1 /* 2 * QEMU Sparc SLAVIO timer controller emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "hw/sparc/sun4m.h" 26 #include "qemu/timer.h" 27 #include "hw/ptimer.h" 28 #include "hw/sysbus.h" 29 #include "trace.h" 30 31 /* 32 * Registers of hardware timer in sun4m. 33 * 34 * This is the timer/counter part of chip STP2001 (Slave I/O), also 35 * produced as NCR89C105. See 36 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt 37 * 38 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 39 * are zero. Bit 31 is 1 when count has been reached. 40 * 41 * Per-CPU timers interrupt local CPU, system timer uses normal 42 * interrupt routing. 43 * 44 */ 45 46 #define MAX_CPUS 16 47 48 typedef struct CPUTimerState { 49 qemu_irq irq; 50 ptimer_state *timer; 51 uint32_t count, counthigh, reached; 52 /* processor only */ 53 uint32_t running; 54 uint64_t limit; 55 } CPUTimerState; 56 57 typedef struct SLAVIO_TIMERState { 58 SysBusDevice busdev; 59 uint32_t num_cpus; 60 uint32_t cputimer_mode; 61 CPUTimerState cputimer[MAX_CPUS + 1]; 62 } SLAVIO_TIMERState; 63 64 typedef struct TimerContext { 65 MemoryRegion iomem; 66 SLAVIO_TIMERState *s; 67 unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */ 68 } TimerContext; 69 70 #define SYS_TIMER_SIZE 0x14 71 #define CPU_TIMER_SIZE 0x10 72 73 #define TIMER_LIMIT 0 74 #define TIMER_COUNTER 1 75 #define TIMER_COUNTER_NORST 2 76 #define TIMER_STATUS 3 77 #define TIMER_MODE 4 78 79 #define TIMER_COUNT_MASK32 0xfffffe00 80 #define TIMER_LIMIT_MASK32 0x7fffffff 81 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL 82 #define TIMER_MAX_COUNT32 0x7ffffe00ULL 83 #define TIMER_REACHED 0x80000000 84 #define TIMER_PERIOD 500ULL // 500ns 85 #define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1) 86 #define PERIODS_TO_LIMIT(l) (((l) + 1) << 9) 87 88 static int slavio_timer_is_user(TimerContext *tc) 89 { 90 SLAVIO_TIMERState *s = tc->s; 91 unsigned int timer_index = tc->timer_index; 92 93 return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1))); 94 } 95 96 // Update count, set irq, update expire_time 97 // Convert from ptimer countdown units 98 static void slavio_timer_get_out(CPUTimerState *t) 99 { 100 uint64_t count, limit; 101 102 if (t->limit == 0) { /* free-run system or processor counter */ 103 limit = TIMER_MAX_COUNT32; 104 } else { 105 limit = t->limit; 106 } 107 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer)); 108 109 trace_slavio_timer_get_out(t->limit, t->counthigh, t->count); 110 t->count = count & TIMER_COUNT_MASK32; 111 t->counthigh = count >> 32; 112 } 113 114 // timer callback 115 static void slavio_timer_irq(void *opaque) 116 { 117 TimerContext *tc = opaque; 118 SLAVIO_TIMERState *s = tc->s; 119 CPUTimerState *t = &s->cputimer[tc->timer_index]; 120 121 slavio_timer_get_out(t); 122 trace_slavio_timer_irq(t->counthigh, t->count); 123 /* if limit is 0 (free-run), there will be no match */ 124 if (t->limit != 0) { 125 t->reached = TIMER_REACHED; 126 } 127 /* there is no interrupt if user timer or free-run */ 128 if (!slavio_timer_is_user(tc) && t->limit != 0) { 129 qemu_irq_raise(t->irq); 130 } 131 } 132 133 static uint64_t slavio_timer_mem_readl(void *opaque, hwaddr addr, 134 unsigned size) 135 { 136 TimerContext *tc = opaque; 137 SLAVIO_TIMERState *s = tc->s; 138 uint32_t saddr, ret; 139 unsigned int timer_index = tc->timer_index; 140 CPUTimerState *t = &s->cputimer[timer_index]; 141 142 saddr = addr >> 2; 143 switch (saddr) { 144 case TIMER_LIMIT: 145 // read limit (system counter mode) or read most signifying 146 // part of counter (user mode) 147 if (slavio_timer_is_user(tc)) { 148 // read user timer MSW 149 slavio_timer_get_out(t); 150 ret = t->counthigh | t->reached; 151 } else { 152 // read limit 153 // clear irq 154 qemu_irq_lower(t->irq); 155 t->reached = 0; 156 ret = t->limit & TIMER_LIMIT_MASK32; 157 } 158 break; 159 case TIMER_COUNTER: 160 // read counter and reached bit (system mode) or read lsbits 161 // of counter (user