xref: /openbmc/qemu/hw/timer/hpet.c (revision 2e1cacfb)
1 /*
2  *  High Precision Event Timer emulation
3  *
4  *  Copyright (c) 2007 Alexander Graf
5  *  Copyright (c) 2008 IBM Corporation
6  *
7  *  Authors: Beth Kon <bkon@us.ibm.com>
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21  *
22  * *****************************************************************
23  *
24  * This driver attempts to emulate an HPET device in software.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "hw/irq.h"
29 #include "qapi/error.h"
30 #include "qemu/error-report.h"
31 #include "qemu/timer.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/sysbus.h"
35 #include "hw/rtc/mc146818rtc.h"
36 #include "hw/rtc/mc146818rtc_regs.h"
37 #include "migration/vmstate.h"
38 #include "hw/timer/i8254.h"
39 #include "exec/address-spaces.h"
40 #include "qom/object.h"
41 #include "trace.h"
42 
43 #define HPET_MSI_SUPPORT        0
44 
45 OBJECT_DECLARE_SIMPLE_TYPE(HPETState, HPET)
46 
47 struct HPETState;
48 typedef struct HPETTimer {  /* timers */
49     uint8_t tn;             /*timer number*/
50     QEMUTimer *qemu_timer;
51     struct HPETState *state;
52     /* Memory-mapped, software visible timer registers */
53     uint64_t config;        /* configuration/cap */
54     uint64_t cmp;           /* comparator */
55     uint64_t fsb;           /* FSB route */
56     /* Hidden register state */
57     uint64_t cmp64;         /* comparator (extended to counter width) */
58     uint64_t period;        /* Last value written to comparator */
59     uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
60                              * mode. Next pop will be actual timer expiration.
61                              */
62     uint64_t last;          /* last value armed, to avoid timer storms */
63 } HPETTimer;
64 
65 struct HPETState {
66     /*< private >*/
67     SysBusDevice parent_obj;
68     /*< public >*/
69 
70     MemoryRegion iomem;
71     uint64_t hpet_offset;
72     bool hpet_offset_saved;
73     qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
74     uint32_t flags;
75     uint8_t rtc_irq_level;
76     qemu_irq pit_enabled;
77     uint8_t num_timers;
78     uint32_t intcap;
79     HPETTimer timer[HPET_MAX_TIMERS];
80 
81     /* Memory-mapped, software visible registers */
82     uint64_t capability;        /* capabilities */
83     uint64_t config;            /* configuration */
84     uint64_t isr;               /* interrupt status reg */
85     uint64_t hpet_counter;      /* main counter */
86     uint8_t  hpet_id;           /* instance id */
87 };
88 
89 static uint32_t hpet_in_legacy_mode(HPETState *s)
90 {
91     return s->config & HPET_CFG_LEGACY;
92 }
93 
94 static uint32_t timer_int_route(struct HPETTimer *timer)
95 {
96     return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
97 }
98 
99 static uint32_t timer_fsb_route(HPETTimer *t)
100 {
101     return t->config & HPET_TN_FSB_ENABLE;
102 }
103 
104 static uint32_t hpet_enabled(HPETState *s)
105 {
106     return s->config & HPET_CFG_ENABLE;
107 }
108 
109 static uint32_t timer_is_periodic(HPETTimer *t)
110 {
111     return t->config & HPET_TN_PERIODIC;
112 }
113 
114 static uint32_t timer_enabled(HPETTimer *t)
115 {
116     return t->config & HPET_TN_ENABLE;
117 }
118 
119 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
120 {
121     return ((int64_t)(b - a) < 0);
122 }
123 
124 static uint64_t ticks_to_ns(uint64_t value)
125 {
126     return value * HPET_CLK_PERIOD;
127 }
128 
129 static uint64_t ns_to_ticks(uint64_t value)
130 {
131     return value / HPET_CLK_PERIOD;
132 }
133 
134 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
135 {
136     new &= mask;
137     new |= old & ~mask;
138     return new;
139 }
140 
141 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
142 {
143     return (!(old & mask) && (new & mask));
144 }
145 
146 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
147 {
148     return ((old & mask) && !(new & mask));
149 }
150 
151 static uint64_t hpet_get_ticks(HPETState *s)
152 {
153     return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
154 }
155 
156 static uint64_t hpet_get_ns(HPETState *s, uint64_t tick)
157 {
158     return ticks_to_ns(tick) - s->hpet_offset;
159 }
160 
161 /*
162  * calculate next value of the general counter that matches the
163  * target (either entirely, or the low 32-bit only depending on
164  * the timer mode).
