xref: /openbmc/qemu/hw/timer/hpet.c (revision 84a3a53c)
1 /*
2  *  High Precision Event Timer emulation
3  *
4  *  Copyright (c) 2007 Alexander Graf
5  *  Copyright (c) 2008 IBM Corporation
6  *
7  *  Authors: Beth Kon <bkon@us.ibm.com>
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21  *
22  * *****************************************************************
23  *
24  * This driver attempts to emulate an HPET device in software.
25  */
26 
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "ui/console.h"
30 #include "qemu/error-report.h"
31 #include "qemu/timer.h"
32 #include "hw/timer/hpet.h"
33 #include "hw/sysbus.h"
34 #include "hw/timer/mc146818rtc.h"
35 #include "hw/timer/i8254.h"
36 
37 //#define HPET_DEBUG
38 #ifdef HPET_DEBUG
39 #define DPRINTF printf
40 #else
41 #define DPRINTF(...)
42 #endif
43 
44 #define HPET_MSI_SUPPORT        0
45 
46 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
47 
48 struct HPETState;
49 typedef struct HPETTimer {  /* timers */
50     uint8_t tn;             /*timer number*/
51     QEMUTimer *qemu_timer;
52     struct HPETState *state;
53     /* Memory-mapped, software visible timer registers */
54     uint64_t config;        /* configuration/cap */
55     uint64_t cmp;           /* comparator */
56     uint64_t fsb;           /* FSB route */
57     /* Hidden register state */
58     uint64_t period;        /* Last value written to comparator */
59     uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
60                              * mode. Next pop will be actual timer expiration.
61                              */
62 } HPETTimer;
63 
64 typedef struct HPETState {
65     /*< private >*/
66     SysBusDevice parent_obj;
67     /*< public >*/
68 
69     MemoryRegion iomem;
70     uint64_t hpet_offset;
71     qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
72     uint32_t flags;
73     uint8_t rtc_irq_level;
74     qemu_irq pit_enabled;
75     uint8_t num_timers;
76     uint32_t intcap;
77     HPETTimer timer[HPET_MAX_TIMERS];
78 
79     /* Memory-mapped, software visible registers */
80     uint64_t capability;        /* capabilities */
81     uint64_t config;            /* configuration */
82     uint64_t isr;               /* interrupt status reg */
83     uint64_t hpet_counter;      /* main counter */
84     uint8_t  hpet_id;           /* instance id */
85 } HPETState;
86 
87 static uint32_t hpet_in_legacy_mode(HPETState *s)
88 {
89     return s->config & HPET_CFG_LEGACY;
90 }
91 
92 static uint32_t timer_int_route(struct HPETTimer *timer)
93 {
94     return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
95 }
96 
97 static uint32_t timer_fsb_route(HPETTimer *t)
98 {
99     return t->config & HPET_TN_FSB_ENABLE;
100 }
101 
102 static uint32_t hpet_enabled(HPETState *s)
103 {
104     return s->config & HPET_CFG_ENABLE;
105 }
106 
107 static uint32_t timer_is_periodic(HPETTimer *t)
108 {
109     return t->config & HPET_TN_PERIODIC;
110 }
111 
112 static uint32_t timer_enabled(HPETTimer *t)
113 {
114     return t->config & HPET_TN_ENABLE;
115 }
116 
117 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
118 {
119     return ((int32_t)(b - a) < 0);
120 }
121 
122 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
123 {
124     return ((int64_t)(b - a) < 0);
125 }
126 
127 static uint64_t ticks_to_ns(uint64_t value)
128 {
129     return value * HPET_CLK_PERIOD;
130 }
131 
132 static uint64_t ns_to_ticks(uint64_t value)
133 {
134     return value / HPET_CLK_PERIOD;
135 }
136 
137 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
138 {
139     new &= mask;
140     new |= old & ~mask;
141     return new;
142 }
143 
144 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
145 {
146     return (!(old & mask) && (new & mask));
147 }
148 
149 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
