xref: /openbmc/qemu/hw/timer/i8254_common.c (revision 40d6ee94)
1 /*
2  * QEMU 8253/8254 - common bits of emulated and KVM kernel model
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2012      Jan Kiszka, Siemens AG
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/isa/isa.h"
28 #include "qemu/timer.h"
29 #include "hw/timer/i8254.h"
30 #include "hw/timer/i8254_internal.h"
31 
32 /* val must be 0 or 1 */
33 void pit_set_gate(ISADevice *dev, int channel, int val)
34 {
35     PITCommonState *pit = PIT_COMMON(dev);
36     PITChannelState *s = &pit->channels[channel];
37     PITCommonClass *c = PIT_COMMON_GET_CLASS(pit);
38 
39     c->set_channel_gate(pit, s, val);
40 }
41 
42 /* get pit output bit */
43 int pit_get_out(PITChannelState *s, int64_t current_time)
44 {
45     uint64_t d;
46     int out;
47 
48     d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
49                  NANOSECONDS_PER_SECOND);
50     switch (s->mode) {
51     default:
52     case 0:
53         out = (d >= s->count);
54         break;
55     case 1:
56         out = (d < s->count);
57         break;
58     case 2:
59         if ((d % s->count) == 0 && d != 0) {
60             out = 1;
61         } else {
62             out = 0;
63         }
64         break;
65     case 3:
66         out = (d % s->count) < ((s->count + 1) >> 1);
67         break;
68     case 4:
69     case 5:
70         out = (d == s->count);
71         break;
72     }
73     return out;
74 }
75 
76 /* return -1 if no transition will occur.  */
77 int64_t pit_get_next_transition_time(PITChannelState *s, int64_t current_time)
78 {
79     uint64_t d, next_time, base;
80     int period2;
81 
82     d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
83                  NANOSECONDS_PER_SECOND);
84     switch (s->mode) {
85     default:
86     case 0:
87     case 1:
88         if (d < s->count) {
89             next_time = s->count;
90         } else {
91             return -1;
92         }
93         break;
94     case 2:
95         base = QEMU_ALIGN_DOWN(d, s->count);
96         if ((d - base) == 0 && d != 0) {
97             next_time = base + s->count;
98         } else {
99             next_time = base + s->count + 1;
100         }
101         break;
102     case 3:
103         base = QEMU_ALIGN_DOWN(d, s->count);
104         period2 = ((s->count + 1) >> 1);
105         if ((d - base) < period2) {
106             next_time = base + period2;
107         } else {
108             next_time = base + s->count;
109         }
110         break;
111     case 4:
112     case 5:
113         if (d < s->count) {
114             next_time = s->count;
115         } else if (d == s->count) {
116             next_time = s->count + 1;
117         } else {
118             return -1;
119         }
120         break;
121     }
122     /* convert to timer units */
123     next_time = s->count_load_time + muldiv64(next_time, NANOSECONDS_PER_SECOND,
124                                               PIT_FREQ);
125     /* fix potential rounding problems */
126     /* XXX: better solution: use a clock at PIT_FREQ Hz */
127     if (next_time <= current_time) {
128         next_time = current_time + 1;
129     }
130     return next_time;
131 }
132 
133 void pit_get_channel_info_common(PITCommonState *s, PITChannelState *sc,
134                                  PITChannelInfo *info)
135 {
136     info->gate = sc->gate;
137     info->mode = sc->mode;
138     info->initial_count = sc->count;
139     info->out = pit_get_out(sc, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
140 }
141 
142 void pit_get_channel_info(ISADevice *dev, int channel, PITChannelInfo *info)
143 {
144     PITCommonState *pit = PIT_COMMON(dev);
145     PITChannelState *s = &pit->channels[channel];
146     PITCommonClass *c = PIT_COMMON_GET_CLASS(pit);
147 
148     c->get_channel_info(pit, s, info);
149 }
150 
151 void pit_reset_common(PITCommonState *pit)
152 {
153     PITChannelState *s;
154     int i;
155 
156     for (i = 0; i < 3; i++) {
157         s = &pit->channels[i];
158         s->mode = 3;
159         s->gate = (i != 2);
160         s->count_load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
161         s->count = 0x10000;
162         if (i == 0 && !s->irq_disabled) {
163             s->next_transition_time =
164                 pit_get_next_transition_time(s, s->count_load_time);
165         }
166     }
167 }
168 
169 static void pit_common_realize(DeviceState *dev, Error **errp)
170 {
171     ISADevice *isadev = ISA_DEVICE(dev);
