1 /*
2 * Arm SSE Subsystem System Counter
3 *
4 * Copyright (c) 2020 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12 /*
13 * This is a model of the "System counter" which is documented in
14 * the Arm SSE-123 Example Subsystem Technical Reference Manual:
15 * https://developer.arm.com/documentation/101370/latest/
16 *
17 * The system counter is a non-stop 64-bit up-counter. It provides
18 * this count value to other devices like the SSE system timer,
19 * which are driven by this system timestamp rather than directly
20 * from a clock. Internally to the counter the count is actually
21 * 88-bit precision (64.24 fixed point), with a programmable scale factor.
22 *
23 * The hardware has the optional feature that it supports dynamic
24 * clock switching, where two clock inputs are connected, and which
25 * one is used is selected via a CLKSEL input signal. Since the
26 * users of this device in QEMU don't use this feature, we only model
27 * the HWCLKSW=0 configuration.
28 */
29 #include "qemu/osdep.h"
30 #include "qemu/log.h"
31 #include "qemu/timer.h"
32 #include "qapi/error.h"
33 #include "trace.h"
34 #include "hw/timer/sse-counter.h"
35 #include "hw/sysbus.h"
36 #include "hw/registerfields.h"
37 #include "hw/clock.h"
38 #include "hw/qdev-clock.h"
39 #include "migration/vmstate.h"
40
41 /* Registers in the control frame */
42 REG32(CNTCR, 0x0)
43 FIELD(CNTCR, EN, 0, 1)
44 FIELD(CNTCR, HDBG, 1, 1)
45 FIELD(CNTCR, SCEN, 2, 1)
46 FIELD(CNTCR, INTRMASK, 3, 1)
47 FIELD(CNTCR, PSLVERRDIS, 4, 1)
48 FIELD(CNTCR, INTRCLR, 5, 1)
49 /*
50 * Although CNTCR defines interrupt-related bits, the counter doesn't
51 * appear to actually have an interrupt output. So INTRCLR is
52 * effectively a RAZ/WI bit, as are the reserved bits [31:6].
53 */
54 #define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
55 R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
56 R_CNTCR_PSLVERRDIS_MASK)
57 REG32(CNTSR, 0x4)
58 REG32(CNTCV_LO, 0x8)
59 REG32(CNTCV_HI, 0xc)
60 REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
61 REG32(CNTID, 0x1c)
62 FIELD(CNTID, CNTSC, 0, 4)
63 FIELD(CNTID, CNTCS, 16, 1)
64 FIELD(CNTID, CNTSELCLK, 17, 2)
65 FIELD(CNTID, CNTSCR_OVR, 19, 1)
66 REG32(CNTSCR0, 0xd0)
67 REG32(CNTSCR1, 0xd4)
68
69 /* Registers in the status frame */
70 REG32(STATUS_CNTCV_LO, 0x0)
71 REG32(STATUS_CNTCV_HI, 0x4)
72
73 /* Standard ID registers, present in both frames */
74 REG32(PID4, 0xFD0)
75 REG32(PID5, 0xFD4)
76 REG32(PID6, 0xFD8)
77 REG32(PID7, 0xFDC)
78 REG32(PID0, 0xFE0)
79 REG32(PID1, 0xFE4)
80 REG32(PID2, 0xFE8)
81 REG32(PID3, 0xFEC)
82 REG32(CID0, 0xFF0)
83 REG32(CID1, 0xFF4)
84 REG32(CID2, 0xFF8)
85 REG32(CID3, 0xFFC)
86
87 /* PID/CID values */
88 static const int control_id[] = {
89 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
90 0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
91 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
92 };
93
94 static const int status_id[] = {
95 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
96 0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
97 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
98 };
99
sse_counter_notify_users(SSECounter * s)100 static void sse_counter_notify_users(SSECounter *s)
101 {
102 /*
103 * Notify users of the count timestamp that they may
104 * need to recalculate.
