1 /* 2 * IMX EPIT Timer 3 * 4 * Copyright (c) 2008 OK Labs 5 * Copyright (c) 2011 NICTA Pty Ltd 6 * Originally written by Hans Jiang 7 * Updated by Peter Chubb 8 * Updated by Jean-Christophe Dubois <jcd@tribudubois.net> 9 * Updated by Axel Heider 10 * 11 * This code is licensed under GPL version 2 or later. See 12 * the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include "hw/timer/imx_epit.h" 18 #include "migration/vmstate.h" 19 #include "hw/irq.h" 20 #include "hw/misc/imx_ccm.h" 21 #include "qemu/module.h" 22 #include "qemu/log.h" 23 24 #ifndef DEBUG_IMX_EPIT 25 #define DEBUG_IMX_EPIT 0 26 #endif 27 28 #define DPRINTF(fmt, args...) \ 29 do { \ 30 if (DEBUG_IMX_EPIT) { \ 31 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_EPIT, \ 32 __func__, ##args); \ 33 } \ 34 } while (0) 35 36 static const char *imx_epit_reg_name(uint32_t reg) 37 { 38 switch (reg) { 39 case 0: 40 return "CR"; 41 case 1: 42 return "SR"; 43 case 2: 44 return "LR"; 45 case 3: 46 return "CMP"; 47 case 4: 48 return "CNT"; 49 default: 50 return "[?]"; 51 } 52 } 53 54 /* 55 * Exact clock frequencies vary from board to board. 56 * These are typical. 57 */ 58 static const IMXClk imx_epit_clocks[] = { 59 CLK_NONE, /* 00 disabled */ 60 CLK_IPG, /* 01 ipg_clk, ~532MHz */ 61 CLK_IPG_HIGH, /* 10 ipg_clk_highfreq */ 62 CLK_32k, /* 11 ipg_clk_32k -- ~32kHz */ 63 }; 64 65 /* 66 * Update interrupt status 67 */ 68 static void imx_epit_update_int(IMXEPITState *s) 69 { 70 if ((s->sr & SR_OCIF) && (s->cr & CR_OCIEN) && (s->cr & CR_EN)) { 71 qemu_irq_raise(s->irq); 72 } else { 73 qemu_irq_lower(s->irq); 74 } 75 } 76 77 static uint32_t imx_epit_get_freq(IMXEPITState *s) 78 { 79 uint32_t clksrc = extract32(s->cr, CR_CLKSRC_SHIFT, CR_CLKSRC_BITS); 80 uint32_t prescaler = 1 + extract32(s->cr, CR_PRESCALE_SHIFT, CR_PRESCALE_BITS); 81 uint32_t f_in = imx_ccm_get_clock_frequency(s->ccm, imx_epit_clocks[clksrc]); 82 uint32_t freq = f_in / prescaler; 83 DPRINTF("ptimer frequency is %u\n", freq); 84 return freq; 85 } 86 87 /* 88 * This is called both on hardware (device) reset and software reset. 89 */ 90 static void imx_epit_reset(IMXEPITState *s, bool is_hard_reset) 91 { 92 /* Soft reset doesn't touch some bits; hard reset clears them */ 93 if (is_hard_reset) { 94 s->cr = 0; 95 } else { 96 s->cr &= (CR_EN|CR_ENMOD|CR_STOPEN|CR_DOZEN|CR_WAITEN|CR_DBGEN); 97 } 98 s->sr = 0; 99 s->lr = EPIT_TIMER_MAX; 100 s->cmp = 0; 101 ptimer_transaction_begin(s->timer_cmp); 102 ptimer_transaction_begin(s->timer_reload); 103 104 /* 105 * The reset switches off the input clock, so even if the CR.EN is still 106 * set, the timers are no longer running. 107 */ 108 assert(imx_epit_get_freq(s) == 0); 109 ptimer_stop(s->timer_cmp); 110 ptimer_stop(s->timer_reload); 111 /* init both timers to EPIT_TIMER_MAX */ 112 ptimer_set_limit(s->timer_cmp, EPIT_TIMER_MAX, 1); 113 ptimer_set_limit(s->timer_reload, EPIT_TIMER_MAX, 1); 114 ptimer_transaction_commit(s->timer_cmp); 115 ptimer_transaction_commit(s->timer_reload); 116 } 117 118 static uint64_t imx_epit_read(void *opaque, hwaddr offset, unsigned size) 119 { 120 IMXEPITState *s = IMX_EPIT(opaque); 121 uint32_t reg_value = 0; 122 123 switch (offset >> 2) { 124 case 0: /* Control Register */ 125 reg_value = s->cr; 126 break; 127 128 case 1: /* Status Register */ 129 reg_value = s->sr; 130 break; 131 132 case 2: /* LR - ticks*/ 133 reg_value = s->lr; 134 break; 135 136 case 3: /* CMP */ 137 reg_value = s->cmp; 138 break; 139 140 case 4: /* CNT */ 141 reg_value = ptimer_get_count(s->timer_reload); 142 break; 143 144 default: 145 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" 146 HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset); 147 break; 148 } 149 150 DPRINTF("(%s) = 0x%08x\n", imx_epit_reg_name(offset >> 2), reg_value); 151 152 return reg_value; 153 } 154 155 /* 156 * Must be called from a ptimer_transaction_begin/commit block for 157 * s->timer_cmp, but outside of a transaction block of s->timer_reload, 158 * so the proper counter value is read. 159 */ 160 static void imx_epit_update_compare_timer(IMXEPITState *s) 161 { 162 uint64_t counter = 0; 163 bool is_oneshot = false; 164 /* 165 * The compare timer only has to run if the timer peripheral is active 166 * and there is an input clock, Otherwise it can be switched off. 167 */ 168 bool is_active = (s->cr & CR_EN) && imx_epit_get_freq(s); 169 if (is_active) { 170 /* 171 * Calculate next timeout for compare timer. Reading the reload 172 * counter returns proper results only if pending transactions 173 * on it are committed here. Otherwise stale values are be read. 174 */ 175 counter = ptimer_get_count(s->timer_reload); 176 uint64_t limit = ptimer_get_limit(s->timer_cmp); 177 /* 178 * The compare timer is a periodic timer if the limit is at least 179 * the compare value. Otherwise it may fire at most once in the 180 * current round. 181 */ 182 is_oneshot = (limit >= s->cmp); 183 if (counter >= s->cmp) { 184 /* The compare timer fires in the current round. */ 185 counter -= s->cmp; 186 } else if (!is_oneshot) { 187 /* 188 * The compare timer fires after a reload, as it is below the 189 * compare value already in this round. Note that the counter 190 * value calculated below can be above the 32-bit limit, which 191 * is legal here because the compare timer is an internal 192 * helper ptimer only. 193 */ 194 counter += limit - s->cmp; 195 } else { 196 /* 197 * The compare timer won't fire in this round, and the limit is 198 * set to a value below the compare value. This practically means 199 * it will never fire, so it can be switched off. 200 */ 201 is_active = false; 202 } 203 } 204 205 /* 206 * Set the compare timer and let it run, or stop it. This is agnostic 207 * of CR.OCIEN bit, as this bit affects interrupt generation only. The 208 * compare timer needs to run even if no interrupts are to be generated, 209 * because the SR.OCIF bit must be updated also. 210 * Note that the timer might already be stopped or be running with 211 * counter values. However, finding out when an update is needed and 212 * when not is not trivial. It's much easier applying the setting again, 213 * as this does not harm either and the overhead is negligible. 214 */ 215 if (is_active) { 216 ptimer_set_count(s->timer_cmp, counter); 217 ptimer_run(s->timer_cmp, is_oneshot ? 1 : 0); 218 } else { 219 ptimer_stop(s->timer_cmp); 220 } 221 222 } 223 224 static void imx_epit_write_cr(IMXEPITState *s, uint32_t value) 225 { 226 uint32_t oldcr = s->cr; 227 228 s->cr = value & 0x03ffffff; 229 230 if (s->cr & CR_SWR) { 231 /* 232 * Reset clears CR.SWR again. It does not touch CR.EN, but the timers 233 * are still stopped because the input clock is disabled. 