165  */
166 static uint64_t hpet_calculate_cmp64(HPETTimer *t, uint64_t cur_tick, uint64_t target)
167 {
168     if (t->config & HPET_TN_32BIT) {
169         uint64_t result = deposit64(cur_tick, 0, 32, target);
170         if (result < cur_tick) {
171             result += 0x100000000ULL;
172         }
173         return result;
174     } else {
175         return target;
176     }
177 }
178 
179 static uint64_t hpet_next_wrap(uint64_t cur_tick)
180 {
181     return (cur_tick | 0xffffffffU) + 1;
182 }
183 
184 static void update_irq(struct HPETTimer *timer, int set)
185 {
186     uint64_t mask;
187     HPETState *s;
188     int route;
189 
190     if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
191         /* if LegacyReplacementRoute bit is set, HPET specification requires
192          * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
193          * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
194          */
195         route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
196     } else {
197         route = timer_int_route(timer);
198     }
199     s = timer->state;
200     mask = 1 << timer->tn;
201 
202     if (set && (timer->config & HPET_TN_TYPE_LEVEL)) {
203         /*
204          * If HPET_TN_ENABLE bit is 0, "the timer will still operate and
205          * generate appropriate status bits, but will not cause an interrupt"
206          */
207         s->isr |= mask;
208     } else {
209         s->isr &= ~mask;
210     }
211 
212     if (set && timer_enabled(timer) && hpet_enabled(s)) {
213         if (timer_fsb_route(timer)) {
214             address_space_stl_le(&address_space_memory, timer->fsb >> 32,
215                                  timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
216                                  NULL);
217         } else if (timer->config & HPET_TN_TYPE_LEVEL) {
218             qemu_irq_raise(s->irqs[route]);
219         } else {
220             qemu_irq_pulse(s->irqs[route]);
221         }
222     } else {
223         if (!timer_fsb_route(timer)) {
224             qemu_irq_lower(s->irqs[route]);
225         }
226     }
227 }
228 
229 static int hpet_pre_save(void *opaque)
230 {
231     HPETState *s = opaque;
232 
233     /* save current counter value */
234     if (hpet_enabled(s)) {
235         s->hpet_counter = hpet_get_ticks(s);
236     }
237 
238     return 0;
239 }
240 
241 static int hpet_pre_load(void *opaque)
242 {
243     HPETState *s = opaque;
244 
245     /* version 1 only supports 3, later versions will load the actual value */
246     s->num_timers = HPET_MIN_TIMERS;
247     return 0;
248 }
249 
250 static bool hpet_validate_num_timers(void *opaque, int version_id)
251 {
252     HPETState *s = opaque;
253 
254     if (s->num_timers < HPET_MIN_TIMERS) {
255         return false;
256     } else if (s->num_timers > HPET_MAX_TIMERS) {
257         return false;
258     }
259     return true;
260 }
261 
262 static int hpet_post_load(void *opaque, int version_id)
263 {
264     HPETState *s = opaque;
265     int i;
266 
267     for (i = 0; i < s->num_timers; i++) {
268         HPETTimer *t = &s->timer[i];
269         t->cmp64 = hpet_calculate_cmp64(t, s->hpet_counter, t->cmp);
270         t->last = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - NANOSECONDS_PER_SECOND;
271     }
272     /* Recalculate the offset between the main counter and guest time */
273     if (!s->hpet_offset_saved) {
274         s->hpet_offset = ticks_to_ns(s->hpet_counter)
275                         - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
276     }
277 
278     /* Push number of timers into capability returned via HPET_ID */
279     s->capability &= ~HPET_ID_NUM_TIM_MASK;
280     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
281     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
282 
283     /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
284     s->flags &= ~(1 << HPET_MSI_SUPPORT);
285     if (s->timer[0].config & HPET_TN_FSB_CAP) {