150 {
151     return ((old & mask) && !(new & mask));
152 }
153 
154 static uint64_t hpet_get_ticks(HPETState *s)
155 {
156     return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
157 }
158 
159 /*
160  * calculate diff between comparator value and current ticks
161  */
162 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
163 {
164 
165     if (t->config & HPET_TN_32BIT) {
166         uint32_t diff, cmp;
167 
168         cmp = (uint32_t)t->cmp;
169         diff = cmp - (uint32_t)current;
170         diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
171         return (uint64_t)diff;
172     } else {
173         uint64_t diff, cmp;
174 
175         cmp = t->cmp;
176         diff = cmp - current;
177         diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
178         return diff;
179     }
180 }
181 
182 static void update_irq(struct HPETTimer *timer, int set)
183 {
184     uint64_t mask;
185     HPETState *s;
186     int route;
187 
188     if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
189         /* if LegacyReplacementRoute bit is set, HPET specification requires
190          * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
191          * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
192          */
193         route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
194     } else {
195         route = timer_int_route(timer);
196     }
197     s = timer->state;
198     mask = 1 << timer->tn;
199     if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
200         s->isr &= ~mask;
201         if (!timer_fsb_route(timer)) {
202             /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
203             if (route >= ISA_NUM_IRQS) {
204                 qemu_irq_raise(s->irqs[route]);
205             } else {
206                 qemu_irq_lower(s->irqs[route]);
207             }
208         }
209     } else if (timer_fsb_route(timer)) {
210         address_space_stl_le(&address_space_memory, timer->fsb >> 32,
211                              timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
212                              NULL);
213     } else if (timer->config & HPET_TN_TYPE_LEVEL) {
214         s->isr |= mask;
215         /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
216         if (route >= ISA_NUM_IRQS) {
217             qemu_irq_lower(s->irqs[route]);
218         } else {
219             qemu_irq_raise(s->irqs[route]);
220         }
221     } else {
222         s->isr &= ~mask;
223         qemu_irq_pulse(s->irqs[route]);
224     }
225 }
226 
227 static void hpet_pre_save(void *opaque)
228 {
229     HPETState *s = opaque;
230 
231     /* save current counter value */
232     s->hpet_counter = hpet_get_ticks(s);
233 }
234 
235 static int hpet_pre_load(void *opaque)
236 {
237     HPETState *s = opaque;
238 
239     /* version 1 only supports 3, later versions will load the actual value */
240     s->num_timers = HPET_MIN_TIMERS;
241     return 0;
242 }
243 
244 static bool hpet_validate_num_timers(void *opaque, int version_id)
245 {
246     HPETState *s = opaque;
247 
248     if (s->num_timers < HPET_MIN_TIMERS) {
249         return false;
250     } else if (s->num_timers > HPET_MAX_TIMERS) {
251         return false;
252     }
253     return true;
254 }
255 
256 static int hpet_post_load(void *opaque, int version_id)
257 {
258     HPETState *s = opaque;
259 
260     /* Recalculate the offset between the main counter and guest time */
261     s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
262 
263     /* Push number of timers into capability returned via HPET_ID */
264     s->capability &= ~HPET_ID_NUM_TIM_MASK;
265     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
266     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
267 
