xref: /openbmc/qemu/hw/timer/sse-counter.c (revision 1d76437b45ab9982307b95d325d627f7b6f06088)
1 /*
2  * Arm SSE Subsystem System Counter
3  *
4  * Copyright (c) 2020 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 /*
13  * This is a model of the "System counter" which is documented in
14  * the Arm SSE-123 Example Subsystem Technical Reference Manual:
15  * https://developer.arm.com/documentation/101370/latest/
16  *
17  * The system counter is a non-stop 64-bit up-counter. It provides
18  * this count value to other devices like the SSE system timer,
19  * which are driven by this system timestamp rather than directly
20  * from a clock. Internally to the counter the count is actually
21  * 88-bit precision (64.24 fixed point), with a programmable scale factor.
22  *
23  * The hardware has the optional feature that it supports dynamic
24  * clock switching, where two clock inputs are connected, and which
25  * one is used is selected via a CLKSEL input signal. Since the
26  * users of this device in QEMU don't use this feature, we only model
27  * the HWCLKSW=0 configuration.
28  */
29 #include "qemu/osdep.h"
30 #include "qemu/log.h"
31 #include "qemu/timer.h"
32 #include "qapi/error.h"
33 #include "trace.h"
34 #include "hw/timer/sse-counter.h"
35 #include "hw/sysbus.h"
36 #include "hw/registerfields.h"
37 #include "hw/clock.h"
38 #include "hw/qdev-clock.h"
39 #include "migration/vmstate.h"
40 
41 /* Registers in the control frame */
42 REG32(CNTCR, 0x0)
43     FIELD(CNTCR, EN, 0, 1)
44     FIELD(CNTCR, HDBG, 1, 1)
45     FIELD(CNTCR, SCEN, 2, 1)
46     FIELD(CNTCR, INTRMASK, 3, 1)
47     FIELD(CNTCR, PSLVERRDIS, 4, 1)
48     FIELD(CNTCR, INTRCLR, 5, 1)
49 /*
50  * Although CNTCR defines interrupt-related bits, the counter doesn't
51  * appear to actually have an interrupt output. So INTRCLR is
52  * effectively a RAZ/WI bit, as are the reserved bits [31:6].
53  */
54 #define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
55                           R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
56                           R_CNTCR_PSLVERRDIS_MASK)
57 REG32(CNTSR, 0x4)
58 REG32(CNTCV_LO, 0x8)
59 REG32(CNTCV_HI, 0xc)
60 REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
61 REG32(CNTID, 0x1c)
62     FIELD(CNTID, CNTSC, 0, 4)
63     FIELD(CNTID, CNTCS, 16, 1)
64     FIELD(CNTID, CNTSELCLK, 17, 2)
65     FIELD(CNTID, CNTSCR_OVR, 19, 1)
66 REG32(CNTSCR0, 0xd0)
67 REG32(CNTSCR1, 0xd4)
68 
69 /* Registers in the status frame */
70 REG32(STATUS_CNTCV_LO, 0x0)
71 REG32(STATUS_CNTCV_HI, 0x4)
72 
73 /* Standard ID registers, present in both frames */
74 REG32(PID4, 0xFD0)
75 REG32(PID5, 0xFD4)
76 REG32(PID6, 0xFD8)
77 REG32(PID7, 0xFDC)
78 REG32(PID0, 0xFE0)
79 REG32(PID1, 0xFE4)
80 REG32(PID2, 0xFE8)
81 REG32(PID3, 0xFEC)
82 REG32(CID0, 0xFF0)
83 REG32(CID1, 0xFF4)
84 REG32(CID2, 0xFF8)
85 REG32(CID3, 0xFFC)
86 
87 /* PID/CID values */
88 static const int control_id[] = {
89     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
90     0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
91     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
92 };
93 
94 static const int status_id[] = {
95     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
96     0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
97     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
98 };
99 
100 static void sse_counter_notify_users(SSECounter *s)
101 {
102     /*
103      * Notify users of the count timestamp that they may
104      * need to recalculate.
