xref: /openbmc/qemu/hw/timer/hpet.c (revision b2c623a3)
1 /*
2  *  High Precisition Event Timer emulation
3  *
4  *  Copyright (c) 2007 Alexander Graf
5  *  Copyright (c) 2008 IBM Corporation
6  *
7  *  Authors: Beth Kon <bkon@us.ibm.com>
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21  *
22  * *****************************************************************
23  *
24  * This driver attempts to emulate an HPET device in software.
25  */
26 
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "ui/console.h"
30 #include "qemu/timer.h"
31 #include "hw/timer/hpet.h"
32 #include "hw/sysbus.h"
33 #include "hw/timer/mc146818rtc.h"
34 #include "hw/timer/i8254.h"
35 
36 //#define HPET_DEBUG
37 #ifdef HPET_DEBUG
38 #define DPRINTF printf
39 #else
40 #define DPRINTF(...)
41 #endif
42 
43 #define HPET_MSI_SUPPORT        0
44 
45 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
46 
47 struct HPETState;
48 typedef struct HPETTimer {  /* timers */
49     uint8_t tn;             /*timer number*/
50     QEMUTimer *qemu_timer;
51     struct HPETState *state;
52     /* Memory-mapped, software visible timer registers */
53     uint64_t config;        /* configuration/cap */
54     uint64_t cmp;           /* comparator */
55     uint64_t fsb;           /* FSB route */
56     /* Hidden register state */
57     uint64_t period;        /* Last value written to comparator */
58     uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
59                              * mode. Next pop will be actual timer expiration.
60                              */
61 } HPETTimer;
62 
63 typedef struct HPETState {
64     /*< private >*/
65     SysBusDevice parent_obj;
66     /*< public >*/
67 
68     MemoryRegion iomem;
69     uint64_t hpet_offset;
70     qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
71     uint32_t flags;
72     uint8_t rtc_irq_level;
73     qemu_irq pit_enabled;
74     uint8_t num_timers;
75     uint32_t intcap;
76     HPETTimer timer[HPET_MAX_TIMERS];
77 
78     /* Memory-mapped, software visible registers */
79     uint64_t capability;        /* capabilities */
80     uint64_t config;            /* configuration */
81     uint64_t isr;               /* interrupt status reg */
82     uint64_t hpet_counter;      /* main counter */
83     uint8_t  hpet_id;           /* instance id */
84 } HPETState;
85 
86 static uint32_t hpet_in_legacy_mode(HPETState *s)
87 {
88     return s->config & HPET_CFG_LEGACY;
89 }
90 
91 static uint32_t timer_int_route(struct HPETTimer *timer)
92 {
93     return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
94 }
95 
96 static uint32_t timer_fsb_route(HPETTimer *t)
97 {
98     return t->config & HPET_TN_FSB_ENABLE;
99 }
100 
101 static uint32_t hpet_enabled(HPETState *s)
102 {
103     return s->config & HPET_CFG_ENABLE;
104 }
105 
106 static uint32_t timer_is_periodic(HPETTimer *t)
107 {
108     return t->config & HPET_TN_PERIODIC;
109 }
110 
111 static uint32_t timer_enabled(HPETTimer *t)
112 {
113     return t->config & HPET_TN_ENABLE;
114 }
115 
116 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
117 {
118     return ((int32_t)(b) - (int32_t)(a) < 0);
119 }
120 
121 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
122 {
123     return ((int64_t)(b) - (int64_t)(a) < 0);
124 }
125 
126 static uint64_t ticks_to_ns(uint64_t value)
127 {
128     return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
129 }
130 
131 static uint64_t ns_to_ticks(uint64_t value)
132 {
133     return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
134 }
135 
136 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
137 {
138     new &= mask;
139     new |= old & ~mask;
140     return new;
141 }
142 
143 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