268     /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
269     s->flags &= ~(1 << HPET_MSI_SUPPORT);
270     if (s->timer[0].config & HPET_TN_FSB_CAP) {
271         s->flags |= 1 << HPET_MSI_SUPPORT;
272     }
273     return 0;
274 }
275 
276 static bool hpet_rtc_irq_level_needed(void *opaque)
277 {
278     HPETState *s = opaque;
279 
280     return s->rtc_irq_level != 0;
281 }
282 
283 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
284     .name = "hpet/rtc_irq_level",
285     .version_id = 1,
286     .minimum_version_id = 1,
287     .needed = hpet_rtc_irq_level_needed,
288     .fields = (VMStateField[]) {
289         VMSTATE_UINT8(rtc_irq_level, HPETState),
290         VMSTATE_END_OF_LIST()
291     }
292 };
293 
294 static const VMStateDescription vmstate_hpet_timer = {
295     .name = "hpet_timer",
296     .version_id = 1,
297     .minimum_version_id = 1,
298     .fields = (VMStateField[]) {
299         VMSTATE_UINT8(tn, HPETTimer),
300         VMSTATE_UINT64(config, HPETTimer),
301         VMSTATE_UINT64(cmp, HPETTimer),
302         VMSTATE_UINT64(fsb, HPETTimer),
303         VMSTATE_UINT64(period, HPETTimer),
304         VMSTATE_UINT8(wrap_flag, HPETTimer),
305         VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
306         VMSTATE_END_OF_LIST()
307     }
308 };
309 
310 static const VMStateDescription vmstate_hpet = {
311     .name = "hpet",
312     .version_id = 2,
313     .minimum_version_id = 1,
314     .pre_save = hpet_pre_save,
315     .pre_load = hpet_pre_load,
316     .post_load = hpet_post_load,
317     .fields = (VMStateField[]) {
318         VMSTATE_UINT64(config, HPETState),
319         VMSTATE_UINT64(isr, HPETState),
320         VMSTATE_UINT64(hpet_counter, HPETState),
321         VMSTATE_UINT8_V(num_timers, HPETState, 2),
322         VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
323         VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
324                                     vmstate_hpet_timer, HPETTimer),
325         VMSTATE_END_OF_LIST()
326     },
327     .subsections = (const VMStateDescription*[]) {
328         &vmstate_hpet_rtc_irq_level,
329         NULL
330     }
331 };
332 
333 /*
334  * timer expiration callback
335  */
336 static void hpet_timer(void *opaque)
337 {
338     HPETTimer *t = opaque;
339     uint64_t diff;
340 
341     uint64_t period = t->period;
342     uint64_t cur_tick = hpet_get_ticks(t->state);
343 
344     if (timer_is_periodic(t) && period != 0) {
345         if (t->config & HPET_TN_32BIT) {
346             while (hpet_time_after(cur_tick, t->cmp)) {
347                 t->cmp = (uint32_t)(t->cmp + t->period);
348             }
349         } else {
350             while (hpet_time_after64(cur_tick, t->cmp)) {
351                 t->cmp += period;
352             }
353         }
354         diff = hpet_calculate_diff(t, cur_tick);
355         timer_mod(t->qemu_timer,
356                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
357     } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
358         if (t->wrap_flag) {
359             diff = hpet_calculate_diff(t, cur_tick);
360             timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
361                            (int64_t)ticks_to_ns(diff));
362             t->wrap_flag = 0;
363         }
364     }
365     update_irq(t, 1);
366 }
367 
368 static void hpet_set_timer(HPETTimer *t)
369 {
370     uint64_t diff;
371     uint32_t wrap_diff;  /* how many ticks until we wrap? */
372     uint64_t cur_tick = hpet_get_ticks(t->state);
373 
374     /* whenever new timer is being set up, make sure wrap_flag is 0 */
375     t->wrap_flag = 0;
376     diff = hpet_calculate_diff(t, cur_tick);
377 
378     /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
379      * counter wraps in addition to an interrupt with comparator match.