234 */ 235 imx_epit_reset(s, false); 236 } else { 237 uint32_t freq; 238 uint32_t toggled_cr_bits = oldcr ^ s->cr; 239 /* re-initialize the limits if CR.RLD has changed */ 240 bool set_limit = toggled_cr_bits & CR_RLD; 241 /* set the counter if the timer got just enabled and CR.ENMOD is set */ 242 bool is_switched_on = (toggled_cr_bits & s->cr) & CR_EN; 243 bool set_counter = is_switched_on && (s->cr & CR_ENMOD); 244 245 ptimer_transaction_begin(s->timer_cmp); 246 ptimer_transaction_begin(s->timer_reload); 247 freq = imx_epit_get_freq(s); 248 if (freq) { 249 ptimer_set_freq(s->timer_reload, freq); 250 ptimer_set_freq(s->timer_cmp, freq); 251 } 252 253 if (set_limit || set_counter) { 254 uint64_t limit = (s->cr & CR_RLD) ? s->lr : EPIT_TIMER_MAX; 255 ptimer_set_limit(s->timer_reload, limit, set_counter ? 1 : 0); 256 if (set_limit) { 257 ptimer_set_limit(s->timer_cmp, limit, 0); 258 } 259 } 260 /* 261 * If there is an input clock and the peripheral is enabled, then 262 * ensure the wall clock timer is ticking. Otherwise stop the timers. 263 * The compare timer will be updated later. 264 */ 265 if (freq && (s->cr & CR_EN)) { 266 ptimer_run(s->timer_reload, 0); 267 } else { 268 ptimer_stop(s->timer_reload); 269 } 270 /* Commit changes to reload timer, so they can propagate. */ 271 ptimer_transaction_commit(s->timer_reload); 272 /* Update compare timer based on the committed reload timer value. */ 273 imx_epit_update_compare_timer(s); 274 ptimer_transaction_commit(s->timer_cmp); 275 } 276 277 /* 278 * The interrupt state can change due to: 279 * - reset clears both SR.OCIF and CR.OCIE 280 * - write to CR.EN or CR.OCIE 281 */ 282 imx_epit_update_int(s); 283 } 284 285 static void imx_epit_write_sr(IMXEPITState *s, uint32_t value) 286 { 287 /* writing 1 to SR.OCIF clears this bit and turns the interrupt off */ 288 if (value & SR_OCIF) { 289 s->sr = 0; /* SR.OCIF is the only bit in this register anyway */ 290 imx_epit_update_int(s); 291 } 292 } 293 294 static void imx_epit_write_lr(IMXEPITState *s, uint32_t value) 295 { 296 s->lr = value; 297 298 ptimer_transaction_begin(s->timer_cmp); 299 ptimer_transaction_begin(s->timer_reload); 300 if (s->cr & CR_RLD) { 301 /* Also set the limit if the LRD bit is set */ 302 /* If IOVW bit is set then set the timer value */ 303 ptimer_set_limit(s->timer_reload, s->lr, s->cr & CR_IOVW); 304 ptimer_set_limit(s->timer_cmp, s->lr, 0); 305 } else if (s->cr & CR_IOVW) { 306 /* If IOVW bit is set then set the timer value */ 307 ptimer_set_count(s->timer_reload, s->lr); 308 } 309 /* Commit the changes to s->timer_reload, so they can propagate. */ 310 ptimer_transaction_commit(s->timer_reload); 311 /* Update the compare timer based on the committed reload timer value. */ 312 imx_epit_update_compare_timer(s); 313 ptimer_transaction_commit(s->timer_cmp); 314 } 315 316 static void imx_epit_write_cmp(IMXEPITState *s, uint32_t value) 317 { 318 s->cmp = value; 319 320 /* Update the compare timer based on the committed reload timer value. */ 321 ptimer_transaction_begin(s->timer_cmp); 322 imx_epit_update_compare_timer(s); 323 ptimer_transaction_commit(s->timer_cmp); 324 } 325 326 static void imx_epit_write(void *opaque, hwaddr offset, uint64_t value, 327 unsigned size) 328 { 329 IMXEPITState *s = IMX_EPIT(opaque); 330 331 DPRINTF("(%s, value = 0x%08x)\n", imx_epit_reg_name(offset >> 2), 332 (uint32_t)value); 