1 /* 2 * High Precision Event Timer emulation 3 * 4 * Copyright (c) 2007 Alexander Graf 5 * Copyright (c) 2008 IBM Corporation 6 * 7 * Authors: Beth Kon <bkon@us.ibm.com> 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 21 * 22 * ***************************************************************** 23 * 24 * This driver attempts to emulate an HPET device in software. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "hw/hw.h" 29 #include "hw/i386/pc.h" 30 #include "ui/console.h" 31 #include "qapi/error.h" 32 #include "qemu/error-report.h" 33 #include "qemu/timer.h" 34 #include "hw/timer/hpet.h" 35 #include "hw/sysbus.h" 36 #include "hw/timer/mc146818rtc.h" 37 #include "hw/timer/i8254.h" 38 39 //#define HPET_DEBUG 40 #ifdef HPET_DEBUG 41 #define DPRINTF printf 42 #else 43 #define DPRINTF(...) 44 #endif 45 46 #define HPET_MSI_SUPPORT 0 47 48 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET) 49 50 struct HPETState; 51 typedef struct HPETTimer { /* timers */ 52 uint8_t tn; /*timer number*/ 53 QEMUTimer *qemu_timer; 54 struct HPETState *state; 55 /* Memory-mapped, software visible timer registers */ 56 uint64_t config; /* configuration/cap */ 57 uint64_t cmp; /* comparator */ 58 uint64_t fsb; /* FSB route */ 59 /* Hidden register state */ 60 uint64_t period; /* Last value written to comparator */ 61 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit 62 * mode. Next pop will be actual timer expiration. 63 */ 64 } HPETTimer; 65 66 typedef struct HPETState { 67 /*< private >*/ 68 SysBusDevice parent_obj; 69 /*< public >*/ 70 71 MemoryRegion iomem; 72 uint64_t hpet_offset; 73 qemu_irq irqs[HPET_NUM_IRQ_ROUTES]; 74 uint32_t flags; 75 uint8_t rtc_irq_level; 76 qemu_irq pit_enabled; 77 uint8_t num_timers; 78 uint32_t intcap; 79 HPETTimer timer[HPET_MAX_TIMERS]; 80 81 /* Memory-mapped, software visible registers */ 82 uint64_t capability; /* capabilities */ 83 uint64_t config; /* configuration */ 84 uint64_t isr; /* interrupt status reg */ 85 uint64_t hpet_counter; /* main counter */ 86 uint8_t hpet_id; /* instance id */ 87 } HPETState; 88 89 static uint32_t hpet_in_legacy_mode(HPETState *s) 90 { 91 return s->config & HPET_CFG_LEGACY; 92 } 93 94 static uint32_t timer_int_route(struct HPETTimer *timer) 95 { 96 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT; 97 } 98 99 static uint32_t timer_fsb_route(HPETTimer *t) 100 { 101 return t->config & HPET_TN_FSB_ENABLE; 102 } 103 104 static uint32_t hpet_enabled(HPETState *s) 105 { 106 return s->config & HPET_CFG_ENABLE; 107 } 108 109 static uint32_t timer_is_periodic(HPETTimer *t) 110 { 111 return t->config & HPET_TN_PERIODIC; 112 } 113 114 static uint32_t timer_enabled(HPETTimer *t) 115 { 116 return t->config & HPET_TN_ENABLE; 117 } 118 119 static uint32_t hpet_time_after(uint64_t a, uint64_t b) 120 { 121 return ((int32_t)(b - a) < 0); 122 } 123 124 static uint32_t hpet_time_after64(uint64_t a, uint64_t b) 125 { 126 return ((int64_t)(b - a) < 0); 127 } 128 129 static uint64_t ticks_to_ns(uint64_t value) 130 { 131 return value * HPET_CLK_PERIOD; 132 } 133 134 static uint64_t ns_to_ticks(uint64_t value) 135 { 136 return value / HPET_CLK_PERIOD; 137 } 138 139 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask) 140 { 141 new &= mask; 142 new |= old & ~mask; 143 return new; 144 } 145 146 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask) 147 { 148 return (!