105 */
106 notifier_list_notify(&s->notifier_list, NULL);
107 }
108
sse_counter_enabled(SSECounter * s)109 static bool sse_counter_enabled(SSECounter *s)
110 {
111 return (s->cntcr & R_CNTCR_EN_MASK) != 0;
112 }
113
sse_counter_tick_to_time(SSECounter * s,uint64_t tick)114 uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
115 {
116 if (!sse_counter_enabled(s)) {
117 return UINT64_MAX;
118 }
119
120 tick -= s->ticks_then;
121
122 if (s->cntcr & R_CNTCR_SCEN_MASK) {
123 /* Adjust the tick count to account for the scale factor */
124 tick = muldiv64(tick, 0x01000000, s->cntscr0);
125 }
126
127 return s->ns_then + clock_ticks_to_ns(s->clk, tick);
128 }
129
sse_counter_register_consumer(SSECounter * s,Notifier * notifier)130 void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
131 {
132 /*
133 * For the moment we assume that both we and the devices
134 * which consume us last for the life of the simulation,
135 * and so there is no mechanism for removing a notifier.
136 */
137 notifier_list_add(&s->notifier_list, notifier);
138 }
139
sse_counter_for_timestamp(SSECounter * s,uint64_t now)140 uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
141 {
142 /* Return the CNTCV value for a particular timestamp (clock ns value). */
143 uint64_t ticks;
144
145 if (!sse_counter_enabled(s)) {
146 /* Counter is disabled and does not increment */
147 return s->ticks_then;
148 }
149
150 ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
151 if (s->cntcr & R_CNTCR_SCEN_MASK) {
152 /*
153 * Scaling is enabled. The CNTSCR value is the amount added to
154 * the underlying 88-bit counter for every tick of the
155 * underlying clock; CNTCV is the top 64 bits of that full
156 * 88-bit value. Multiplying the tick count by CNTSCR tells us
157 * how much the full 88-bit counter has moved on; we then
158 * divide that by 0x01000000 to find out how much the 64-bit
159 * visible portion has advanced. muldiv64() gives us the
160 * necessary at-least-88-bit precision for the intermediate
161 * result.
162 */
163 ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
164 }
165 return s->ticks_then + ticks;
166 }
167
sse_cntcv(SSECounter * s)168 static uint64_t sse_cntcv(SSECounter *s)
169 {
170 /* Return the CNTCV value for the current time */
171 return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
172 }
173
sse_write_cntcv(SSECounter * s,uint32_t value,unsigned startbit)174 static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
175 {
176 /*
177 * Write one 32-bit half of the counter value; startbit is the
178 * bit position of this half in the 64-bit word, either 0 or 32.
179 */
180 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
181 uint64_t cntcv = sse_counter_for_timestamp(s, now);
182
183 cntcv = deposit64(cntcv, startbit, 32, value);
184 s->ticks_then = cntcv;
185 s->ns_then = now;
186 sse_counter_notify_users(s);
187 }
188
sse_counter_control_read(void * opaque,hwaddr offset,unsigned size)189 static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
190 unsigned size)
191 {
192 SSECounter *s = SSE_COUNTER(opaque);
193 uint64_t r;
194
195 switch (offset) {
196 case A_CNTCR:
197 r = s->cntcr;
198 break;
199 case A_CNTSR:
200 /*
201 * The only bit here is DBGH, indicating that the counter has been
202 * halted via the Halt-on-Debug signal. We don't implement halting
203 * debug, so the whole register always reads as zero.
204 */
205 r = 0;
206 break;
207 case A_CNTCV_LO:
208 r = extract64(sse_cntcv(s), 0, 32);
209 break;
210 case A_CNTCV_HI:
211 r = extract64(sse_cntcv(s), 32, 32);
212 break;
213 case A_CNTID:
214 /*
215 * For our implementation:
216 * - CNTSCR can only be written when CNTCR.EN == 0
217 * - HWCLKSW=0, so selected clock is always CLK0
218 * - counter scaling is implemented
219 */
220 r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
221 break;
222 case A_CNTSCR:
223 case A_CNTSCR0:
224 r = s->cntscr0;
225 break;
226 case A_CNTSCR1:
227 /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
228 r = 0;
229 break;
230 case A_PID4 ... A_CID3:
231 r = control_id[(offset - A_PID4) / 4];
232 break;
233 default:
234 qemu_log_mask(LOG_GUEST_ERROR,
235 "SSE System Counter control frame read: bad offset 0x%x",
236 (unsigned)offset);
237 r = 0;
238 break;
239 }
240
241 trace_sse_counter_control_read(offset, r, size);
242 return r;
243 }
244
sse_counter_control_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)245 static void sse_counter_control_write(void *opaque, hwaddr offset,
246 uint64_t value, unsigned size)
247 {
248 SSECounter *s = SSE_COUNTER(opaque);
249
250 trace_sse_counter_control_write(offset, value, size);
251
252 switch (offset) {
253 case A_CNTCR:
254 /*
255 * Although CNTCR defines interrupt-related bits, the counter doesn't
256 * appear to actually have an interrupt output. So INTRCLR is
257 * effectively a RAZ/WI bit, as are the reserved bits [31:6].