286         s->flags |= 1 << HPET_MSI_SUPPORT;
287     }
288     return 0;
289 }
290 
291 static bool hpet_offset_needed(void *opaque)
292 {
293     HPETState *s = opaque;
294 
295     return hpet_enabled(s) && s->hpet_offset_saved;
296 }
297 
298 static bool hpet_rtc_irq_level_needed(void *opaque)
299 {
300     HPETState *s = opaque;
301 
302     return s->rtc_irq_level != 0;
303 }
304 
305 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
306     .name = "hpet/rtc_irq_level",
307     .version_id = 1,
308     .minimum_version_id = 1,
309     .needed = hpet_rtc_irq_level_needed,
310     .fields = (const VMStateField[]) {
311         VMSTATE_UINT8(rtc_irq_level, HPETState),
312         VMSTATE_END_OF_LIST()
313     }
314 };
315 
316 static const VMStateDescription vmstate_hpet_offset = {
317     .name = "hpet/offset",
318     .version_id = 1,
319     .minimum_version_id = 1,
320     .needed = hpet_offset_needed,
321     .fields = (const VMStateField[]) {
322         VMSTATE_UINT64(hpet_offset, HPETState),
323         VMSTATE_END_OF_LIST()
324     }
325 };
326 
327 static const VMStateDescription vmstate_hpet_timer = {
328     .name = "hpet_timer",
329     .version_id = 1,
330     .minimum_version_id = 1,
331     .fields = (const VMStateField[]) {
332         VMSTATE_UINT8(tn, HPETTimer),
333         VMSTATE_UINT64(config, HPETTimer),
334         VMSTATE_UINT64(cmp, HPETTimer),
335         VMSTATE_UINT64(fsb, HPETTimer),
336         VMSTATE_UINT64(period, HPETTimer),
337         VMSTATE_UINT8(wrap_flag, HPETTimer),
338         VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
339         VMSTATE_END_OF_LIST()
340     }
341 };
342 
343 static const VMStateDescription vmstate_hpet = {
344     .name = "hpet",
345     .version_id = 2,
346     .minimum_version_id = 1,
347     .pre_save = hpet_pre_save,
348     .pre_load = hpet_pre_load,
349     .post_load = hpet_post_load,
350     .fields = (const VMStateField[]) {
351         VMSTATE_UINT64(config, HPETState),
352         VMSTATE_UINT64(isr, HPETState),
353         VMSTATE_UINT64(hpet_counter, HPETState),
354         VMSTATE_UINT8_V(num_timers, HPETState, 2),
355         VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
356         VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
357                                     vmstate_hpet_timer, HPETTimer),
358         VMSTATE_END_OF_LIST()
359     },
360     .subsections = (const VMStateDescription * const []) {
361         &vmstate_hpet_rtc_irq_level,
362         &vmstate_hpet_offset,
363         NULL
364     }
365 };
366 
367 static void hpet_arm(HPETTimer *t, uint64_t tick)
368 {
369     uint64_t ns = hpet_get_ns(t->state, tick);
370 
371     /* Clamp period to reasonable min value (1 us) */
372     if (timer_is_periodic(t) && ns - t->last < 1000) {
373         ns = t->last + 1000;
374     }
375 
376     t->last = ns;
377     timer_mod(t->qemu_timer, ns);
378 }
379 
380 /*
381  * timer expiration callback
382  */
383 static void hpet_timer(void *opaque)
384 {
385     HPETTimer *t = opaque;
386     uint64_t period = t->period;
387     uint64_t cur_tick = hpet_get_ticks(t->state);
388 
389     if (timer_is_periodic(t) && period != 0) {
390         while (hpet_time_after(cur_tick, t->cmp64)) {
391             t->cmp64 += period;
392         }
393         if (t->config & HPET_TN_32BIT) {
394             t->cmp = (uint32_t)t->cmp64;
395         } else {
396             t->cmp = t->cmp64;
397         }
398         hpet_arm(t, t->cmp64);
399     } else if (t->wrap_flag) {
400         t->wrap_flag = 0;
401         hpet_arm(t, t->cmp64);
402     }
403     update_irq(t, 1);
404 }
405 
406 static void hpet_set_timer(HPETTimer *t)
407 {
408     uint64_t cur_tick = hpet_get_ticks(t->state);
409 
410     t->wrap_flag = 0;
411     t->cmp64 = hpet_calculate_cmp64(t, cur_tick, t->cmp);
412     if (t->config & HPET_TN_32BIT) {
413 
414         /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
415          * counter wraps in addition to an interrupt with comparator match.