333 334 switch (offset >> 2) { 335 case 0: /* CR */ 336 imx_epit_write_cr(s, (uint32_t)value); 337 break; 338 339 case 1: /* SR */ 340 imx_epit_write_sr(s, (uint32_t)value); 341 break; 342 343 case 2: /* LR */ 344 imx_epit_write_lr(s, (uint32_t)value); 345 break; 346 347 case 3: /* CMP */ 348 imx_epit_write_cmp(s, (uint32_t)value); 349 break; 350 351 default: 352 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" 353 HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset); 354 break; 355 } 356 } 357 358 static void imx_epit_cmp(void *opaque) 359 { 360 IMXEPITState *s = IMX_EPIT(opaque); 361 362 /* The cmp ptimer can't be running when the peripheral is disabled */ 363 assert(s->cr & CR_EN); 364 365 DPRINTF("sr was %d\n", s->sr); 366 /* Set interrupt status bit SR.OCIF and update the interrupt state */ 367 s->sr |= SR_OCIF; 368 imx_epit_update_int(s); 369 } 370 371 static void imx_epit_reload(void *opaque) 372 { 373 /* No action required on rollover of timer_reload */ 374 } 375 376 static const MemoryRegionOps imx_epit_ops = { 377 .read = imx_epit_read, 378 .write = imx_epit_write, 379 .endianness = DEVICE_NATIVE_ENDIAN, 380 }; 381 382 static const VMStateDescription vmstate_imx_timer_epit = { 383 .name = TYPE_IMX_EPIT, 384 .version_id = 3, 385 .minimum_version_id = 3, 386 .fields = (VMStateField[]) { 387 VMSTATE_UINT32(cr, IMXEPITState), 388 VMSTATE_UINT32(sr, IMXEPITState), 389 VMSTATE_UINT32(lr, IMXEPITState), 390 VMSTATE_UINT32(cmp, IMXEPITState), 391 VMSTATE_PTIMER(timer_reload, IMXEPITState), 392 VMSTATE_PTIMER(timer_cmp, IMXEPITState), 393 VMSTATE_END_OF_LIST() 394 } 395 }; 396 397 static void imx_epit_realize(DeviceState *dev, Error **errp) 398 { 399 IMXEPITState *s = IMX_EPIT(dev); 400 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 401 402 DPRINTF("\n"); 403 404 sysbus_init_irq(sbd, &s->irq); 405 memory_region_init_io(&s->iomem, OBJECT(s), &imx_epit_ops, s, TYPE_IMX_EPIT, 406 0x00001000); 407 sysbus_init_mmio(sbd, &s->iomem); 408 409 /* 410 * The reload timer keeps running when the peripheral is enabled. It is a 411 * kind of wall clock that does not generate any interrupts. The callback 412 * needs to be provided, but it does nothing as the ptimer already supports 413 * all necessary reloading functionality. 414 */ 415 s->timer_reload = ptimer_init(imx_epit_reload, s, PTIMER_POLICY_LEGACY); 416 417 /* 418 * The compare timer is running only when the peripheral configuration is 419 * in a state that will generate compare interrupts. 420 */ 421 s->timer_cmp = ptimer_init(imx_epit_cmp, s, PTIMER_POLICY_LEGACY); 422 } 423 424 static void imx_epit_dev_reset(DeviceState *dev) 425 { 426 IMXEPITState *s = IMX_EPIT(dev); 427 imx_epit_reset(s, true); 428 } 429 430 static void imx_epit_class_init(ObjectClass *klass, void *data) 431 { 432 DeviceClass *dc = DEVICE_CLASS(klass); 433 434 dc->realize = imx_epit_realize; 435 dc->reset = imx_epit_dev_reset; 436 dc->vmsd = &vmstate_imx_timer_epit; 437 dc->desc = "i.MX periodic timer"; 438 } 439 440 static const TypeInfo imx_epit_info = { 441 .name = TYPE_IMX_EPIT, 442 .parent = TYPE_SYS_BUS_DEVICE, 443 .instance_size = sizeof(IMXEPITState), 444 .class_init = imx_epit_class_init, 445 }; 446 447 static void imx_epit_register_types(void) 448 { 449 type_register_static(&imx_epit_info); 450 } 451 452 type_init(imx_epit_register_types) 453