144 {
145     return (!(old & mask) && (new & mask));
146 }
147 
148 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
149 {
150     return ((old & mask) && !(new & mask));
151 }
152 
153 static uint64_t hpet_get_ticks(HPETState *s)
154 {
155     return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
156 }
157 
158 /*
159  * calculate diff between comparator value and current ticks
160  */
161 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
162 {
163 
164     if (t->config & HPET_TN_32BIT) {
165         uint32_t diff, cmp;
166 
167         cmp = (uint32_t)t->cmp;
168         diff = cmp - (uint32_t)current;
169         diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
170         return (uint64_t)diff;
171     } else {
172         uint64_t diff, cmp;
173 
174         cmp = t->cmp;
175         diff = cmp - current;
176         diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
177         return diff;
178     }
179 }
180 
181 static void update_irq(struct HPETTimer *timer, int set)
182 {
183     uint64_t mask;
184     HPETState *s;
185     int route;
186 
187     if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
188         /* if LegacyReplacementRoute bit is set, HPET specification requires
189          * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
190          * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
191          */
192         route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
193     } else {
194         route = timer_int_route(timer);
195     }
196     s = timer->state;
197     mask = 1 << timer->tn;
198     if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
199         s->isr &= ~mask;
200         if (!timer_fsb_route(timer)) {
201             /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
202             if (route >= ISA_NUM_IRQS) {
203                 qemu_irq_raise(s->irqs[route]);
204             } else {
205                 qemu_irq_lower(s->irqs[route]);
206             }
207         }
208     } else if (timer_fsb_route(timer)) {
209         stl_le_phys(timer->fsb >> 32, timer->fsb & 0xffffffff);
210     } else if (timer->config & HPET_TN_TYPE_LEVEL) {
211         s->isr |= mask;
212         /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
213         if (route >= ISA_NUM_IRQS) {
214             qemu_irq_lower(s->irqs[route]);
215         } else {
216             qemu_irq_raise(s->irqs[route]);
217         }
218     } else {
219         s->isr &= ~mask;
220         qemu_irq_pulse(s->irqs[route]);
221     }
222 }
223 
224 static void hpet_pre_save(void *opaque)
225 {
226     HPETState *s = opaque;
227 
228     /* save current counter value */
229     s->hpet_counter = hpet_get_ticks(s);
230 }
231 
232 static int hpet_pre_load(void *opaque)
233 {
234     HPETState *s = opaque;
235 
236     /* version 1 only supports 3, later versions will load the actual value */
237     s->num_timers = HPET_MIN_TIMERS;
238     return 0;
239 }
240 
241 static int hpet_post_load(void *opaque, int version_id)
242 {
243     HPETState *s = opaque;
244 
245     /* Recalculate the offset between the main counter and guest time */
246     s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
247 
248     /* Push number of timers into capability returned via HPET_ID */
249     s->capability &= ~HPET_ID_NUM_TIM_MASK;
250     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
251     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
252 
253     /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
254     s->flags &= ~(1 << HPET_MSI_SUPPORT);
255     if (s->timer[0].config & HPET_TN_FSB_CAP) {
256         s->flags |= 1 << HPET_MSI_SUPPORT;
257     }
258     return 0;
