req_list = g_new0(UfsRequest, u->params.nutrs);
1575 
1576     for (int i = 0; i < u->params.nutrs; i++) {
1577         u->req_list[i].hc = u;
1578         u->req_list[i].slot = i;
1579         u->req_list[i].sg = NULL;
1580         u->req_list[i].state = UFS_REQUEST_IDLE;
1581     }
1582 
1583     u->doorbell_bh = qemu_bh_new_guarded(ufs_process_req, u,
1584                                          &DEVICE(u)->mem_reentrancy_guard);
1585     u->complete_bh = qemu_bh_new_guarded(ufs_sendback_req, u,
1586                                          &DEVICE(u)->mem_reentrancy_guard);
1587 
1588     if (u->params.mcq) {
1589         memset(u->sq, 0, sizeof(u->sq));
1590         memset(u->cq, 0, sizeof(u->cq));
1591     }
1592 }
1593 
1594 static void ufs_init_hc(UfsHc *u)
1595 {
1596     uint32_t cap = 0;
1597     uint32_t mcqconfig = 0;
1598     uint32_t mcqcap = 0;
1599 
1600     u->reg_size = pow2ceil(ufs_reg_size(u));
1601 
1602     memset(&u->reg, 0, sizeof(u->reg));
1603     memset(&u->mcq_reg, 0, sizeof(u->mcq_reg));
1604     memset(&u->mcq_op_reg, 0, sizeof(u->mcq_op_reg));
1605     cap = FIELD_DP32(cap, CAP, NUTRS, (u->params.nutrs - 1));
1606     cap = FIELD_DP32(cap, CAP, RTT, 2);
1607     cap = FIELD_DP32(cap, CAP, NUTMRS, (u->params.nutmrs - 1));
1608     cap = FIELD_DP32(cap, CAP, AUTOH8, 0);
1609     cap = FIELD_DP32(cap, CAP, 64AS, 1);
1610     cap = FIELD_DP32(cap, CAP, OODDS, 0);
1611     cap = FIELD_DP32(cap, CAP, UICDMETMS, 0);
1612     cap = FIELD_DP32(cap, CAP, CS, 0);
1613     cap = FIELD_DP32(cap, CAP, LSDBS, 1);
1614     cap = FIELD_DP32(cap, CAP, MCQS, u->params.mcq);
1615     u->reg.cap = cap;
1616 
1617     if (u->params.mcq) {
1618         mcqconfig = FIELD_DP32(mcqconfig, MCQCONFIG, MAC, 0x1f);
1619         u->reg.mcqconfig = mcqconfig;
1620 
1621         mcqcap = FIELD_DP32(mcqcap, MCQCAP, MAXQ, u->params.mcq_maxq - 1);
1622         mcqcap = FIELD_DP32(mcqcap, MCQCAP, RRP, 1);
1623         mcqcap = FIELD_DP32(mcqcap, MCQCAP, QCFGPTR, UFS_MCQ_QCFGPTR);
1624         u->reg.mcqcap = mcqcap;
1625 
1626         for (int i = 0; i < ARRAY_SIZE(u->mcq_reg); i++) {
1627             uint64_t addr = ufs_mcq_op_reg_addr(u, i);
1628             u->mcq_reg[i].sqdao = addr;
1629             u->mcq_reg[i].sqisao = addr + sizeof(UfsMcqSqReg);
1630             addr += sizeof(UfsMcqSqReg);
1631             u->mcq_reg[i].cqdao = addr + sizeof(UfsMcqSqIntReg);
1632             addr += sizeof(UfsMcqSqIntReg);
1633             u->mcq_reg[i].cqisao = addr + sizeof(UfsMcqCqReg);
1634         }
1635     }
1636     u->reg.ver = UFS_SPEC_VER;
1637 
1638     memset(&u->device_desc, 0, sizeof(DeviceDescriptor));
1639     u->device_desc.length = sizeof(DeviceDescriptor);
1640     u->device_desc.descriptor_idn = UFS_QUERY_DESC_IDN_DEVICE;
1641     u->device_desc.device_sub_class = 0x01;
1642     u->device_desc.number_lu = 0x00;
1643     u->device_desc.number_wlu = 0x04;
1644     /* TODO: Revisit it when Power Management is implemented */