380      */
381     if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
382         wrap_diff = 0xffffffff - (uint32_t)cur_tick;
383         if (wrap_diff < (uint32_t)diff) {
384             diff = wrap_diff;
385             t->wrap_flag = 1;
386         }
387     }
388     timer_mod(t->qemu_timer,
389                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
390 }
391 
392 static void hpet_del_timer(HPETTimer *t)
393 {
394     timer_del(t->qemu_timer);
395     update_irq(t, 0);
396 }
397 
398 #ifdef HPET_DEBUG
399 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
400 {
401     printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
402     return 0;
403 }
404 
405 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
406 {
407     printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
408     return 0;
409 }
410 #endif
411 
412 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
413                               unsigned size)
414 {
415     HPETState *s = opaque;
416     uint64_t cur_tick, index;
417 
418     DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
419     index = addr;
420     /*address range of all TN regs*/
421     if (index >= 0x100 && index <= 0x3ff) {
422         uint8_t timer_id = (addr - 0x100) / 0x20;
423         HPETTimer *timer = &s->timer[timer_id];
424 
425         if (timer_id > s->num_timers) {
426             DPRINTF("qemu: timer id out of range\n");
427             return 0;
428         }
429 
430         switch ((addr - 0x100) % 0x20) {
431         case HPET_TN_CFG:
432             return timer->config;
433         case HPET_TN_CFG + 4: // Interrupt capabilities
434             return timer->config >> 32;
435         case HPET_TN_CMP: // comparator register
436             return timer->cmp;
437         case HPET_TN_CMP + 4:
438             return timer->cmp >> 32;
439         case HPET_TN_ROUTE:
440             return timer->fsb;
441         case HPET_TN_ROUTE + 4:
442             return timer->fsb >> 32;
443         default:
444             DPRINTF("qemu: invalid hpet_ram_readl\n");
445             break;
446         }
447     } else {
448         switch (index) {
449         case HPET_ID:
450             return s->capability;
451         case HPET_PERIOD:
452             return s->capability >> 32;
453         case HPET_CFG:
454             return s->config;
455         case HPET_CFG + 4:
456             DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
457             return 0;
458         case HPET_COUNTER:
459             if (hpet_enabled(s)) {
460                 cur_tick = hpet_get_ticks(s);
461             } else {
462                 cur_tick = s->hpet_counter;
463             }
464             DPRINTF("qemu: reading counter  = %" PRIx64 "\n", cur_tick);
465             return cur_tick;
466         case HPET_COUNTER + 4:
467             if (hpet_enabled(s)) {
468                 cur_tick = hpet_get_ticks(s);
469             } else {
470                 cur_tick = s->hpet_counter;
471             }
472             DPRINTF("qemu: reading counter + 4  = %" PRIx64 "\n", cur_tick);
473             return cur_tick >> 32;
474         case HPET_STATUS:
475             return s->isr;
476         default:
477             DPRINTF("qemu: invalid hpet_ram_readl\n");
478             break;
479         }
480     }
481     return 0;
482 }
483 
484 static void hpet_ram_write(void *opaque, hwaddr addr,
485                            uint64_t value, unsigned size)
486 {
487     int i;
488     HPETState *s = opaque;
489     uint64_t old_val, new_val, val, index;
490 
491     DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
492     index = addr;
493     old_val = hpet_ram_read(opaque, addr, 4);
494     new_val = value;
495 
496     /*address range of all TN regs*/
497     if (index >= 0x100 && index <= 0x3ff) {
498         uint8_t timer_id = (addr - 0x100) / 0x20;
499         HPETTimer *timer = &s->timer[timer_id];
500 
501         DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
502         if (timer_id > s->num_timers) {
503             DPRINTF("qemu: timer id out of range\n");
504             return;
505         }
506         switch ((addr - 0x100) % 0x20) {
507         case HPET_TN_CFG:
508             DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
509             if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
510                 update_irq(timer, 0);
511             }
512             val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
513             timer->config = (timer->config & 0xffffffff00000000ULL) | val;
514             if (new_val & HPET_TN_32BIT) {
515                 timer->cmp = (uint32_t)timer->cmp;
516                 timer->period = (uint32_t)timer->period;
517             }
518             if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
519                 hpet_enabled(s)) {
520                 hpet_set_timer(timer);
521             } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
522                 hpet_del_timer(timer);
523             }
524             break;
525         case HPET_TN_CFG + 4: // Interrupt capabilities
526             DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
527             break;
528         case HPET_TN_CMP: // comparator register
529             DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
530             if (timer->config & HPET_TN_32BIT) {
531                 new_val = (uint32_t)new_val;
532             }
533             if (!timer_is_periodic(timer)
534                 || (timer->config & HPET_TN_SETVAL)) {
535                 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
536             }
537             if (timer_is_periodic(timer)) {
538                 /*
539                  * FIXME: Clamp period to reasonable min value?