259 }
260 
261 static bool hpet_rtc_irq_level_needed(void *opaque)
262 {
263     HPETState *s = opaque;
264 
265     return s->rtc_irq_level != 0;
266 }
267 
268 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
269     .name = "hpet/rtc_irq_level",
270     .version_id = 1,
271     .minimum_version_id = 1,
272     .minimum_version_id_old = 1,
273     .fields      = (VMStateField[]) {
274         VMSTATE_UINT8(rtc_irq_level, HPETState),
275         VMSTATE_END_OF_LIST()
276     }
277 };
278 
279 static const VMStateDescription vmstate_hpet_timer = {
280     .name = "hpet_timer",
281     .version_id = 1,
282     .minimum_version_id = 1,
283     .minimum_version_id_old = 1,
284     .fields      = (VMStateField []) {
285         VMSTATE_UINT8(tn, HPETTimer),
286         VMSTATE_UINT64(config, HPETTimer),
287         VMSTATE_UINT64(cmp, HPETTimer),
288         VMSTATE_UINT64(fsb, HPETTimer),
289         VMSTATE_UINT64(period, HPETTimer),
290         VMSTATE_UINT8(wrap_flag, HPETTimer),
291         VMSTATE_TIMER(qemu_timer, HPETTimer),
292         VMSTATE_END_OF_LIST()
293     }
294 };
295 
296 static const VMStateDescription vmstate_hpet = {
297     .name = "hpet",
298     .version_id = 2,
299     .minimum_version_id = 1,
300     .minimum_version_id_old = 1,
301     .pre_save = hpet_pre_save,
302     .pre_load = hpet_pre_load,
303     .post_load = hpet_post_load,
304     .fields      = (VMStateField []) {
305         VMSTATE_UINT64(config, HPETState),
306         VMSTATE_UINT64(isr, HPETState),
307         VMSTATE_UINT64(hpet_counter, HPETState),
308         VMSTATE_UINT8_V(num_timers, HPETState, 2),
309         VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
310                                     vmstate_hpet_timer, HPETTimer),
311         VMSTATE_END_OF_LIST()
312     },
313     .subsections = (VMStateSubsection[]) {
314         {
315             .vmsd = &vmstate_hpet_rtc_irq_level,
316             .needed = hpet_rtc_irq_level_needed,
317         }, {
318             /* empty */
319         }
320     }
321 };
322 
323 /*
324  * timer expiration callback
325  */
326 static void hpet_timer(void *opaque)
327 {
328     HPETTimer *t = opaque;
329     uint64_t diff;
330 
331     uint64_t period = t->period;
332     uint64_t cur_tick = hpet_get_ticks(t->state);
333 
334     if (timer_is_periodic(t) && period != 0) {
335         if (t->config & HPET_TN_32BIT) {
336             while (hpet_time_after(cur_tick, t->cmp)) {
337                 t->cmp = (uint32_t)(t->cmp + t->period);
338             }
339         } else {
340             while (hpet_time_after64(cur_tick, t->cmp)) {
341                 t->cmp += period;
342             }
343         }
344         diff = hpet_calculate_diff(t, cur_tick);
345         timer_mod(t->qemu_timer,
346                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
347     } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
348         if (t->wrap_flag) {
349             diff = hpet_calculate_diff(t, cur_tick);
350             timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
351                            (int64_t)ticks_to_ns(diff));
352             t->wrap_flag = 0;
353         }
354     }
355     update_irq(t, 1);
356 }
357 
358 static void hpet_set_timer(HPETTimer *t)
359 {
360     uint64_t diff;
361     uint32_t wrap_diff;  /* how many ticks until we wrap? */
362     uint64_t cur_tick = hpet_get_ticks(t->state);
363 
364     /* whenever new timer is being set up, make sure wrap_flag is 0 */
365     t->wrap_flag = 0;
366     diff = hpet_calculate_diff(t, cur_tick);
367 
368     /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
369      * counter wraps in addition to an interrupt with comparator match.