416          */
417         if (!timer_is_periodic(t) && t->cmp64 > hpet_next_wrap(cur_tick)) {
418             t->wrap_flag = 1;
419             hpet_arm(t, hpet_next_wrap(cur_tick));
420             return;
421         }
422     }
423     hpet_arm(t, t->cmp64);
424 }
425 
426 static void hpet_del_timer(HPETTimer *t)
427 {
428     HPETState *s = t->state;
429     timer_del(t->qemu_timer);
430 
431     if (s->isr & (1 << t->tn)) {
432         /* For level-triggered interrupt, this leaves ISR set but lowers irq.  */
433         update_irq(t, 1);
434     }
435 }
436 
437 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
438                               unsigned size)
439 {
440     HPETState *s = opaque;
441     int shift = (addr & 4) * 8;
442     uint64_t cur_tick;
443 
444     trace_hpet_ram_read(addr);
445 
446     /*address range of all TN regs*/
447     if (addr >= 0x100 && addr <= 0x3ff) {
448         uint8_t timer_id = (addr - 0x100) / 0x20;
449         HPETTimer *timer = &s->timer[timer_id];
450 
451         if (timer_id > s->num_timers) {
452             trace_hpet_timer_id_out_of_range(timer_id);
453             return 0;
454         }
455 
456         switch (addr & 0x18) {
457         case HPET_TN_CFG: // including interrupt capabilities
458             return timer->config >> shift;
459         case HPET_TN_CMP: // comparator register
460             return timer->cmp >> shift;
461         case HPET_TN_ROUTE:
462             return timer->fsb >> shift;
463         default:
464             trace_hpet_ram_read_invalid();
465             break;
466         }
467     } else {
468         switch (addr & ~4) {
469         case HPET_ID: // including HPET_PERIOD
470             return s->capability >> shift;
471         case HPET_CFG:
472             return s->config >> shift;
473         case HPET_COUNTER:
474             if (hpet_enabled(s)) {
475                 cur_tick = hpet_get_ticks(s);
476             } else {
477                 cur_tick = s->hpet_counter;
478             }
479             trace_hpet_ram_read_reading_counter(addr & 4, cur_tick);
480             return cur_tick >> shift;
481         case HPET_STATUS:
482             return s->isr >> shift;
483         default:
484             trace_hpet_ram_read_invalid();
485             break;
486         }
487     }
488     return 0;
489 }
490 
491 static void hpet_ram_write(void *opaque, hwaddr addr,
492                            uint64_t value, unsigned size)
493 {
494     int i;
495     HPETState *s = opaque;
496     int shift = (addr & 4) * 8;
497     int len = MIN(size * 8, 64 - shift);
498     uint64_t old_val, new_val, cleared;
499 
500     trace_hpet_ram_write(addr, value);
501 
502     /*address range of all TN regs*/
503     if (addr >= 0x100 && addr <= 0x3ff) {
504         uint8_t timer_id = (addr - 0x100) / 0x20;
505         HPETTimer *timer = &s->timer[timer_id];
506 
507         trace_hpet_ram_write_timer_id(timer_id);
508         if (timer_id > s->num_timers) {
509             trace_hpet_timer_id_out_of_range(timer_id);
510             return;
511         }
512         switch (addr & 0x18) {
513         case HPET_TN_CFG:
514             trace_hpet_ram_write_tn_cfg(addr & 4);
515             old_val = timer->config;
516             new_val = deposit64(old_val, shift, len, value);
517             new_val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
518             if (deactivating_bit(old_val, new_val, HPET_TN_TYPE_LEVEL)) {
519                 /*
520                  * Do this before changing timer->config; otherwise, if
521                  * HPET_TN_FSB is set, update_irq will not lower the qemu_irq.