540                  * Clamp period to reasonable max value
541                  */
542                 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
543                 timer->period =
544                     (timer->period & 0xffffffff00000000ULL) | new_val;
545             }
546             timer->config &= ~HPET_TN_SETVAL;
547             if (hpet_enabled(s)) {
548                 hpet_set_timer(timer);
549             }
550             break;
551         case HPET_TN_CMP + 4: // comparator register high order
552             DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
553             if (!timer_is_periodic(timer)
554                 || (timer->config & HPET_TN_SETVAL)) {
555                 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
556             } else {
557                 /*
558                  * FIXME: Clamp period to reasonable min value?
559                  * Clamp period to reasonable max value
560                  */
561                 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
562                 timer->period =
563                     (timer->period & 0xffffffffULL) | new_val << 32;
564                 }
565                 timer->config &= ~HPET_TN_SETVAL;
566                 if (hpet_enabled(s)) {
567                     hpet_set_timer(timer);
568                 }
569                 break;
570         case HPET_TN_ROUTE:
571             timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
572             break;
573         case HPET_TN_ROUTE + 4:
574             timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
575             break;
576         default:
577             DPRINTF("qemu: invalid hpet_ram_writel\n");
578             break;
579         }
580         return;
581     } else {
582         switch (index) {
583         case HPET_ID:
584             return;
585         case HPET_CFG:
586             val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
587             s->config = (s->config & 0xffffffff00000000ULL) | val;
588             if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
589                 /* Enable main counter and interrupt generation. */
590                 s->hpet_offset =
591                     ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
592                 for (i = 0; i < s->num_timers; i++) {
593                     if ((&s->timer[i])->cmp != ~0ULL) {
594                         hpet_set_timer(&s->timer[i]);
595                     }
596                 }
597             } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
598                 /* Halt main counter and disable interrupt generation. */
599                 s->hpet_counter = hpet_get_ticks(s);
600                 for (i = 0; i < s->num_timers; i++) {
601                     hpet_del_timer(&s->timer[i]);
602                 }
603             }
604             /* i8254 and RTC output pins are disabled
605              * when HPET is in legacy mode */
606             if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
607                 qemu_set_irq(s->pit_enabled, 0);
608                 qemu_irq_lower(s->irqs[0]);
609                 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
610             } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
611                 qemu_irq_lower(s->irqs[0]);
612                 qemu_set_irq(s->pit_enabled, 1);
613                 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
614             }
615             break;
616         case HPET_CFG + 4:
617             DPRINTF("qemu: invalid HPET_CFG+4 write\n");
618             break;
619         case HPET_STATUS:
620             val = new_val & s->isr;
621             for (i = 0; i < s->num_timers; i++) {
622                 if (val & (1 << i)) {
623                     update_irq(&s->timer[i], 0);
624                 }
625             }
626             break;
627         case HPET_COUNTER:
628             if (hpet_enabled(s)) {
629                 DPRINTF("qemu: Writing counter while HPET enabled!\n");
630             }
631             s->hpet_counter =
632                 (s->hpet_counter & 0xffffffff00000000ULL) | value;
633             DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
634                     value, s->hpet_counter);
635             break;
636         case HPET_COUNTER + 4:
637             if (hpet_enabled(s)) {
638                 DPRINTF("qemu: Writing counter while HPET enabled!\n");
639             }
640             s->hpet_counter =
641                 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
642             DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
643                     value, s->hpet_counter);