370      */
371     if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
372         wrap_diff = 0xffffffff - (uint32_t)cur_tick;
373         if (wrap_diff < (uint32_t)diff) {
374             diff = wrap_diff;
375             t->wrap_flag = 1;
376         }
377     }
378     timer_mod(t->qemu_timer,
379                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
380 }
381 
382 static void hpet_del_timer(HPETTimer *t)
383 {
384     timer_del(t->qemu_timer);
385     update_irq(t, 0);
386 }
387 
388 #ifdef HPET_DEBUG
389 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
390 {
391     printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
392     return 0;
393 }
394 
395 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
396 {
397     printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
398     return 0;
399 }
400 #endif
401 
402 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
403                               unsigned size)
404 {
405     HPETState *s = opaque;
406     uint64_t cur_tick, index;
407 
408     DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
409     index = addr;
410     /*address range of all TN regs*/
411     if (index >= 0x100 && index <= 0x3ff) {
412         uint8_t timer_id = (addr - 0x100) / 0x20;
413         HPETTimer *timer = &s->timer[timer_id];
414 
415         if (timer_id > s->num_timers) {
416             DPRINTF("qemu: timer id out of range\n");
417             return 0;
418         }
419 
420         switch ((addr - 0x100) % 0x20) {
421         case HPET_TN_CFG:
422             return timer->config;
423         case HPET_TN_CFG + 4: // Interrupt capabilities
424             return timer->config >> 32;
425         case HPET_TN_CMP: // comparator register
426             return timer->cmp;
427         case HPET_TN_CMP + 4:
428             return timer->cmp >> 32;
429         case HPET_TN_ROUTE:
430             return timer->fsb;
431         case HPET_TN_ROUTE + 4:
432             return timer->fsb >> 32;
433         default:
434             DPRINTF("qemu: invalid hpet_ram_readl\n");
435             break;
436         }
437     } else {
438         switch (index) {
439         case HPET_ID:
440             return s->capability;
441         case HPET_PERIOD:
442             return s->capability >> 32;
443         case HPET_CFG:
444             return s->config;
445         case HPET_CFG + 4:
446             DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
447             return 0;
448         case HPET_COUNTER:
449             if (hpet_enabled(s)) {
450                 cur_tick = hpet_get_ticks(s);
451             } else {
452                 cur_tick = s->hpet_counter;
453             }
454             DPRINTF("qemu: reading counter  = %" PRIx64 "\n", cur_tick);
455             return cur_tick;
456         case HPET_COUNTER + 4:
457             if (hpet_enabled(s)) {
458                 cur_tick = hpet_get_ticks(s);
459             } else {
460                 cur_tick = s->hpet_counter;
461             }
462             DPRINTF("qemu: reading counter + 4  = %" PRIx64 "\n", cur_tick);
463             return cur_tick >> 32;
464         case HPET_STATUS:
465             return s->isr;
466         default:
467             DPRINTF("qemu: invalid hpet_ram_readl\n");
468             break;
469         }
470     }
471     return 0;
472 }
473 
474 static void hpet_ram_write(void *opaque, hwaddr addr,
475                            uint64_t value, unsigned size)
476 {
477     int i;
478     HPETState *s = opaque;
479     uint64_t old_val, new_val, val, index;
480 
481     DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
482     index = addr;
483     old_val = hpet_ram_read(opaque, addr, 4);
484     new_val = value;
485 
486     /*address range of all TN regs*/
487     if (index >= 0x100 && index <= 0x3ff) {
488         uint8_t timer_id = (addr - 0x100) / 0x20;
489         HPETTimer *timer = &s->timer[timer_id];
490 
491         DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
492         if (timer_id > s->num_timers) {
493             DPRINTF("qemu: timer id out of range\n");
494             return;
495         }
496         switch ((addr - 0x100) % 0x20) {
497         case HPET_TN_CFG:
498             DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
499             if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
500                 update_irq(timer, 0);
501             }
502             val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
503             timer->config = (timer->config & 0xffffffff00000000ULL) | val;
504             if (new_val & HPET_TN_32BIT) {
505                 timer->cmp = (uint32_t)timer->cmp;
506                 timer->period = (uint32_t)timer->period;
507             }
508             if (activating_bit(old_val, new_val, HPET_TN_ENABLE)) {
509                 hpet_set_timer(timer);
510             } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
511                 hpet_del_timer(timer);
512             }
513             break;
514         case HPET_TN_CFG + 4: // Interrupt capabilities
515             DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
516             break;
517         case HPET_TN_CMP: // comparator register
518             DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
519             if (timer->config & HPET_TN_32BIT) {
520                 new_val = (uint32_t)new_val;
521             }
522             if (!timer_is_periodic(timer)
523                 || (timer->config & HPET_TN_SETVAL)) {
524                 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
525             }
526             if (timer_is_periodic(timer)) {
527                 /*
528                  * FIXME: Clamp period to reasonable min value?