(old & mask) && (new & mask)); 149 } 150 151 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask) 152 { 153 return ((old & mask) && !(new & mask)); 154 } 155 156 static uint64_t hpet_get_ticks(HPETState *s) 157 { 158 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset); 159 } 160 161 /* 162 * calculate diff between comparator value and current ticks 163 */ 164 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current) 165 { 166 167 if (t->config & HPET_TN_32BIT) { 168 uint32_t diff, cmp; 169 170 cmp = (uint32_t)t->cmp; 171 diff = cmp - (uint32_t)current; 172 diff = (int32_t)diff > 0 ? diff : (uint32_t)1; 173 return (uint64_t)diff; 174 } else { 175 uint64_t diff, cmp; 176 177 cmp = t->cmp; 178 diff = cmp - current; 179 diff = (int64_t)diff > 0 ? diff : (uint64_t)1; 180 return diff; 181 } 182 } 183 184 static void update_irq(struct HPETTimer *timer, int set) 185 { 186 uint64_t mask; 187 HPETState *s; 188 int route; 189 190 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) { 191 /* if LegacyReplacementRoute bit is set, HPET specification requires 192 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC, 193 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC. 194 */ 195 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ; 196 } else { 197 route = timer_int_route(timer); 198 } 199 s = timer->state; 200 mask = 1 << timer->tn; 201 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) { 202 s->isr &= ~mask; 203 if (!timer_fsb_route(timer)) { 204 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */ 205 if (route >= ISA_NUM_IRQS) { 206 qemu_irq_raise(s->irqs[route]); 207 } else { 208 qemu_irq_lower(s->irqs[route]); 209 } 210 } 211 } else if (timer_fsb_route(timer)) { 212 address_space_stl_le(&address_space_memory, timer->fsb >> 32, 213 timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED, 214 NULL); 215 } else if (timer->config & HPET_TN_TYPE_LEVEL) { 216 s->isr |= mask; 217 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */ 218 if (route >= ISA_NUM_IRQS) { 219 qemu_irq_lower(s->irqs[route]); 220 } else { 221 qemu_irq_raise(s->irqs[route]); 222 } 223 } else { 224 s->isr &= ~mask; 225 qemu_irq_pulse(s->irqs[route]); 226 } 227 } 228 229 static void hpet_pre_save(void *opaque) 230 { 231 HPETState *s = opaque; 232 233 /* save current counter value */ 234 s->hpet_counter = hpet_get_ticks(s); 235 } 236 237 static int hpet_pre_load(void *opaque) 238 { 239 HPETState *s = opaque; 240 241 /* version 1 only supports 3, later versions will load the actual value */ 242 s->num_timers = HPET_MIN_TIMERS; 243 return 0; 244 } 245 246 static bool hpet_validate_num_timers(void *opaque, int version_id) 247 { 248 HPETState *s = opaque; 249 250 if (s->num_timers < HPET_MIN_TIMERS) { 251 return false; 252 } else if (s->num_timers > HPET_MAX_TIMERS) { 253 return false; 254 } 255 return true; 256 } 257 258 static int hpet_post_load(void *opaque, int version_id) 259 { 260 HPETState *s = opaque; 261 262 /* Recalculate the offset between the main counter and guest time */ 263 s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 264 265 /* Push number of timers into capability returned via HPET_ID */ 266 s->capability &= ~HPET_ID_NUM_TIM_MASK; 267 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT; 268 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability; 269 270 