644             break;
645         default:
646             DPRINTF("qemu: invalid hpet_ram_writel\n");
647             break;
648         }
649     }
650 }
651 
652 static const MemoryRegionOps hpet_ram_ops = {
653     .read = hpet_ram_read,
654     .write = hpet_ram_write,
655     .valid = {
656         .min_access_size = 4,
657         .max_access_size = 4,
658     },
659     .endianness = DEVICE_NATIVE_ENDIAN,
660 };
661 
662 static void hpet_reset(DeviceState *d)
663 {
664     HPETState *s = HPET(d);
665     SysBusDevice *sbd = SYS_BUS_DEVICE(d);
666     int i;
667 
668     for (i = 0; i < s->num_timers; i++) {
669         HPETTimer *timer = &s->timer[i];
670 
671         hpet_del_timer(timer);
672         timer->cmp = ~0ULL;
673         timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
674         if (s->flags & (1 << HPET_MSI_SUPPORT)) {
675             timer->config |= HPET_TN_FSB_CAP;
676         }
677         /* advertise availability of ioapic int */
678         timer->config |=  (uint64_t)s->intcap << 32;
679         timer->period = 0ULL;
680         timer->wrap_flag = 0;
681     }
682 
683     qemu_set_irq(s->pit_enabled, 1);
684     s->hpet_counter = 0ULL;
685     s->hpet_offset = 0ULL;
686     s->config = 0ULL;
687     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
688     hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
689 
690     /* to document that the RTC lowers its output on reset as well */
691     s->rtc_irq_level = 0;
692 }
693 
694 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
695 {
696     HPETState *s = HPET(opaque);
697 
698     if (n == HPET_LEGACY_PIT_INT) {
699         if (!hpet_in_legacy_mode(s)) {
700             qemu_set_irq(s->irqs[0], level);
701         }
702     } else {
703         s->rtc_irq_level = level;
704         if (!hpet_in_legacy_mode(s)) {
705             qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
706         }
707     }
708 }
709 
710 static void hpet_init(Object *obj)
711 {
712     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
713     HPETState *s = HPET(obj);
714 
715     /* HPET Area */
716     memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
717     sysbus_init_mmio(sbd, &s->iomem);
718 }
719 
720 static void hpet_realize(DeviceState *dev, Error **errp)
721 {
722     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
723     HPETState *s = HPET(dev);
724     int i;
725     HPETTimer *timer;
726 
727     if (!s->intcap) {
728         error_printf("Hpet's intcap not initialized.\n");
729     }
730     if (hpet_cfg.count == UINT8_MAX) {
731         /* first instance */
732         hpet_cfg.count = 0;
733     }
734 
735     if (hpet_cfg.count == 8) {
736         error_setg(errp, "Only 8 instances of HPET is allowed");
737         return;
738     }
739 
740     s->hpet_id = hpet_cfg.count++;
741 
742     for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
743         sysbus_init_irq(sbd, &s->irqs[i]);
744     }
745 
746     if (s->num_timers < HPET_MIN_TIMERS) {
747         s->num_timers = HPET_MIN_TIMERS;
748     } else if (s->num_timers > HPET_MAX_TIMERS) {
749         s->num_timers = HPET_MAX_TIMERS;
750     }
751     for (i = 0; i < HPET_MAX_TIMERS; i++) {
752         timer = &s->timer[i];
753         timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
754         timer->tn = i;
755         timer->state = s;
756     }
757 
758     /* 64-bit main counter; LegacyReplacementRoute. */
759     s->capability = 0x8086a001ULL;
760     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
761     s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
762 
763     qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
764     qdev_init_gpio_out(dev, &s->pit_enabled, 1);
765 }
766 
767 static Property hpet_device_properties[] = {
768     DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
769     DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
770     DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
771     DEFINE_PROP_END_OF_LIST(),
772 };
773 
774 static void hpet_device_class_init(ObjectClass *klass, void *data)
775 {
776     DeviceClass *dc = DEVICE_CLASS(klass);
777 
778     dc->realize = hpet_realize;
779     dc->reset = hpet_reset;
780     dc->vmsd = &vmstate_hpet;
781     dc->props = hpet_device_properties;
782 }
783 
784 static const TypeInfo hpet_device_info = {
785     .name          = TYPE_HPET,
786     .parent        = TYPE_SYS_BUS_DEVICE,
787     .instance_size = sizeof(HPETState),
788     .instance_init = hpet_init,
789     .class_init    = hpet_device_class_init,
790 };
791 
792 static void hpet_register_types(void)
793 {
794     type_register_static(&hpet_device_info);
795 }
796 
797 type_init(hpet_register_types)
798