258 * The documentation does not explicitly say so, but we assume
259 * that changing the scale factor while the counter is enabled
260 * by toggling CNTCR.SCEN has the same behaviour (making the counter
261 * value UNKNOWN) as changing it by writing to CNTSCR, and so we
262 * don't need to try to recalculate for that case.
263 */
264 value &= CNTCR_VALID_MASK;
265 if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
266 /*
267 * Whether the counter is being enabled or disabled, the
268 * required action is the same: sync the (ns_then, ticks_then)
269 * tuple.
270 */
271 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
272 s->ticks_then = sse_counter_for_timestamp(s, now);
273 s->ns_then = now;
274 sse_counter_notify_users(s);
275 }
276 s->cntcr = value;
277 break;
278 case A_CNTCV_LO:
279 sse_write_cntcv(s, value, 0);
280 break;
281 case A_CNTCV_HI:
282 sse_write_cntcv(s, value, 32);
283 break;
284 case A_CNTSCR:
285 case A_CNTSCR0:
286 /*
287 * If the scale registers are changed when the counter is enabled,
288 * the count value becomes UNKNOWN. So we don't try to recalculate
289 * anything here but only do it on a write to CNTCR.EN.
290 */
291 s->cntscr0 = value;
292 break;
293 case A_CNTSCR1:
294 /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
295 break;
296 case A_CNTSR:
297 case A_CNTID:
298 case A_PID4 ... A_CID3:
299 qemu_log_mask(LOG_GUEST_ERROR,
300 "SSE System Counter control frame: write to RO offset 0x%x\n",
301 (unsigned)offset);
302 break;
303 default:
304 qemu_log_mask(LOG_GUEST_ERROR,
305 "SSE System Counter control frame: write to bad offset 0x%x\n",
306 (unsigned)offset);
307 break;
308 }
309 }
310
sse_counter_status_read(void * opaque,hwaddr offset,unsigned size)311 static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
312 unsigned size)
313 {
314 SSECounter *s = SSE_COUNTER(opaque);
315 uint64_t r;
316
317 switch (offset) {
318 case A_STATUS_CNTCV_LO:
319 r = extract64(sse_cntcv(s), 0, 32);
320 break;
321 case A_STATUS_CNTCV_HI:
322 r = extract64(sse_cntcv(s), 32, 32);
323 break;
324 case A_PID4 ... A_CID3:
325 r = status_id[(offset - A_PID4) / 4];
326 break;
327 default:
328 qemu_log_mask(LOG_GUEST_ERROR,
329 "SSE System Counter status frame read: bad offset 0x%x",
330 (unsigned)offset);
331 r = 0;
332 break;
333 }
334
335 trace_sse_counter_status_read(offset, r, size);
336 return r;
337 }
338
sse_counter_status_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)339 static void sse_counter_status_write(void *opaque, hwaddr offset,
340 uint64_t value, unsigned size)
341 {
342 trace_sse_counter_status_write(offset, value, size);
343
344 switch (offset) {
345 case A_STATUS_CNTCV_LO:
346 case A_STATUS_CNTCV_HI:
347 case A_PID4 ... A_CID3:
348 qemu_log_mask(LOG_GUEST_ERROR,
349 "SSE System Counter status frame: write to RO offset 0x%x\n",
350 (unsigned)offset);
351 break;
352 default:
353 qemu_log_mask(LOG_GUEST_ERROR,
354 "SSE System Counter status frame: write to bad offset 0x%x\n",
355 (unsigned)offset);
356 break;
357 }
358 }
359
360 static const MemoryRegionOps sse_counter_control_ops = {
361 .read = sse_counter_control_read,
362 .write = sse_counter_control_write,
363 .endianness = DEVICE_LITTLE_ENDIAN,
364 .valid.min_access_size = 4,