1645     u->device_desc.init_power_mode = 0x01; /* Active Mode */
1646     u->device_desc.high_priority_lun = 0x7F; /* Same Priority */
1647     u->device_desc.spec_version = cpu_to_be16(UFS_SPEC_VER);
1648     u->device_desc.manufacturer_name = 0x00;
1649     u->device_desc.product_name = 0x01;
1650     u->device_desc.serial_number = 0x02;
1651     u->device_desc.oem_id = 0x03;
1652     u->device_desc.ud_0_base_offset = 0x16;
1653     u->device_desc.ud_config_p_length = 0x1A;
1654     u->device_desc.device_rtt_cap = 0x02;
1655     u->device_desc.queue_depth = u->params.nutrs;
1656     u->device_desc.product_revision_level = 0x04;
1657 
1658     memset(&u->geometry_desc, 0, sizeof(GeometryDescriptor));
1659     u->geometry_desc.length = sizeof(GeometryDescriptor);
1660     u->geometry_desc.descriptor_idn = UFS_QUERY_DESC_IDN_GEOMETRY;
1661     u->geometry_desc.max_number_lu = (UFS_MAX_LUS == 32) ? 0x1 : 0x0;
1662     u->geometry_desc.segment_size = cpu_to_be32(0x2000); /* 4KB */
1663     u->geometry_desc.allocation_unit_size = 0x1; /* 4KB */
1664     u->geometry_desc.min_addr_block_size = 0x8; /* 4KB */
1665     u->geometry_desc.max_in_buffer_size = 0x8;
1666     u->geometry_desc.max_out_buffer_size = 0x8;
1667     u->geometry_desc.rpmb_read_write_size = 0x40;
1668     u->geometry_desc.data_ordering =
1669         0x0; /* out-of-order data transfer is not supported */
1670     u->geometry_desc.max_context_id_number = 0x5;
1671     u->geometry_desc.supported_memory_types = cpu_to_be16(0x8001);
1672 
1673     memset(&u->attributes, 0, sizeof(u->attributes));
1674     u->attributes.max_data_in_size = 0x08;
1675     u->attributes.max_data_out_size = 0x08;
1676     u->attributes.ref_clk_freq = 0x01; /* 26 MHz */
1677     /* configure descriptor is not supported */
1678     u->attributes.config_descr_lock = 0x01;
1679     u->attributes.max_num_of_rtt = 0x02;
1680 
1681     memset(&u->flags, 0, sizeof(u->flags));
1682     u->flags.permanently_disable_fw_update = 1;
1683 }
1684 
1685 static void ufs_realize(PCIDevice *pci_dev, Error **errp)
1686 {
1687     UfsHc *u = UFS(pci_dev);
1688 
1689     if (!ufs_check_constraints(u, errp)) {
1690         return;
1691     }
1692 
1693     qbus_init(&u->bus, sizeof(UfsBus), TYPE_UFS_BUS, &pci_dev->qdev,
1694               u->parent_obj.qdev.id);
1695 
1696     ufs_init_state(u);
1697     ufs_init_hc(u);
1698     ufs_init_pci(u, pci_dev);
1699 
1700     ufs_init_wlu(&u->report_wlu, UFS_UPIU_REPORT_LUNS_WLUN);
1701     ufs_init_wlu(&u->dev_wlu, UFS_UPIU_UFS_DEVICE_WLUN);
1702     ufs_init_wlu(&u->boot_wlu, UFS_UPIU_BOOT_WLUN);
1703     ufs_init_wlu(&u->rpmb_wlu, UFS_UPIU_RPMB_WLUN);
1704 }
1705 
1706 static void ufs_exit(PCIDevice *pci_dev)
1707 {
1708     UfsHc *u = UFS(pci_dev);
1709 
1710     qemu_bh_delete(u->doorbell_bh);
1711     qemu_bh_delete(u->complete_bh);
1712 
1713     for (int i = 0; i < u->params.nutrs; i++) {
1714         ufs_clear_req(&u->req_list[i]);
1715     }
1716     g_free(u->req_list);