522                  */
523                 update_irq(timer, 0);
524             }
525             timer->config = new_val;
526             if (activating_bit(old_val, new_val, HPET_TN_ENABLE)
527                 && (s->isr & (1 << timer_id))) {
528                 update_irq(timer, 1);
529             }
530             if (new_val & HPET_TN_32BIT) {
531                 timer->cmp = (uint32_t)timer->cmp;
532                 timer->period = (uint32_t)timer->period;
533             }
534             if (hpet_enabled(s)) {
535                 hpet_set_timer(timer);
536             }
537             break;
538         case HPET_TN_CMP: // comparator register
539             if (timer->config & HPET_TN_32BIT) {
540                 /* High 32-bits are zero, leave them untouched.  */
541                 if (shift) {
542                     trace_hpet_ram_write_invalid_tn_cmp();
543                     break;
544                 }
545                 len = 64;
546                 value = (uint32_t) value;
547             }
548             trace_hpet_ram_write_tn_cmp(addr & 4);
549             if (!timer_is_periodic(timer)
550                 || (timer->config & HPET_TN_SETVAL)) {
551                 timer->cmp = deposit64(timer->cmp, shift, len, value);
552             }
553             if (timer_is_periodic(timer)) {
554                 timer->period = deposit64(timer->period, shift, len, value);
555             }
556             timer->config &= ~HPET_TN_SETVAL;
557             if (hpet_enabled(s)) {
558                 hpet_set_timer(timer);
559             }
560             break;
561         case HPET_TN_ROUTE:
562             timer->fsb = deposit64(timer->fsb, shift, len, value);
563             break;
564         default:
565             trace_hpet_ram_write_invalid();
566             break;
567         }
568         return;
569     } else {
570         switch (addr & ~4) {
571         case HPET_ID:
572             return;
573         case HPET_CFG:
574             old_val = s->config;
575             new_val = deposit64(old_val, shift, len, value);
576             new_val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
577             s->config = new_val;
578             if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
579                 /* Enable main counter and interrupt generation. */
580                 s->hpet_offset =
581                     ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
582                 for (i = 0; i < s->num_timers; i++) {
583                     if (timer_enabled(&s->timer[i]) && (s->isr & (1 << i))) {
584                         update_irq(&s->timer[i], 1);
585                     }
586                     hpet_set_timer(&s->timer[i]);
587                 }
588             } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
589                 /* Halt main counter and disable interrupt generation. */
590                 s->hpet_counter = hpet_get_ticks(s);
591                 for (i = 0; i < s->num_timers; i++) {
592                     hpet_del_timer(&s->timer[i]);
593                 }
594             }
595             /* i8254 and RTC output pins are disabled
596              * when HPET is in legacy mode */
597             if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
598                 qemu_set_irq(s->pit_enabled, 0);
599                 qemu_irq_lower(s->irqs[0]);
600                 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
601             } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
602                 qemu_irq_lower(s->irqs[0]);
603                 qemu_set_irq(s->pit_enabled, 1);
604                 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
605             }
606             break;
607         case HPET_STATUS:
608             new_val = value << shift;
609             cleared = new_val & s->isr;
610             for (i = 0; i < s->num_timers; i++) {
611                 if (cleared & (1 << i)) {
612                     update_irq(&s->timer[i], 0);
613                 }
614             }
615             break;
616         case HPET_COUNTER:
617             if (hpet_enabled(s)) {
618                 trace_hpet_ram_write_counter_write_while_enabled();
619             }
620             s->hpet_counter = deposit64(s->hpet_counter, shift, len, value);
621             break;
622         default:
623             trace_hpet_ram_write_invalid();
624             break;
625         }
626     }
627 }
628 
629 static const MemoryRegionOps hpet_ram_ops = {
630     .read = hpet_ram_read,
631     .write = hpet_ram_write,
632     .valid = {
