xref: /openbmc/qemu/hw/timer/imx_gpt.c (revision 39164c13)
1 /*
2  * IMX GPT Timer
3  *
4  * Copyright (c) 2008 OK Labs
5  * Copyright (c) 2011 NICTA Pty Ltd
6  * Originally written by Hans Jiang
7  * Updated by Peter Chubb
8  * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
9  *
10  * This code is licensed under GPL version 2 or later.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "hw/timer/imx_gpt.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/log.h"
19 
20 #ifndef DEBUG_IMX_GPT
21 #define DEBUG_IMX_GPT 0
22 #endif
23 
24 #define DPRINTF(fmt, args...) \
25     do { \
26         if (DEBUG_IMX_GPT) { \
27             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_GPT, \
28                                              __func__, ##args); \
29         } \
30     } while (0)
31 
32 static const char *imx_gpt_reg_name(uint32_t reg)
33 {
34     switch (reg) {
35     case 0:
36         return "CR";
37     case 1:
38         return "PR";
39     case 2:
40         return "SR";
41     case 3:
42         return "IR";
43     case 4:
44         return "OCR1";
45     case 5:
46         return "OCR2";
47     case 6:
48         return "OCR3";
49     case 7:
50         return "ICR1";
51     case 8:
52         return "ICR2";
53     case 9:
54         return "CNT";
55     default:
56         return "[?]";
57     }
58 }
59 
60 static const VMStateDescription vmstate_imx_timer_gpt = {
61     .name = TYPE_IMX_GPT,
62     .version_id = 3,
63     .minimum_version_id = 3,
64     .fields = (VMStateField[]) {
65         VMSTATE_UINT32(cr, IMXGPTState),
66         VMSTATE_UINT32(pr, IMXGPTState),
67         VMSTATE_UINT32(sr, IMXGPTState),
68         VMSTATE_UINT32(ir, IMXGPTState),
69         VMSTATE_UINT32(ocr1, IMXGPTState),
70         VMSTATE_UINT32(ocr2, IMXGPTState),
71         VMSTATE_UINT32(ocr3, IMXGPTState),
72         VMSTATE_UINT32(icr1, IMXGPTState),
73         VMSTATE_UINT32(icr2, IMXGPTState),
74         VMSTATE_UINT32(cnt, IMXGPTState),
75         VMSTATE_UINT32(next_timeout, IMXGPTState),
76         VMSTATE_UINT32(next_int, IMXGPTState),
77         VMSTATE_UINT32(freq, IMXGPTState),
78         VMSTATE_PTIMER(timer, IMXGPTState),
79         VMSTATE_END_OF_LIST()
80     }
81 };
82 
83 static const IMXClk imx25_gpt_clocks[] = {
84     CLK_NONE,      /* 000 No clock source */
85     CLK_IPG,       /* 001 ipg_clk, 532MHz*/
86     CLK_IPG_HIGH,  /* 010 ipg_clk_highfreq */
87     CLK_NONE,      /* 011 not defined */
88     CLK_32k,       /* 100 ipg_clk_32k */
89     CLK_32k,       /* 101 ipg_clk_32k */
90     CLK_32k,       /* 110 ipg_clk_32k */
91     CLK_32k,       /* 111 ipg_clk_32k */
92 };
93 
94 static const IMXClk imx31_gpt_clocks[] = {
95     CLK_NONE,      /* 000 No clock source */
96     CLK_IPG,       /* 001 ipg_clk, 532MHz*/
97     CLK_IPG_HIGH,  /* 010 ipg_clk_highfreq */
98     CLK_NONE,      /* 011 not defined */
99     CLK_32k,       /* 100 ipg_clk_32k */
100     CLK_NONE,      /* 101 not defined */
101     CLK_NONE,      /* 110 not defined */
102     CLK_NONE,      /* 111 not defined */
103 };
104 
105 static const IMXClk imx6_gpt_clocks[] = {
106     CLK_NONE,      /* 000 No clock source */
107     CLK_IPG,       /* 001 ipg_clk, 532MHz*/
108     CLK_IPG_HIGH,  /* 010 ipg_clk_highfreq */
109     CLK_EXT,       /* 011 External clock */
110     CLK_32k,       /* 100 ipg_clk_32k */
111     CLK_HIGH_DIV,  /* 101 reference clock / 8 */
112     CLK_NONE,      /* 110 not defined */