529                  * Clamp period to reasonable max value
530                  */
531                 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
532                 timer->period =
533                     (timer->period & 0xffffffff00000000ULL) | new_val;
534             }
535             timer->config &= ~HPET_TN_SETVAL;
536             if (hpet_enabled(s)) {
537                 hpet_set_timer(timer);
538             }
539             break;
540         case HPET_TN_CMP + 4: // comparator register high order
541             DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
542             if (!timer_is_periodic(timer)
543                 || (timer->config & HPET_TN_SETVAL)) {
544                 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
545             } else {
546                 /*
547                  * FIXME: Clamp period to reasonable min value?
548                  * Clamp period to reasonable max value
549                  */
550                 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
551                 timer->period =
552                     (timer->period & 0xffffffffULL) | new_val << 32;
553                 }
554                 timer->config &= ~HPET_TN_SETVAL;
555                 if (hpet_enabled(s)) {
556                     hpet_set_timer(timer);
557                 }
558                 break;
559         case HPET_TN_ROUTE:
560             timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
561             break;
562         case HPET_TN_ROUTE + 4:
563             timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
564             break;
565         default:
566             DPRINTF("qemu: invalid hpet_ram_writel\n");
567             break;
568         }
569         return;
570     } else {
571         switch (index) {
572         case HPET_ID:
573             return;
574         case HPET_CFG:
575             val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
576             s->config = (s->config & 0xffffffff00000000ULL) | val;
577             if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
578                 /* Enable main counter and interrupt generation. */
579                 s->hpet_offset =
580                     ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
581                 for (i = 0; i < s->num_timers; i++) {
582                     if ((&s->timer[i])->cmp != ~0ULL) {
583                         hpet_set_timer(&s->timer[i]);
584                     }
585                 }
586             } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
587                 /* Halt main counter and disable interrupt generation. */
588                 s->hpet_counter = hpet_get_ticks(s);
589                 for (i = 0; i < s->num_timers; i++) {
590                     hpet_del_timer(&s->timer[i]);
591                 }
592             }
593             /* i8254 and RTC output pins are disabled
594              * when HPET is in legacy mode */
595             if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
596                 qemu_set_irq(s->pit_enabled, 0);
597                 qemu_irq_lower(s->irqs[0]);
598                 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
599             } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
600                 qemu_irq_lower(s->irqs[0]);
601                 qemu_set_irq(s->pit_enabled, 1);
602                 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
603             }
604             break;
605         case HPET_CFG + 4:
606             DPRINTF("qemu: invalid HPET_CFG+4 write\n");
607             break;
608         case HPET_STATUS:
609             val = new_val & s->isr;
610             for (i = 0; i < s->num_timers; i++) {
611                 if (val & (1 << i)) {
612                     update_irq(&s->timer[i], 0);
613                 }
614             }
615             break;
616         case HPET_COUNTER:
617             if (hpet_enabled(s)) {
618                 DPRINTF("qemu: Writing counter while HPET enabled!\n");
619             }
620             s->hpet_counter =
621                 (s->hpet_counter & 0xffffffff00000000ULL) | value;
622             DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
623                     value, s->hpet_counter);
624             break;
625         case HPET_COUNTER + 4:
626             if (hpet_enabled(s)) {
627                 DPRINTF("qemu: Writing counter while HPET enabled!\n");
628             }
629             s->hpet_counter =
630                 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
631             DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
632                     value, s->hpet_counter);