105      */
106     notifier_list_notify(&s->notifier_list, NULL);
107 }
108 
109 static bool sse_counter_enabled(SSECounter *s)
110 {
111     return (s->cntcr & R_CNTCR_EN_MASK) != 0;
112 }
113 
114 uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
115 {
116     if (!sse_counter_enabled(s)) {
117         return UINT64_MAX;
118     }
119 
120     tick -= s->ticks_then;
121 
122     if (s->cntcr & R_CNTCR_SCEN_MASK) {
123         /* Adjust the tick count to account for the scale factor */
124         tick = muldiv64(tick, 0x01000000, s->cntscr0);
125     }
126 
127     return s->ns_then + clock_ticks_to_ns(s->clk, tick);
128 }
129 
130 void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
131 {
132     /*
133      * For the moment we assume that both we and the devices
134      * which consume us last for the life of the simulation,
135      * and so there is no mechanism for removing a notifier.
136      */
137     notifier_list_add(&s->notifier_list, notifier);
138 }
139 
140 uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
141 {
142     /* Return the CNTCV value for a particular timestamp (clock ns value). */
143     uint64_t ticks;
144 
145     if (!sse_counter_enabled(s)) {
146         /* Counter is disabled and does not increment */
147         return s->ticks_then;
148     }
149 
150     ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
151     if (s->cntcr & R_CNTCR_SCEN_MASK) {
152         /*
153          * Scaling is enabled. The CNTSCR value is the amount added to
154          * the underlying 88-bit counter for every tick of the
155          * underlying clock; CNTCV is the top 64 bits of that full
156          * 88-bit value. Multiplying the tick count by CNTSCR tells us
157          * how much the full 88-bit counter has moved on; we then
158          * divide that by 0x01000000 to find out how much the 64-bit
159          * visible portion has advanced. muldiv64() gives us the
160          * necessary at-least-88-bit precision for the intermediate
161          * result.
162          */
163         ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
164     }
165     return s->ticks_then + ticks;
166 }
167 
168 static uint64_t sse_cntcv(SSECounter *s)
169 {
170     /* Return the CNTCV value for the current time */
171     return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
172 }
173 
174 static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
175 {
176     /*
177      * Write one 32-bit half of the counter value; startbit is the
178      * bit position of this half in the 64-bit word, either 0 or 32.
179      */
180     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
181     uint64_t cntcv = sse_counter_for_timestamp(s, now);
182 
183     cntcv = deposit64(cntcv, startbit, 32, value);
184     s->ticks_then = cntcv;
185     s->ns_then = now;
186     sse_counter_notify_users(s);
187 }
188 
189 static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
190                                          unsigned size)
191 {
192     SSECounter *s = SSE_COUNTER(opaque);
193     uint64_t r;
194 
195     switch (offset) {
196     case A_CNTCR:
197         r = s->cntcr;
198         break;
199     case A_CNTSR:
200         /*
201          * The only bit here is DBGH, indicating that the counter has been
202          * halted via the Halt-on-Debug signal. We don't implement halting
203          * debug, so the whole register always reads as zero.
204          */
205         r = 0;
206         break;
207     case A_CNTCV_LO:
208         r = extract64(sse_cntcv(s), 0, 32);
209         break;
210     case A_CNTCV_HI:
211         r = extract64(sse_cntcv(s), 32, 32);
212         break;
213     case A_CNTID:
214         /*
215          * For our implementation:
216          *  - CNTSCR can only be written when CNTCR.EN == 0
217          *  - HWCLKSW=0, so selected clock is always CLK0
218          *  - counter scaling is implemented
219          */
220         r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
221         break;
222     case A_CNTSCR:
223     case A_CNTSCR0:
224         r = s->cntscr0;
225         break;
226     case A_CNTSCR1:
227         /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
228         r = 0;
229         break;
230     case A_PID4 ... A_CID3:
231         r = control_id[(offset - A_PID4) / 4];
232         break;
233     default:
234         qemu_log_mask(LOG_GUEST_ERROR,
235                       "SSE System Counter control frame read: bad offset 0x%x",
236                       (unsigned)offset);
237         r = 0;
238         break;
239     }
240 
241     trace_sse_counter_control_read(offset, r, size);
242     return r;
243 }
244 
245 static void sse_counter_control_write(void *opaque, hwaddr offset,
246                                       uint64_t value, unsigned size)
247 {
248     SSECounter *s = SSE_COUNTER(opaque);
249 
250     trace_sse_counter_control_write(offset, value, size);
251 
252     switch (offset) {
253     case A_CNTCR:
254         /*
255          * Although CNTCR defines interrupt-related bits, the counter doesn't
256          * appear to actually have an interrupt output. So INTRCLR is
257          * effectively a RAZ/WI bit, as are the reserved bits [31:6].