113     CLK_HIGH,      /* 111 reference clock */
114 };
115 
116 static void imx_gpt_set_freq(IMXGPTState *s)
117 {
118     uint32_t clksrc = extract32(s->cr, GPT_CR_CLKSRC_SHIFT, 3);
119 
120     s->freq = imx_ccm_get_clock_frequency(s->ccm,
121                                           s->clocks[clksrc]) / (1 + s->pr);
122 
123     DPRINTF("Setting clksrc %d to frequency %d\n", clksrc, s->freq);
124 
125     if (s->freq) {
126         ptimer_set_freq(s->timer, s->freq);
127     }
128 }
129 
130 static void imx_gpt_update_int(IMXGPTState *s)
131 {
132     if ((s->sr & s->ir) && (s->cr & GPT_CR_EN)) {
133         qemu_irq_raise(s->irq);
134     } else {
135         qemu_irq_lower(s->irq);
136     }
137 }
138 
139 static uint32_t imx_gpt_update_count(IMXGPTState *s)
140 {
141     s->cnt = s->next_timeout - (uint32_t)ptimer_get_count(s->timer);
142 
143     return s->cnt;
144 }
145 
146 static inline uint32_t imx_gpt_find_limit(uint32_t count, uint32_t reg,
147                                           uint32_t timeout)
148 {
149     if ((count < reg) && (timeout > reg)) {
150         timeout = reg;
151     }
152 
153     return timeout;
154 }
155 
156 static void imx_gpt_compute_next_timeout(IMXGPTState *s, bool event)
157 {
158     uint32_t timeout = GPT_TIMER_MAX;
159     uint32_t count;
160     long long limit;
161 
162     if (!(s->cr & GPT_CR_EN)) {
163         /* if not enabled just return */
164         return;
165     }
166 
167     /* update the count */
168     count = imx_gpt_update_count(s);
169 
170     if (event) {
171         /*
172          * This is an event (the ptimer reached 0 and stopped), and the
173          * timer counter is now equal to s->next_timeout.
174          */
175         if (!(s->cr & GPT_CR_FRR) && (count == s->ocr1)) {
176             /* We are in restart mode and we crossed the compare channel 1
177              * value. We need to reset the counter to 0.
178              */
179             count = s->cnt = s->next_timeout = 0;
180         } else if (count == GPT_TIMER_MAX) {
181             /* We reached GPT_TIMER_MAX so we need to rollover */
182             count = s->cnt = s->next_timeout = 0;
183         }
184     }
185 
186     /* now, find the next timeout related to count */
187 
188     if (s->ir & GPT_IR_OF1IE) {
189         timeout = imx_gpt_find_limit(count, s->ocr1, timeout);
190     }
191     if (s->ir & GPT_IR_OF2IE) {
192         timeout = imx_gpt_find_limit(count, s->ocr2, timeout);
193     }
194     if (s->ir & GPT_IR_OF3IE) {
195         timeout = imx_gpt_find_limit(count, s->ocr3, timeout);
196     }
197 
198     /* find the next set of interrupts to raise for next timer event */
199 
200     s->next_int = 0;
201     if ((s->ir & GPT_IR_OF1IE) && (timeout == s->ocr1)) {
202         s->next_int |= GPT_SR_OF1;
203     }
204     if ((s->ir & GPT_IR_OF2IE) && (timeout == s->ocr2)) {
205         s->next_int |= GPT_SR_OF2;
206     }
207     if ((s->ir & GPT_IR_OF3IE) && (timeout == s->ocr3)) {
208         s->next_int |= GPT_SR_OF3;
209     }
210     if ((s->ir & GPT_IR_ROVIE) && (timeout == GPT_TIMER_MAX)) {
211         s->next_int |= GPT_SR_ROV;
212     }
213 
214     /* the new range to count down from */
215     limit = timeout - imx_gpt_update_count(s);
216 
217     if (limit < 0) {
218         /*
219          * if we reach here, then QEMU is running too slow and we pass the
220          * timeout limit while computing it. Let's deliver the interrupt
221          * and compute a new limit.