365 .valid.max_access_size = 4,
366 };
367
368 static const MemoryRegionOps sse_counter_status_ops = {
369 .read = sse_counter_status_read,
370 .write = sse_counter_status_write,
371 .endianness = DEVICE_LITTLE_ENDIAN,
372 .valid.min_access_size = 4,
373 .valid.max_access_size = 4,
374 };
375
sse_counter_reset(DeviceState * dev)376 static void sse_counter_reset(DeviceState *dev)
377 {
378 SSECounter *s = SSE_COUNTER(dev);
379
380 trace_sse_counter_reset();
381
382 s->cntcr = 0;
383 s->cntscr0 = 0x01000000;
384 s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
385 s->ticks_then = 0;
386 }
387
sse_clk_callback(void * opaque,ClockEvent event)388 static void sse_clk_callback(void *opaque, ClockEvent event)
389 {
390 SSECounter *s = SSE_COUNTER(opaque);
391 uint64_t now;
392
393 switch (event) {
394 case ClockPreUpdate:
395 /*
396 * Before the clock period updates, set (ticks_then, ns_then)
397 * to the current time and tick count (as calculated with
398 * the old clock period).
399 */
400 if (sse_counter_enabled(s)) {
401 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
402 s->ticks_then = sse_counter_for_timestamp(s, now);
403 s->ns_then = now;
404 }
405 break;
406 case ClockUpdate:
407 sse_counter_notify_users(s);
408 break;
409 default:
410 break;
411 }
412 }
413
sse_counter_init(Object * obj)414 static void sse_counter_init(Object *obj)
415 {
416 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
417 SSECounter *s = SSE_COUNTER(obj);
418
419 notifier_list_init(&s->notifier_list);
420
421 s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
422 ClockPreUpdate | ClockUpdate);
423 memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
424 s, "sse-counter-control", 0x1000);
425 memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
426 s, "sse-counter-status", 0x1000);
427 sysbus_init_mmio(sbd, &s->control_mr);
428 sysbus_init_mmio(sbd, &s->status_mr);
429 }
430
sse_counter_realize(DeviceState * dev,Error ** errp)431 static void sse_counter_realize(DeviceState *dev, Error **errp)
432 {
433 SSECounter *s = SSE_COUNTER(dev);
434
435 if (!clock_has_source(s->clk)) {
436 error_setg(errp, "SSE system counter: CLK must be connected");
437 return;
438 }
439 }
440
441 static const VMStateDescription sse_counter_vmstate = {
442 .name = "sse-counter",
443 .version_id = 1,
444 .minimum_version_id = 1,
445 .fields = (const VMStateField[]) {
446 VMSTATE_CLOCK(clk, SSECounter),
447 VMSTATE_END_OF_LIST()
448 }
449 };
450
sse_counter_class_init(ObjectClass * klass,void * data)451 static void sse_counter_class_init(ObjectClass *klass, void *data)
452 {
453 DeviceClass *dc = DEVICE_CLASS(klass);
454
455 dc->realize = sse_counter_realize;
456 dc->vmsd = &sse_counter_vmstate;
457 device_class_set_legacy_reset(dc, sse_counter_reset);
458 }
459
460 static const TypeInfo sse_counter_info = {
461 .name = TYPE_SSE_COUNTER,
462 .parent = TYPE_SYS_BUS_DEVICE,
463 .instance_size = sizeof(SSECounter),
464 .instance_init = sse_counter_init,
465 .class_init = sse_counter_class_init,
466 };
467
sse_counter_register_types(void)468 static void sse_counter_register_types(void)
469 {
470 type_register_static(&sse_counter_info);
471 }
472
473 type_init(sse_counter_register_types);
474