mode) 162 slavio_timer_get_out(t); 163 if (slavio_timer_is_user(tc)) { // read user timer LSW 164 ret = t->count & TIMER_MAX_COUNT64; 165 } else { // read limit 166 ret = (t->count & TIMER_MAX_COUNT32) | 167 t->reached; 168 } 169 break; 170 case TIMER_STATUS: 171 // only available in processor counter/timer 172 // read start/stop status 173 if (timer_index > 0) { 174 ret = t->running; 175 } else { 176 ret = 0; 177 } 178 break; 179 case TIMER_MODE: 180 // only available in system counter 181 // read user/system mode 182 ret = s->cputimer_mode; 183 break; 184 default: 185 trace_slavio_timer_mem_readl_invalid(addr); 186 ret = 0; 187 break; 188 } 189 trace_slavio_timer_mem_readl(addr, ret); 190 return ret; 191 } 192 193 static void slavio_timer_mem_writel(void *opaque, hwaddr addr, 194 uint64_t val, unsigned size) 195 { 196 TimerContext *tc = opaque; 197 SLAVIO_TIMERState *s = tc->s; 198 uint32_t saddr; 199 unsigned int timer_index = tc->timer_index; 200 CPUTimerState *t = &s->cputimer[timer_index]; 201 202 trace_slavio_timer_mem_writel(addr, val); 203 saddr = addr >> 2; 204 switch (saddr) { 205 case TIMER_LIMIT: 206 if (slavio_timer_is_user(tc)) { 207 uint64_t count; 208 209 // set user counter MSW, reset counter 210 t->limit = TIMER_MAX_COUNT64; 211 t->counthigh = val & (TIMER_MAX_COUNT64 >> 32); 212 t->reached = 0; 213 count = ((uint64_t)t->counthigh << 32) | t->count; 214 trace_slavio_timer_mem_writel_limit(timer_index, count); 215 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count)); 216 } else { 217 // set limit, reset counter 218 qemu_irq_lower(t->irq); 219 t->limit = val & TIMER_MAX_COUNT32; 220 if (t->timer) { 221 if (t->limit == 0) { /* free-run */ 222 ptimer_set_limit(t->timer, 223 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); 224 } else { 225 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1); 226 } 227 } 228 } 229 break; 230 case TIMER_COUNTER: 231 if (slavio_timer_is_user(tc)) { 232 uint64_t count; 233 234 // set user counter LSW, reset counter 235 t->limit = TIMER_MAX_COUNT64; 236 t->count = val & TIMER_MAX_COUNT64; 237 t->reached = 0; 238 count = ((uint64_t)t->counthigh) << 32 | t->count; 239 trace_slavio_timer_mem_writel_limit(timer_index, count); 240 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count)); 241 } else { 242 trace_slavio_timer_mem_writel_counter_invalid(); 243 } 244 break; 245 case TIMER_COUNTER_NORST: 246 // set limit without resetting counter 247 t->limit = val & TIMER_MAX_COUNT32; 248 if (t->limit == 0) { /* free-run */ 249 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0); 250 } else { 251 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0); 252 } 253 break; 254 case TIMER_STATUS: 255 if (slavio_timer_is_user(tc)) { 256 // start/stop user counter 257 if ((val & 1) && !t->running) { 258 trace_slavio_timer_mem_writel_status_start(timer_index); 259 ptimer_run(t->timer, 0); 260 t->running = 1; 261 } else if (!(val & 1) && t->running) { 262 trace_slavio_timer_mem_writel_status_stop(timer_index); 263 ptimer_stop(t->timer); 264 t->running = 0; 265 } 266 } 267 break; 268 case TIMER_MODE: 269 if (timer_index == 0) { 270 unsigned int i; 271 272 for (i = 0; i < s->num_cpus; i++) { 273 unsigned int processor = 1 << i; 274 CPUTimerState *curr_timer = &s->cputimer[i + 1]; 275 276 // check for a change in timer mode for this processor 277 if ((val & processor) != (s->cputimer_mode & processor)) { 278 if (val & processor) { // counter -> user timer 279 qemu_irq_lower(curr_timer->irq); 280 // counters are always running 281 ptimer_stop(curr_timer->timer); 282 curr_timer->running = 0; 283 // user timer limit is always the same 284 curr_timer->limit = TIMER_MAX_COUNT64; 285 ptimer_set_limit(curr_timer->timer, 286 LIMIT_TO_PERIODS(curr_timer->limit), 287 1); 288 // set this processors user timer bit in config 289 // register 290 s->cputimer_mode |= processor; 291 trace_slavio_timer_mem_writel_mode_user(timer_index); 292 } else { // user timer -> counter 293 // stop the user timer if it is running 294 if (curr_timer->running) { 295 ptimer_stop(curr_timer->timer); 296 } 297 // start the counter 298 ptimer_run(curr_timer->timer, 0); 299 curr_timer->running = 1; 300 // clear this processors user timer bit in config 301 // register 302 s->cputimer_mode &= ~processor; 303 trace_slavio_timer_mem_writel_mode_counter(timer_index); 304 } 305 } 306 } 307 } else { 308 trace_slavio_timer_mem_writel_mode_invalid(); 309 } 310 break; 311 default: 312 trace_slavio_timer_mem_writel_invalid(addr); 313 break; 314 } 315 } 316 317 static const MemoryRegionOps slavio_timer_mem_ops = { 318 .read = slavio_timer_mem_readl, 319 .write = slavio_timer_mem_writel, 320 .endianness = DEVICE_NATIVE_ENDIAN, 321 .valid = { 322 .min_access_size = 4, 323 .max_access_size = 4, 324 }, 325 }; 326 327 static const VMStateDescription vmstate_timer = { 328 .name ="timer", 329 .version_id = 3, 330 .minimum_version_id = 3, 331 .minimum_version_id_old = 3, 332 .fields = (VMStateField []) { 333 VMSTATE_UINT64(limit, CPUTimerState), 334 VMSTATE_UINT32(count, CPUTimerState), 335 VMSTATE_UINT32(counthigh, CPUTimerState), 336 VMSTATE_UINT32(reached, CPUTimerState), 337 VMSTATE_UINT32(running, CPUTimerState), 338 VMSTATE_PTIMER(timer, CPUTimerState), 339 VMSTATE_END_OF_LIST() 340 } 341 }; 342 343 static const VMStateDescription vmstate_slavio_timer = { 344 .name ="slavio_timer", 345 .version_id = 3, 346 .minimum_version_id = 3, 347 .minimum_version_id_old = 3, 348 .fields = (VMStateField []) { 349 VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3, 350 vmstate_timer, CPUTimerState), 351 VMSTATE_END_OF_LIST() 352 } 353 }; 354 355 static void slavio_timer_reset(DeviceState *d) 356 { 357 SLAVIO_TIMERState *s = container_of(d, SLAVIO_TIMERState, busdev.qdev); 358 unsigned int i; 359 CPUTimerState *curr_timer; 360 361 for (i = 0; i <= MAX_CPUS; i++) { 362 curr_timer = &s->cputimer[i]; 363 curr_timer->limit = 0; 364 curr_timer->count = 0; 365 curr_timer->reached = 0; 366 if (i <= s->num_cpus) { 367 ptimer_set_limit(curr_timer->timer, 368 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); 369 ptimer_run(curr_timer->timer, 0); 370 curr_timer->running = 1; 371 } 372 } 373 s->cputimer_mode = 0; 374 } 375 376 static int slavio_timer_init1(SysBusDevice *dev) 377 { 378 SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev); 379 QEMUBH *bh; 380 unsigned int i; 381 TimerContext *tc; 382 383 for (i = 0; i <= MAX_CPUS; i++) { 384 uint64_t size; 385 char timer_name[20]; 386 387 tc = g_malloc0(sizeof(TimerContext)); 388 tc->s = s; 389 tc->timer_index = i; 390 391 bh = qemu_bh_new(slavio_timer_irq, tc); 392 s->cputimer[i].timer = ptimer_init(bh); 393 ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD); 394 395 size = i == 0 ? SYS_TIMER_SIZE : CPU_TIMER_SIZE; 396 snprintf(timer_name, sizeof(timer_name), "timer-%i", i); 397 memory_region_init_io(&tc->iomem, OBJECT(s), &slavio_timer_mem_ops, tc, 398 timer_name, size); 399 sysbus_init_mmio(dev, &tc->iomem); 400 401 sysbus_init_irq(dev, &s->cputimer[i].irq); 402 } 403 404 return 0; 405 } 406 407 static Property slavio_timer_properties[] = { 408 DEFINE_PROP_UINT32("num_cpus", SLAVIO_TIMERState, num_cpus, 0), 409 DEFINE_PROP_END_OF_LIST(), 410 }; 411 412 static void slavio_timer_class_init(ObjectClass *klass, void *data) 413 { 414 DeviceClass *dc = DEVICE_CLASS(klass); 415 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 416 417 k->init = slavio_timer_init1; 418 dc->reset = slavio_timer_reset; 419 dc->vmsd = &vmstate_slavio_timer; 420 dc->props = slavio_timer_properties; 421 } 422 423 static const TypeInfo slavio_timer_info = { 424 .name = "slavio_timer", 425 .parent = TYPE_SYS_BUS_DEVICE, 426 .instance_size = sizeof(SLAVIO_TIMERState), 427 .class_init = slavio_timer_class_init, 428 }; 429 430 static void slavio_timer_register_types(void) 431 { 432 type_register_static(&slavio_timer_info); 433 } 434 435 type_init(slavio_timer_register_types) 436