1 /* 2 * QEMU Sparc SLAVIO timer controller emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "hw/sparc/sun4m.h" 26 #include "qemu/timer.h" 27 #include "hw/ptimer.h" 28 #include "hw/sysbus.h" 29 #include "trace.h" 30 #include "qemu/main-loop.h" 31 32 /* 33 * Registers of hardware timer in sun4m. 34 * 35 * This is the timer/counter part of chip STP2001 (Slave I/O), also 36 * produced as NCR89C105. See 37 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt 38 * 39 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 40 * are zero. Bit 31 is 1 when count has been reached. 41 * 42 * Per-CPU timers interrupt local CPU, system timer uses normal 43 * interrupt routing. 44 * 45 */ 46 47 #define MAX_CPUS 16 48 49 typedef struct CPUTimerState { 50 qemu_irq irq; 51 ptimer_state *timer; 52 uint32_t count, counthigh, reached; 53 /* processor only */ 54 uint32_t run; 55 uint64_t limit; 56 } CPUTimerState; 57 58 #define TYPE_SLAVIO_TIMER "slavio_timer" 59 #define SLAVIO_TIMER(obj) \ 60 OBJECT_CHECK(SLAVIO_TIMERState, (obj), TYPE_SLAVIO_TIMER) 61 62 typedef struct SLAVIO_TIMERState { 63 SysBusDevice parent_obj; 64 65 uint32_t num_cpus; 66 uint32_t cputimer_mode; 67 CPUTimerState cputimer[MAX_CPUS + 1]; 68 } SLAVIO_TIMERState; 69 70 typedef struct TimerContext { 71 MemoryRegion iomem; 72 SLAVIO_TIMERState *s; 73 unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */ 74 } TimerContext; 75 76 #define SYS_TIMER_SIZE 0x14 77 #define CPU_TIMER_SIZE 0x10 78 79 #define TIMER_LIMIT 0 80 #define TIMER_COUNTER 1 81 #define TIMER_COUNTER_NORST 2 82 #define TIMER_STATUS 3 83 #define TIMER_MODE 4 84 85 #define TIMER_COUNT_MASK32 0xfffffe00 86 #define TIMER_LIMIT_MASK32 0x7fffffff 87 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL 88 #define TIMER_MAX_COUNT32 0x7ffffe00ULL 89 #define TIMER_REACHED 0x80000000 90 #define TIMER_PERIOD 500ULL // 500ns 91 #define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1) 92 #define PERIODS_TO_LIMIT(l) (((l) + 1) << 9) 93 94 static int slavio_timer_is_user(TimerContext *tc) 95 { 96 SLAVIO_TIMERState *s = tc->s; 97 unsigned int timer_index = tc->timer_index; 98 99 return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1))); 100 } 101 102 // Update count, set irq, update expire_time 103 // Convert from ptimer countdown units 104 static void slavio_timer_get_out(CPUTimerState *t) 105 { 106 uint64_t count, limit; 107 108 if (t->limit == 0) { /* free-run system or processor counter */ 109 limit = TIMER_MAX_COUNT32; 110 } else { 111 limit = t->limit; 112 } 113 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer)); 114 115 trace_slavio_timer_get_out(t->limit, t->counthigh, t->count); 116 t->count = count & TIMER_COUNT_MASK32; 117 t->counthigh = count >> 32; 118 } 119 120 // timer callback 121 static void slavio_timer_irq(void *opaque) 122 { 123 TimerContext *tc = opaque; 124 SLAVIO_TIMERState *s = tc->s; 125 CPUTimerState *t = &s->cputimer[tc->timer_index]; 126 127 slavio_timer_get_out(t); 128 trace_slavio_timer_irq(t->counthigh, t->count); 129 /* if limit is 0 (free-run), there will be no match */ 130 if (t->limit != 0) { 131 t->reached = TIMER_REACHED; 132 } 133 /* there is no interrupt if user timer or free-run */ 134 if (!slavio_timer_is_user(tc) && t->limit != 0) { 135 qemu_irq_raise(t->irq); 136 } 137 } 138 139 static uint64_t slavio_timer_mem_readl(void *opaque, hwaddr addr, 140 unsigned size) 141 { 142 TimerContext *tc = opaque; 143 SLAVIO_TIMERState *s = tc->s; 144 uint32_t saddr, ret; 145 unsigned int timer_index = tc->timer_index; 146 CPUTimerState *t = &s->cputimer[timer_index]; 147 148 saddr = addr >> 2; 149 switch (saddr) { 150 case TIMER_LIMIT: 151 // read limit (system counter mode) or read most signifying 152 // part of counter (user mode) 153 if (slavio_timer_is_user(tc)) { 154 // read user timer MSW 155 slavio_timer_get_out(t); 156 ret = t->counthigh | t->reached; 157 } else { 158 // read limit 159 // clear irq 160 qemu_irq_lower(t->irq); 161 t->reached = 0; 162 ret = t->limit & TIMER_LIMIT_MASK32; 163 } 164 break; 165 case TIMER_COUNTER: 166 // read counter and reached bit (system mode) or read lsbits 167 // of counter (user mode) 168 slavio_timer_get_out(t); 169 if (slavio_timer_is_user(tc)) { // read user timer LSW 170 ret = t->count & TIMER_MAX_COUNT64; 171 } else { // read limit 172 ret = (t->count & TIMER_MAX_COUNT32) | 173 t->reached; 174 } 175 break; 176 case TIMER_STATUS: 177 // only available in processor counter/timer 178 // read start/stop status 179 if (timer_index > 0) { 180 ret = t->run; 181 } else { 182 ret = 0; 183 } 184 break; 185 case TIMER_MODE: 186 // only available in system counter 187 // read user/system mode 188 ret = s->cputimer_mode; 189 break; 190 default: 191 trace_slavio_timer_mem_readl_invalid(addr); 192 ret = 0; 193 break; 194 } 195 trace_slavio_timer_mem_readl(addr, ret); 196 return ret; 197 } 198 199 static void slavio_timer_mem_writel(void *opaque, hwaddr addr, 200 uint64_t val, unsigned size) 201 { 202 TimerContext *tc = opaque; 203 SLAVIO_TIMERState *s = tc->s; 204 uint32_t saddr; 205 unsigned int timer_index = tc->timer_index; 206 CPUTimerState *t = &s->cputimer[timer_index]; 207 208 trace_slavio_timer_mem_writel(addr, val); 209 saddr = addr >> 2; 210 switch (saddr) { 211 case TIMER_LIMIT: 212 if (slavio_timer_is_user(tc)) { 213 uint64_t count; 214 215 // set user counter MSW, reset counter 216 t->limit = TIMER_MAX_COUNT64; 217 t->counthigh = val & (TIMER_MAX_COUNT64 >> 32); 218 t->reached = 0; 219 count = ((uint64_t)t->counthigh << 32) | t->count; 220 trace_slavio_timer_mem_writel_limit(timer_index, count); 221 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count)); 222 } else { 223 // set limit, reset counter 224 qemu_irq_lower(t->irq); 225 t->limit = val & TIMER_MAX_COUNT32; 226 if (t->timer) { 227 if (t->limit == 0) { /* free-run */ 228 ptimer_set_limit(t->timer, 229 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); 230 } else { 231 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1); 232 } 233 } 234 } 235 break; 236 case TIMER_COUNTER: 237 if (slavio_timer_is_user(tc)) { 238 uint64_t count; 239 240 // set user counter LSW, reset counter 241 t->limit = TIMER_MAX_COUNT64; 242 t->count = val & TIMER_MAX_COUNT64; 243 t->reached = 0; 244 count = ((uint64_t)t->counthigh) << 32 | t->count; 245 trace_slavio_timer_mem_writel_limit(timer_index, count); 246 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count)); 247 } else { 248 trace_slavio_timer_mem_writel_counter_invalid(); 249 } 250 break; 251 case TIMER_COUNTER_NORST: 252 // set limit without resetting counter 253 t->limit = val & TIMER_MAX_COUNT32; 254 if (t->limit == 0) { /* free-run */ 255 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0); 256 } else { 257 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0); 258 } 259 break; 260 case TIMER_STATUS: 261 if (slavio_timer_is_user(tc)) { 262 // start/stop user counter 263 if (val & 1) { 264 trace_slavio_timer_mem_writel_status_start(timer_index); 265 ptimer_run(t->timer, 0); 266 } else { 267 trace_slavio_timer_mem_writel_status_stop(timer_index); 268 ptimer_stop(t->timer); 269 } 270 } 271 t->run = val & 1; 272 break; 273 case TIMER_MODE: 274 if (timer_index == 0) { 275 unsigned int i; 276 277 for (i = 0; i < s->num_cpus; i++) { 278 unsigned int processor = 1 << i; 279 CPUTimerState *curr_timer = &s->cputimer[i + 1]; 280 281 // check for a change in timer mode for this processor 282 if ((val & processor) != (s->cputimer_mode & processor)) { 283 if (val & processor) { // counter -> user timer 284 qemu_irq_lower(curr_timer->irq); 285 // counters are always running 286 if (!curr_timer->run) { 287 ptimer_stop(curr_timer->timer); 288 } 289 // user timer limit is always the same 290 curr_timer->limit = TIMER_MAX_COUNT64; 291 ptimer_set_limit(curr_timer->timer, 292 LIMIT_TO_PERIODS(curr_timer->limit), 