172     PITCommonState *pit = PIT_COMMON(dev);
173 
174     isa_register_ioport(isadev, &pit->ioports, pit->iobase);
175 
176     qdev_set_legacy_instance_id(dev, pit->iobase, 2);
177 }
178 
179 static const VMStateDescription vmstate_pit_channel = {
180     .name = "pit channel",
181     .version_id = 2,
182     .minimum_version_id = 2,
183     .fields = (VMStateField[]) {
184         VMSTATE_INT32(count, PITChannelState),
185         VMSTATE_UINT16(latched_count, PITChannelState),
186         VMSTATE_UINT8(count_latched, PITChannelState),
187         VMSTATE_UINT8(status_latched, PITChannelState),
188         VMSTATE_UINT8(status, PITChannelState),
189         VMSTATE_UINT8(read_state, PITChannelState),
190         VMSTATE_UINT8(write_state, PITChannelState),
191         VMSTATE_UINT8(write_latch, PITChannelState),
192         VMSTATE_UINT8(rw_mode, PITChannelState),
193         VMSTATE_UINT8(mode, PITChannelState),
194         VMSTATE_UINT8(bcd, PITChannelState),
195         VMSTATE_UINT8(gate, PITChannelState),
196         VMSTATE_INT64(count_load_time, PITChannelState),
197         VMSTATE_INT64(next_transition_time, PITChannelState),
198         VMSTATE_END_OF_LIST()
199     }
200 };
201 
202 static int pit_load_old(QEMUFile *f, void *opaque, int version_id)
203 {
204     PITCommonState *pit = opaque;
205     PITCommonClass *c = PIT_COMMON_GET_CLASS(pit);
206     PITChannelState *s;
207     int i;
208 
209     if (version_id != 1) {
210         return -EINVAL;
211     }
212 
213     for (i = 0; i < 3; i++) {
214         s = &pit->channels[i];
215         s->count = qemu_get_be32(f);
216         qemu_get_be16s(f, &s->latched_count);
217         qemu_get_8s(f, &s->count_latched);
218         qemu_get_8s(f, &s->status_latched);
219         qemu_get_8s(f, &s->status);
220         qemu_get_8s(f, &s->read_state);
221         qemu_get_8s(f, &s->write_state);
222         qemu_get_8s(f, &s->write_latch);
223         qemu_get_8s(f, &s->rw_mode);
224         qemu_get_8s(f, &s->mode);
225         qemu_get_8s(f, &s->bcd);
226         qemu_get_8s(f, &s->gate);
227         s->count_load_time = qemu_get_be64(f);
228         s->irq_disabled = 0;
229         if (i == 0) {
230             s->next_transition_time = qemu_get_be64(f);
231         }
232     }
233     if (c->post_load) {
234         c->post_load(pit);
235     }
236     return 0;
237 }
238 
239 static int pit_dispatch_pre_save(void *opaque)
240 {
241     PITCommonState *s = opaque;
242     PITCommonClass *c = PIT_COMMON_GET_CLASS(s);
243 
244     if (c->pre_save) {
245         c->pre_save(s);
246     }
247 
248     return 0;
249 }
250 
251 static int pit_dispatch_post_load(void *opaque, int version_id)
252 {
253     PITCommonState *s = opaque;
254     PITCommonClass *c = PIT_COMMON_GET_CLASS(s);
255 
256     if (c->post_load) {
257         c->post_load(s);
258     }
259     return 0;
260 }
261 
262 static const VMStateDescription vmstate_pit_common = {
263     .name = "i8254",
264     .version_id = 3,
265     .minimum_version_id = 2,
266     .minimum_version_id_old = 1,
267     .load_state_old = pit_load_old,
268     .pre_save = pit_dispatch_pre_save,
269     .post_load = pit_dispatch_post_load,
270     .fields = (VMStateField[]) {
271         VMSTATE_UINT32_V(channels[0].irq_disabled, PITCommonState, 3),
272         VMSTATE_STRUCT_ARRAY(channels, PITCommonState, 3, 2,
273                              vmstate_pit_channel, PITChannelState),
274         VMSTATE_INT64(channels[0].next_transition_time,
275                       PITCommonState), /* formerly irq_timer */
276         VMSTATE_END_OF_LIST()
277     }
278 };
279 
280 static void pit_common_class_init(ObjectClass *klass, void *data)
281 {
282     DeviceClass *dc = DEVICE_CLASS(klass);
283 
284     dc->realize = pit_common_realize;
285     dc->vmsd = &vmstate_pit_common;
286     /*
287      * Reason: unlike ordinary ISA devices, the PIT may need to be
288      * wired to the HPET, and because of that, some wiring is always
289      * done by board code.
290      */
291     dc->user_creatable = false;
292 }
293 
294 static const TypeInfo pit_common_type = {
295     .name          = TYPE_PIT_COMMON,
296     .parent        = TYPE_ISA_DEVICE,
297     .instance_size = sizeof(PITCommonState),
298     .class_size    = sizeof(PITCommonClass),
299     .class_init    = pit_common_class_init,
300     .abstract      = true,
301 };
302 
303 static void register_devices(void)
304 {
305     type_register_static(&pit_common_type);
306 }
307 
308 type_init(register_devices);
309