222          */
223         s->sr |= s->next_int;
224 
225         imx_gpt_compute_next_timeout(s, event);
226 
227         imx_gpt_update_int(s);
228     } else {
229         /* New timeout value */
230         s->next_timeout = timeout;
231 
232         /* reset the limit to the computed range */
233         ptimer_set_limit(s->timer, limit, 1);
234     }
235 }
236 
237 static uint64_t imx_gpt_read(void *opaque, hwaddr offset, unsigned size)
238 {
239     IMXGPTState *s = IMX_GPT(opaque);
240     uint32_t reg_value = 0;
241 
242     switch (offset >> 2) {
243     case 0: /* Control Register */
244         reg_value = s->cr;
245         break;
246 
247     case 1: /* prescaler */
248         reg_value = s->pr;
249         break;
250 
251     case 2: /* Status Register */
252         reg_value = s->sr;
253         break;
254 
255     case 3: /* Interrupt Register */
256         reg_value = s->ir;
257         break;
258 
259     case 4: /* Output Compare Register 1 */
260         reg_value = s->ocr1;
261         break;
262 
263     case 5: /* Output Compare Register 2 */
264         reg_value = s->ocr2;
265         break;
266 
267     case 6: /* Output Compare Register 3 */
268         reg_value = s->ocr3;
269         break;
270 
271     case 7: /* input Capture Register 1 */
272         qemu_log_mask(LOG_UNIMP, "[%s]%s: icr1 feature is not implemented\n",
273                       TYPE_IMX_GPT, __func__);
274         reg_value = s->icr1;
275         break;
276 
277     case 8: /* input Capture Register 2 */
278         qemu_log_mask(LOG_UNIMP, "[%s]%s: icr2 feature is not implemented\n",
279                       TYPE_IMX_GPT, __func__);
280         reg_value = s->icr2;
281         break;
282 
283     case 9: /* cnt */
284         imx_gpt_update_count(s);
285         reg_value = s->cnt;
286         break;
287 
288     default:
289         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
290                       HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset);
291         break;
292     }
293 
294     DPRINTF("(%s) = 0x%08x\n", imx_gpt_reg_name(offset >> 2), reg_value);
295 
296     return reg_value;
297 }
298 
299 
300 static void imx_gpt_reset_common(IMXGPTState *s, bool is_soft_reset)
301 {
302     /* stop timer */
303     ptimer_stop(s->timer);
304 
305     /* Soft reset and hard reset differ only in their handling of the CR
306      * register -- soft reset preserves the values of some bits there.
307      */
308     if (is_soft_reset) {
309         /* Clear all CR bits except those that are preserved by soft reset. */
310         s->cr &= GPT_CR_EN | GPT_CR_ENMOD | GPT_CR_STOPEN | GPT_CR_DOZEN |
311             GPT_CR_WAITEN | GPT_CR_DBGEN |
312             (GPT_CR_CLKSRC_MASK << GPT_CR_CLKSRC_SHIFT);
313     } else {
314         s->cr = 0;
315     }
316     s->sr = 0;
317     s->pr = 0;
318     s->ir = 0;
319     s->cnt = 0;
320     s->ocr1 = GPT_TIMER_MAX;
321     s->ocr2 = GPT_TIMER_MAX;
322     s->ocr3 = GPT_TIMER_MAX;
323     s->icr1 = 0;
324     s->icr2 = 0;
325 
326     s->next_timeout = GPT_TIMER_MAX;
327     s->next_int = 0;
328 
329     /* compute new freq */
330     imx_gpt_set_freq(s);
331 
332     /* reset the limit to GPT_TIMER_MAX */
333     ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1);
334 
335     /* if the timer is still enabled, restart it */
336     if (s->freq && (s->cr & GPT_CR_EN)) {
337         ptimer_run(s->timer, 1);
338     }
339 }
340 
341 static void imx_gpt_soft_reset(DeviceState *dev)
342 {
343     IMXGPTState *s = IMX_GPT(dev);
344     imx_gpt_reset_common(s, true);
345 }
346 
347 static void imx_gpt_reset(DeviceState *dev)
348 {
349     IMXGPTState *s = IMX_GPT(dev);
350     imx_gpt_reset_common(s, false);
351 }
352 
353 static void imx_gpt_write(void *opaque, hwaddr offset, uint64_t value,
354                           unsigned size)
355 {
356     IMXGPTState *s = IMX_GPT(opaque);
357     uint32_t oldreg;
358 
359     DPRINTF("(%s, value = 0x%08x)\n", imx_gpt_reg_name(offset >> 2),
360             (uint32_t)value);
361 
362     switch (offset >> 2) {
363     case 0:
364         oldreg = s->cr;
365         s->cr = value & ~0x7c14;
366         if (s->cr & GPT_CR_SWR) { /* force reset */
367             /* handle the reset */
368             imx_gpt_soft_reset(DEVICE(s));
369         } else {
370             /* set our freq, as the source might have changed */
371             imx_gpt_set_freq(s);
372 
373             if ((oldreg ^ s->cr) & GPT_CR_EN) {
374                 if (s->cr & GPT_CR_EN) {
375                     if (s->cr & GPT_CR_ENMOD) {