293 1); 294 // set this processors user timer bit in config 295 // register 296 s->cputimer_mode |= processor; 297 trace_slavio_timer_mem_writel_mode_user(timer_index); 298 } else { // user timer -> counter 299 // start the counter 300 ptimer_run(curr_timer->timer, 0); 301 // clear this processors user timer bit in config 302 // register 303 s->cputimer_mode &= ~processor; 304 trace_slavio_timer_mem_writel_mode_counter(timer_index); 305 } 306 } 307 } 308 } else { 309 trace_slavio_timer_mem_writel_mode_invalid(); 310 } 311 break; 312 default: 313 trace_slavio_timer_mem_writel_invalid(addr); 314 break; 315 } 316 } 317 318 static const MemoryRegionOps slavio_timer_mem_ops = { 319 .read = slavio_timer_mem_readl, 320 .write = slavio_timer_mem_writel, 321 .endianness = DEVICE_NATIVE_ENDIAN, 322 .valid = { 323 .min_access_size = 4, 324 .max_access_size = 4, 325 }, 326 }; 327 328 static const VMStateDescription vmstate_timer = { 329 .name ="timer", 330 .version_id = 3, 331 .minimum_version_id = 3, 332 .fields = (VMStateField[]) { 333 VMSTATE_UINT64(limit, CPUTimerState), 334 VMSTATE_UINT32(count, CPUTimerState), 335 VMSTATE_UINT32(counthigh, CPUTimerState), 336 VMSTATE_UINT32(reached, CPUTimerState), 337 VMSTATE_UINT32(run , CPUTimerState), 338 VMSTATE_PTIMER(timer, CPUTimerState), 339 VMSTATE_END_OF_LIST() 340 } 341 }; 342 343 static const VMStateDescription vmstate_slavio_timer = { 344 .name ="slavio_timer", 345 .version_id = 3, 346 .minimum_version_id = 3, 347 .fields = (VMStateField[]) { 348 VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3, 349 vmstate_timer, CPUTimerState), 350 VMSTATE_END_OF_LIST() 351 } 352 }; 353 354 static void slavio_timer_reset(DeviceState *d) 355 { 356 SLAVIO_TIMERState *s = SLAVIO_TIMER(d); 357 unsigned int i; 358 CPUTimerState *curr_timer; 359 360 for (i = 0; i <= MAX_CPUS; i++) { 361 curr_timer = &s->cputimer[i]; 362 curr_timer->limit = 0; 363 curr_timer->count = 0; 364 curr_timer->reached = 0; 365 if (i <= s->num_cpus) { 366 ptimer_set_limit(curr_timer->timer, 367 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); 368 ptimer_run(curr_timer->timer, 0); 369 curr_timer->run = 1; 370 } 371 } 372 s->cputimer_mode = 0; 373 } 374 375 static int slavio_timer_init1(SysBusDevice *dev) 376 { 377 SLAVIO_TIMERState *s = SLAVIO_TIMER(dev); 378 QEMUBH *bh; 379 unsigned int i; 380 TimerContext *tc; 381 382 for (i = 0; i <= MAX_CPUS; i++) { 383 uint64_t size; 384 char timer_name[20]; 385 386 tc = g_malloc0(sizeof(TimerContext)); 387 tc->s = s; 388 tc->timer_index = i; 389 390 bh = qemu_bh_new(slavio_timer_irq, tc); 391 s->cputimer[i].timer = ptimer_init(bh); 392 ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD); 393 394 size = i == 0 ? SYS_TIMER_SIZE : CPU_TIMER_SIZE; 395 snprintf(timer_name, sizeof(timer_name), "timer-%i", i); 396 memory_region_init_io(&tc->iomem, OBJECT(s), &slavio_timer_mem_ops, tc, 397 timer_name, size); 398 sysbus_init_mmio(dev, &tc->iomem); 399 400 sysbus_init_irq(dev, &s->cputimer[i].irq); 401 } 402 403 return 0; 404 } 405 406 static Property slavio_timer_properties[] = { 407 DEFINE_PROP_UINT32("num_cpus", SLAVIO_TIMERState, num_cpus, 0), 408 DEFINE_PROP_END_OF_LIST(), 409 }; 410 411 static void slavio_timer_class_init(ObjectClass *klass, void *data) 412 { 413 DeviceClass *dc = DEVICE_CLASS(klass); 414 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 415 416 k->init = slavio_timer_init1; 417 dc->reset = slavio_timer_reset; 418 dc->vmsd = &vmstate_slavio_timer; 419 dc->props = slavio_timer_properties; 420 } 421 422 static const TypeInfo slavio_timer_info = { 423 .name = TYPE_SLAVIO_TIMER, 424 .parent = TYPE_SYS_BUS_DEVICE, 425 .instance_size = sizeof(SLAVIO_TIMERState), 426 .class_init = slavio_timer_class_init, 427 }; 428 429 static void slavio_timer_register_types(void) 430 { 431 type_register_static(&slavio_timer_info); 432 } 433 434 type_init(slavio_timer_register_types) 435