633         .min_access_size = 4,
634         .max_access_size = 8,
635     },
636     .impl = {
637         .min_access_size = 4,
638         .max_access_size = 8,
639     },
640     .endianness = DEVICE_NATIVE_ENDIAN,
641 };
642 
643 static void hpet_reset(DeviceState *d)
644 {
645     HPETState *s = HPET(d);
646     SysBusDevice *sbd = SYS_BUS_DEVICE(d);
647     int i;
648 
649     for (i = 0; i < s->num_timers; i++) {
650         HPETTimer *timer = &s->timer[i];
651 
652         hpet_del_timer(timer);
653         timer->cmp = ~0ULL;
654         timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
655         if (s->flags & (1 << HPET_MSI_SUPPORT)) {
656             timer->config |= HPET_TN_FSB_CAP;
657         }
658         /* advertise availability of ioapic int */
659         timer->config |=  (uint64_t)s->intcap << 32;
660         timer->period = 0ULL;
661         timer->wrap_flag = 0;
662     }
663 
664     qemu_set_irq(s->pit_enabled, 1);
665     s->hpet_counter = 0ULL;
666     s->hpet_offset = 0ULL;
667     s->config = 0ULL;
668     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
669     hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
670 
671     /* to document that the RTC lowers its output on reset as well */
672     s->rtc_irq_level = 0;
673 }
674 
675 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
676 {
677     HPETState *s = HPET(opaque);
678 
679     if (n == HPET_LEGACY_PIT_INT) {
680         if (!hpet_in_legacy_mode(s)) {
681             qemu_set_irq(s->irqs[0], level);
682         }
683     } else {
684         s->rtc_irq_level = level;
685         if (!hpet_in_legacy_mode(s)) {
686             qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
687         }
688     }
689 }
690 
691 static void hpet_init(Object *obj)
692 {
693     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
694     HPETState *s = HPET(obj);
695 
696     /* HPET Area */
697     memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
698     sysbus_init_mmio(sbd, &s->iomem);
699 }
700 
701 static void hpet_realize(DeviceState *dev, Error **errp)
702 {
703     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
704     HPETState *s = HPET(dev);
705     int i;
706     HPETTimer *timer;
707 
708     if (!s->intcap) {
709         warn_report("Hpet's intcap not initialized");
710     }
711     if (hpet_cfg.count == UINT8_MAX) {
712         /* first instance */
713         hpet_cfg.count = 0;
714     }
715 
716     if (hpet_cfg.count == 8) {
717         error_setg(errp, "Only 8 instances of HPET is allowed");
718         return;
719     }
720 
721     s->hpet_id = hpet_cfg.count++;
722 
723     for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
724         sysbus_init_irq(sbd, &s->irqs[i]);
725     }
726 
727     if (s->num_timers < HPET_MIN_TIMERS) {
728         s->num_timers = HPET_MIN_TIMERS;
729     } else if (s->num_timers > HPET_MAX_TIMERS) {
730         s->num_timers = HPET_MAX_TIMERS;
731     }
732     for (i = 0; i < HPET_MAX_TIMERS; i++) {
733         timer = &s->timer[i];
734         timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
735         timer->tn = i;
736         timer->state = s;
737     }
738 
739     /* 64-bit main counter; LegacyReplacementRoute. */
740     s->capability = 0x8086a001ULL;
741     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
742     s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
743 
744     qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
745     qdev_init_gpio_out(dev, &s->pit_enabled, 1);
746 }
747 
748 static Property hpet_device_properties[] = {
749     DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
750     DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
751     DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
752     DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
753     DEFINE_PROP_END_OF_LIST(),
754 };
755 
756 static void hpet_device_class_init(ObjectClass *klass, void *data)
757 {
758     DeviceClass *dc = DEVICE_CLASS(klass);
759 
760     dc->realize = hpet_realize;
761     device_class_set_legacy_reset(dc, hpet_reset);
762     dc->vmsd = &vmstate_hpet;
763     device_class_set_props(dc, hpet_device_properties);
764 }
765 
766 static const TypeInfo hpet_device_info = {
767     .name          = TYPE_HPET,
768     .parent        = TYPE_SYS_BUS_DEVICE,
769     .instance_size = sizeof(HPETState),
770     .instance_init = hpet_init,
771     .class_init    = hpet_device_class_init,
772 };
773 
774 static void hpet_register_types(void)
775 {
776     type_register_static(&hpet_device_info);
777 }
778 
779 type_init(hpet_register_types)
780