376                         s->next_timeout = GPT_TIMER_MAX;
377                         ptimer_set_count(s->timer, GPT_TIMER_MAX);
378                         imx_gpt_compute_next_timeout(s, false);
379                     }
380                     ptimer_run(s->timer, 1);
381                 } else {
382                     /* stop timer */
383                     ptimer_stop(s->timer);
384                 }
385             }
386         }
387         break;
388 
389     case 1: /* Prescaler */
390         s->pr = value & 0xfff;
391         imx_gpt_set_freq(s);
392         break;
393 
394     case 2: /* SR */
395         s->sr &= ~(value & 0x3f);
396         imx_gpt_update_int(s);
397         break;
398 
399     case 3: /* IR -- interrupt register */
400         s->ir = value & 0x3f;
401         imx_gpt_update_int(s);
402 
403         imx_gpt_compute_next_timeout(s, false);
404 
405         break;
406 
407     case 4: /* OCR1 -- output compare register */
408         s->ocr1 = value;
409 
410         /* In non-freerun mode, reset count when this register is written */
411         if (!(s->cr & GPT_CR_FRR)) {
412             s->next_timeout = GPT_TIMER_MAX;
413             ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1);
414         }
415 
416         /* compute the new timeout */
417         imx_gpt_compute_next_timeout(s, false);
418 
419         break;
420 
421     case 5: /* OCR2 -- output compare register */
422         s->ocr2 = value;
423 
424         /* compute the new timeout */
425         imx_gpt_compute_next_timeout(s, false);
426 
427         break;
428 
429     case 6: /* OCR3 -- output compare register */
430         s->ocr3 = value;
431 
432         /* compute the new timeout */
433         imx_gpt_compute_next_timeout(s, false);
434 
435         break;
436 
437     default:
438         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
439                       HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset);
440         break;
441     }
442 }
443 
444 static void imx_gpt_timeout(void *opaque)
445 {
446     IMXGPTState *s = IMX_GPT(opaque);
447 
448     DPRINTF("\n");
449 
450     s->sr |= s->next_int;
451     s->next_int = 0;
452 
453     imx_gpt_compute_next_timeout(s, true);
454 
455     imx_gpt_update_int(s);
456 
457     if (s->freq && (s->cr & GPT_CR_EN)) {
458         ptimer_run(s->timer, 1);
459     }
460 }
461 
462 static const MemoryRegionOps imx_gpt_ops = {
463     .read = imx_gpt_read,
464     .write = imx_gpt_write,
465     .endianness = DEVICE_NATIVE_ENDIAN,
466 };
467 
468 
469 static void imx_gpt_realize(DeviceState *dev, Error **errp)
470 {
471     IMXGPTState *s = IMX_GPT(dev);
472     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
473     QEMUBH *bh;
474 
475     sysbus_init_irq(sbd, &s->irq);
476     memory_region_init_io(&s->iomem, OBJECT(s), &imx_gpt_ops, s, TYPE_IMX_GPT,
477                           0x00001000);
478     sysbus_init_mmio(sbd, &s->iomem);
479 
480     bh = qemu_bh_new(imx_gpt_timeout, s);
481     s->timer = ptimer_init(bh, PTIMER_POLICY_DEFAULT);
482 }
483 
484 static void imx_gpt_class_init(ObjectClass *klass, void *data)
485 {
486     DeviceClass *dc = DEVICE_CLASS(klass);
487 
488     dc->realize = imx_gpt_realize;
489     dc->reset = imx_gpt_reset;
490     dc->vmsd = &vmstate_imx_timer_gpt;
491     dc->desc = "i.MX general timer";
492 }
493 
494 static void imx25_gpt_init(Object *obj)
495 {
496     IMXGPTState *s = IMX_GPT(obj);
497 
498     s->clocks = imx25_gpt_clocks;
499 }
500 
501 static void imx31_gpt_init(Object *obj)
502 {
503     IMXGPTState *s = IMX_GPT(obj);
504 
505     s->clocks = imx31_gpt_clocks;
506 }
507 
508 static void imx6_gpt_init(Object *obj)
509 {
510     IMXGPTState *s = IMX_GPT(obj);
511 
512     s->clocks = imx6_gpt_clocks;
513 }
514 
515 static const TypeInfo imx25_gpt_info = {
516     .name = TYPE_IMX25_GPT,
517     .parent = TYPE_SYS_BUS_DEVICE,
518     .instance_size = sizeof(IMXGPTState),
519     .instance_init = imx25_gpt_init,
520     .class_init = imx_gpt_class_init,
521 };
522 
523 static const TypeInfo imx31_gpt_info = {
524     .name = TYPE_IMX31_GPT,
525     .parent = TYPE_IMX25_GPT,
526     .instance_init = imx31_gpt_init,
527 };
528 
529 static const TypeInfo imx6_gpt_info = {
530     .name = TYPE_IMX6_GPT,
531     .parent = TYPE_IMX25_GPT,
532     .instance_init = imx6_gpt_init,
533 };
534 
535 static void imx_gpt_register_types(void)
536 {
537     type_register_static(&imx25_gpt_info);
538     type_register_static(&imx31_gpt_info);
539     type_register_static(&imx6_gpt_info);
540 }
541 
542 type_init(imx_gpt_register_types)
543