633             break;
634         default:
635             DPRINTF("qemu: invalid hpet_ram_writel\n");
636             break;
637         }
638     }
639 }
640 
641 static const MemoryRegionOps hpet_ram_ops = {
642     .read = hpet_ram_read,
643     .write = hpet_ram_write,
644     .valid = {
645         .min_access_size = 4,
646         .max_access_size = 4,
647     },
648     .endianness = DEVICE_NATIVE_ENDIAN,
649 };
650 
651 static void hpet_reset(DeviceState *d)
652 {
653     HPETState *s = HPET(d);
654     SysBusDevice *sbd = SYS_BUS_DEVICE(d);
655     int i;
656 
657     for (i = 0; i < s->num_timers; i++) {
658         HPETTimer *timer = &s->timer[i];
659 
660         hpet_del_timer(timer);
661         timer->cmp = ~0ULL;
662         timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
663         if (s->flags & (1 << HPET_MSI_SUPPORT)) {
664             timer->config |= HPET_TN_FSB_CAP;
665         }
666         /* advertise availability of ioapic int */
667         timer->config |=  (uint64_t)s->intcap << 32;
668         timer->period = 0ULL;
669         timer->wrap_flag = 0;
670     }
671 
672     qemu_set_irq(s->pit_enabled, 1);
673     s->hpet_counter = 0ULL;
674     s->hpet_offset = 0ULL;
675     s->config = 0ULL;
676     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
677     hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
678 
679     /* to document that the RTC lowers its output on reset as well */
680     s->rtc_irq_level = 0;
681 }
682 
683 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
684 {
685     HPETState *s = HPET(opaque);
686 
687     if (n == HPET_LEGACY_PIT_INT) {
688         if (!hpet_in_legacy_mode(s)) {
689             qemu_set_irq(s->irqs[0], level);
690         }
691     } else {
692         s->rtc_irq_level = level;
693         if (!hpet_in_legacy_mode(s)) {
694             qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
695         }
696     }
697 }
698 
699 static void hpet_init(Object *obj)
700 {
701     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
702     HPETState *s = HPET(obj);
703 
704     /* HPET Area */
705     memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", 0x400);
706     sysbus_init_mmio(sbd, &s->iomem);
707 }
708 
709 static void hpet_realize(DeviceState *dev, Error **errp)
710 {
711     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
712     HPETState *s = HPET(dev);
713     int i;
714     HPETTimer *timer;
715 
716     if (!s->intcap) {
717         error_printf("Hpet's intcap not initialized.\n");
718     }
719     if (hpet_cfg.count == UINT8_MAX) {
720         /* first instance */
721         hpet_cfg.count = 0;
722     }
723 
724     if (hpet_cfg.count == 8) {
725         error_setg(errp, "Only 8 instances of HPET is allowed");
726         return;
727     }
728 
729     s->hpet_id = hpet_cfg.count++;
730 
731     for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
732         sysbus_init_irq(sbd, &s->irqs[i]);
733     }
734 
735     if (s->num_timers < HPET_MIN_TIMERS) {
736         s->num_timers = HPET_MIN_TIMERS;
737     } else if (s->num_timers > HPET_MAX_TIMERS) {
738         s->num_timers = HPET_MAX_TIMERS;
739     }
740     for (i = 0; i < HPET_MAX_TIMERS; i++) {
741         timer = &s->timer[i];
742         timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
743         timer->tn = i;
744         timer->state = s;
745     }
746 
747     /* 64-bit main counter; LegacyReplacementRoute. */
748     s->capability = 0x8086a001ULL;
749     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
750     s->capability |= ((HPET_CLK_PERIOD) << 32);
751 
752     qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
753     qdev_init_gpio_out(dev, &s->pit_enabled, 1);
754 }
755 
756 static Property hpet_device_properties[] = {
757     DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
758     DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
759     DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
760     DEFINE_PROP_END_OF_LIST(),
761 };
762 
763 static void hpet_device_class_init(ObjectClass *klass, void *data)
764 {
765     DeviceClass *dc = DEVICE_CLASS(klass);
766 
767     dc->realize = hpet_realize;
768     dc->reset = hpet_reset;
769     dc->vmsd = &vmstate_hpet;
770     dc->props = hpet_device_properties;
771 }
772 
773 static const TypeInfo hpet_device_info = {
774     .name          = TYPE_HPET,
775     .parent        = TYPE_SYS_BUS_DEVICE,
776     .instance_size = sizeof(HPETState),
777     .instance_init = hpet_init,
778     .class_init    = hpet_device_class_init,
779 };
780 
781 static void hpet_register_types(void)
782 {
783     type_register_static(&hpet_device_info);
784 }
785 
786 type_init(hpet_register_types)
787