1717 
1718     for (int i = 0; i < ARRAY_SIZE(u->sq); i++) {
1719         if (u->sq[i]) {
1720             ufs_mcq_delete_sq(u, i);
1721         }
1722     }
1723     for (int i = 0; i < ARRAY_SIZE(u->cq); i++) {
1724         if (u->cq[i]) {
1725             ufs_mcq_delete_cq(u, i);
1726         }
1727     }
1728 }
1729 
1730 static Property ufs_props[] = {
1731     DEFINE_PROP_STRING("serial", UfsHc, params.serial),
1732     DEFINE_PROP_UINT8("nutrs", UfsHc, params.nutrs, 32),
1733     DEFINE_PROP_UINT8("nutmrs", UfsHc, params.nutmrs, 8),
1734     DEFINE_PROP_BOOL("mcq", UfsHc, params.mcq, false),
1735     DEFINE_PROP_UINT8("mcq-maxq", UfsHc, params.mcq_maxq, 2),
1736     DEFINE_PROP_END_OF_LIST(),
1737 };
1738 
1739 static const VMStateDescription ufs_vmstate = {
1740     .name = "ufs",
1741     .unmigratable = 1,
1742 };
1743 
1744 static void ufs_class_init(ObjectClass *oc, void *data)
1745 {
1746     DeviceClass *dc = DEVICE_CLASS(oc);
1747     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1748 
1749     pc->realize = ufs_realize;
1750     pc->exit = ufs_exit;
1751     pc->vendor_id = PCI_VENDOR_ID_REDHAT;
1752     pc->device_id = PCI_DEVICE_ID_REDHAT_UFS;
1753     pc->class_id = PCI_CLASS_STORAGE_UFS;
1754 
1755     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1756     dc->desc = "Universal Flash Storage";
1757     device_class_set_props(dc, ufs_props);
1758     dc->vmsd = &ufs_vmstate;
1759 }
1760 
1761 static bool ufs_bus_check_address(BusState *qbus, DeviceState *qdev,
1762                                   Error **errp)
1763 {
1764     if (strcmp(object_get_typename(OBJECT(qdev)), TYPE_UFS_LU) != 0) {
1765         error_setg(errp, "%s cannot be connected to ufs-bus",
1766                    object_get_typename(OBJECT(qdev)));
1767         return false;
1768     }
1769 
1770     return true;
1771 }
1772 
1773 static char *ufs_bus_get_dev_path(DeviceState *dev)
1774 {
1775     BusState *bus = qdev_get_parent_bus(dev);
1776 
1777     return qdev_get_dev_path(bus->parent);
1778 }
1779 
1780 static void ufs_bus_class_init(ObjectClass *class, void *data)
1781 {
1782     BusClass *bc = BUS_CLASS(class);
1783     bc->get_dev_path = ufs_bus_get_dev_path;
1784     bc->check_address = ufs_bus_check_address;
1785 }
1786 
1787 static const TypeInfo ufs_info = {
1788     .name = TYPE_UFS,
1789     .parent = TYPE_PCI_DEVICE,
1790     .class_init = ufs_class_init,
1791     .instance_size = sizeof(UfsHc),
1792     .interfaces = (InterfaceInfo[]){ { INTERFACE_PCIE_DEVICE }, {} },
1793 };
1794 
1795 static const TypeInfo ufs_bus_info = {
1796     .name = TYPE_UFS_BUS,
1797     .parent = TYPE_BUS,
1798     .class_init = ufs_bus_class_init,
1799     .class_size = sizeof(UfsBusClass),
1800     .instance_size = sizeof(UfsBus),
1801 };
1802 
1803 static void ufs_register_types(void)
1804 {
1805     type_register_static(&ufs_info);
1806     type_register_static(&ufs_bus_info);
1807 }
1808 
1809 type_init(ufs_register_types)
1810