258          * The documentation does not explicitly say so, but we assume
259          * that changing the scale factor while the counter is enabled
260          * by toggling CNTCR.SCEN has the same behaviour (making the counter
261          * value UNKNOWN) as changing it by writing to CNTSCR, and so we
262          * don't need to try to recalculate for that case.
263          */
264         value &= CNTCR_VALID_MASK;
265         if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
266             /*
267              * Whether the counter is being enabled or disabled, the
268              * required action is the same: sync the (ns_then, ticks_then)
269              * tuple.
270              */
271             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
272             s->ticks_then = sse_counter_for_timestamp(s, now);
273             s->ns_then = now;
274             sse_counter_notify_users(s);
275         }
276         s->cntcr = value;
277         break;
278     case A_CNTCV_LO:
279         sse_write_cntcv(s, value, 0);
280         break;
281     case A_CNTCV_HI:
282         sse_write_cntcv(s, value, 32);
283         break;
284     case A_CNTSCR:
285     case A_CNTSCR0:
286         /*
287          * If the scale registers are changed when the counter is enabled,
288          * the count value becomes UNKNOWN. So we don't try to recalculate
289          * anything here but only do it on a write to CNTCR.EN.
290          */
291         s->cntscr0 = value;
292         break;
293     case A_CNTSCR1:
294         /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
295         break;
296     case A_CNTSR:
297     case A_CNTID:
298     case A_PID4 ... A_CID3:
299         qemu_log_mask(LOG_GUEST_ERROR,
300                       "SSE System Counter control frame: write to RO offset 0x%x\n",
301                       (unsigned)offset);
302         break;
303     default:
304         qemu_log_mask(LOG_GUEST_ERROR,
305                       "SSE System Counter control frame: write to bad offset 0x%x\n",
306                       (unsigned)offset);
307         break;
308     }
309 }
310 
311 static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
312                                         unsigned size)
313 {
314     SSECounter *s = SSE_COUNTER(opaque);
315     uint64_t r;
316 
317     switch (offset) {
318     case A_STATUS_CNTCV_LO:
319         r = extract64(sse_cntcv(s), 0, 32);
320         break;
321     case A_STATUS_CNTCV_HI:
322         r = extract64(sse_cntcv(s), 32, 32);
323         break;
324     case A_PID4 ... A_CID3:
325         r = status_id[(offset - A_PID4) / 4];
326         break;
327     default:
328         qemu_log_mask(LOG_GUEST_ERROR,
329                       "SSE System Counter status frame read: bad offset 0x%x",
330                       (unsigned)offset);
331         r = 0;
332         break;
333     }
334 
335     trace_sse_counter_status_read(offset, r, size);
336     return r;
337 }
338 
339 static void sse_counter_status_write(void *opaque, hwaddr offset,
340                                      uint64_t value, unsigned size)
341 {
342     trace_sse_counter_status_write(offset, value, size);
343 
344     switch (offset) {
345     case A_STATUS_CNTCV_LO:
346     case A_STATUS_CNTCV_HI:
347     case A_PID4 ... A_CID3:
348         qemu_log_mask(LOG_GUEST_ERROR,
349                       "SSE System Counter status frame: write to RO offset 0x%x\n",
350                       (unsigned)offset);
351         break;
352     default:
353         qemu_log_mask(LOG_GUEST_ERROR,
354                       "SSE System Counter status frame: write to bad offset 0x%x\n",
355                       (unsigned)offset);
356         break;
357     }
358 }
359 
360 static const MemoryRegionOps sse_counter_control_ops = {
361     .read = sse_counter_control_read,
362     .write = sse_counter_control_write,
363     .endianness = DEVICE_LITTLE_ENDIAN,
364     .valid.min_access_size = 4,
365     .valid.max_access_size = 4,
366 };
367 
368 static const MemoryRegionOps sse_counter_status_ops = {
369     .read = sse_counter_status_read,
370     .write = sse_counter_status_write,
371     .endianness = DEVICE_LITTLE_ENDIAN,
372     .valid.min_access_size = 4,
373     .valid.max_access_size = 4,
374 };
375 
376 static void sse_counter_reset(DeviceState *dev)
377 {
378     SSECounter *s = SSE_COUNTER(dev);
379 
380     trace_sse_counter_reset();
381 
382     s->cntcr = 0;
383     s->cntscr0 = 0x01000000;
384     s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
385     s->ticks_then = 0;
386 }
387 
388 static void sse_clk_callback(void *opaque, ClockEvent event)
389 {
390     SSECounter *s = SSE_COUNTER(opaque);
391     uint64_t now;
392 
393     switch (event) {
394     case ClockPreUpdate:
395         /*
396          * Before the clock period updates, set (ticks_then, ns_then)
397          * to the current time and tick count (as calculated with
398          * the old clock period).
399          */
400         if (sse_counter_enabled(s)) {
401             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
402             s->ticks_then = sse_counter_for_timestamp(s, now);
403             s->ns_then = now;
404         }
405         break;
406     case ClockUpdate:
407         sse_counter_notify_users(s);
408         break;
409     default:
410         break;
411     }
412 }
413 
414 static void sse_counter_init(Object *obj)
415 {
416     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
417     SSECounter *s = SSE_COUNTER(obj);
418 
419     notifier_list_init(&s->notifier_list);
420 
421     s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
422                                 ClockPreUpdate | ClockUpdate);
423     memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
424                           s, "sse-counter-control", 0x1000);
425     memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
426                           s, "sse-counter-status", 0x1000);
427     sysbus_init_mmio(sbd, &s->control_mr);
428     sysbus_init_mmio(sbd, &s->status_mr);
429 }
430 
431 static void sse_counter_realize(DeviceState *dev, Error **errp)
432 {
433     SSECounter *s = SSE_COUNTER(dev);
434 
435     if (!clock_has_source(s->clk)) {
436         error_setg(errp, "SSE system counter: CLK must be connected");
437         return;
438     }
439 }
440 
441 static const VMStateDescription sse_counter_vmstate = {
442     .name = "sse-counter",
443     .version_id = 1,
444     .minimum_version_id = 1,
445     .fields = (VMStateField[]) {
446         VMSTATE_CLOCK(clk, SSECounter),
447         VMSTATE_END_OF_LIST()
448     }
449 };
450 
451 static void sse_counter_class_init(ObjectClass *klass, void *data)
452 {
453     DeviceClass *dc = DEVICE_CLASS(klass);
454 
455     dc->realize = sse_counter_realize;
456     dc->vmsd = &sse_counter_vmstate;
457     dc->reset = sse_counter_reset;
458 }
459 
460 static const TypeInfo sse_counter_info = {
461     .name = TYPE_SSE_COUNTER,
462     .parent = TYPE_SYS_BUS_DEVICE,
463     .instance_size = sizeof(SSECounter),
464     .instance_init = sse_counter_init,
465     .class_init = sse_counter_class_init,
466 };
467 
468 static void sse_counter_register_types(void)
469 {
470     type_register_static(&sse_counter_info);
471 }
472 
473 type_init(sse_counter_register_types);
474