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */ 271 s->flags &= ~(1 << HPET_MSI_SUPPORT); 272 if (s->timer[0].config & HPET_TN_FSB_CAP) { 273 s->flags |= 1 << HPET_MSI_SUPPORT; 274 } 275 return 0; 276 } 277 278 static bool hpet_rtc_irq_level_needed(void *opaque) 279 { 280 HPETState *s = opaque; 281 282 return s->rtc_irq_level != 0; 283 } 284 285 static const VMStateDescription vmstate_hpet_rtc_irq_level = { 286 .name = "hpet/rtc_irq_level", 287 .version_id = 1, 288 .minimum_version_id = 1, 289 .needed = hpet_rtc_irq_level_needed, 290 .fields = (VMStateField[]) { 291 VMSTATE_UINT8(rtc_irq_level, HPETState), 292 VMSTATE_END_OF_LIST() 293 } 294 }; 295 296 static const VMStateDescription vmstate_hpet_timer = { 297 .name = "hpet_timer", 298 .version_id = 1, 299 .minimum_version_id = 1, 300 .fields = (VMStateField[]) { 301 VMSTATE_UINT8(tn, HPETTimer), 302 VMSTATE_UINT64(config, HPETTimer), 303 VMSTATE_UINT64(cmp, HPETTimer), 304 VMSTATE_UINT64(fsb, HPETTimer), 305 VMSTATE_UINT64(period, HPETTimer), 306 VMSTATE_UINT8(wrap_flag, HPETTimer), 307 VMSTATE_TIMER_PTR(qemu_timer, HPETTimer), 308 VMSTATE_END_OF_LIST() 309 } 310 }; 311 312 static const VMStateDescription vmstate_hpet = { 313 .name = "hpet", 314 .version_id = 2, 315 .minimum_version_id = 1, 316 .pre_save = hpet_pre_save, 317 .pre_load = hpet_pre_load, 318 .post_load = hpet_post_load, 319 .fields = (VMStateField[]) { 320 VMSTATE_UINT64(config, HPETState), 321 VMSTATE_UINT64(isr, HPETState), 322 VMSTATE_UINT64(hpet_counter, HPETState), 323 VMSTATE_UINT8_V(num_timers, HPETState, 2), 324 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers), 325 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0, 326 vmstate_hpet_timer, HPETTimer), 327 VMSTATE_END_OF_LIST() 328 }, 329 .subsections = (const VMStateDescription*[]) { 330 &vmstate_hpet_rtc_irq_level, 331 NULL 332 } 333 }; 334 335 /* 336 * timer expiration callback 337 */ 338 static void hpet_timer(void *opaque) 339 { 340 HPETTimer *t = opaque; 341 uint64_t diff; 342 343 uint64_t period = t->period; 344 uint64_t cur_tick = hpet_get_ticks(t->state); 345 346 if (timer_is_periodic(t) && period != 0) { 347 if (t->config & HPET_TN_32BIT) { 348 while (hpet_time_after(cur_tick, t->cmp)) { 349 t->cmp = (uint32_t)(t->cmp + t->period); 350 } 351 } else { 352 while (hpet_time_after64(cur_tick, t->cmp)) { 353 t->cmp += period; 354 } 355 } 356 diff = hpet_calculate_diff(t, cur_tick); 357 timer_mod(t->qemu_timer, 358 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff)); 359 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) { 360 if (t->wrap_flag) { 361 diff = hpet_calculate_diff(t, cur_tick); 362 timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 363 (int64_t)ticks_to_ns(diff)); 364 t->wrap_flag = 0; 365 } 366 } 367 update_irq(t, 1); 368 } 369 370 static void hpet_set_timer(HPETTimer *t) 371 { 372 uint64_t diff; 373 uint32_t wrap_diff; /* how many ticks until we wrap? */ 374 uint64_t cur_tick = hpet_get_ticks(t->state); 375 376 /* whenever new timer is being set up, make sure wrap_flag is 0 */ 377 t->wrap_flag = 0; 378 diff = hpet_calculate_diff(t, cur_tick); 379 380 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when 381 * counter wraps in addition to an interrupt with comparator match. 382 */ 383 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) { 384 wrap_diff = 0xffffffff - (uint32_t)cur_tick; 385 if (wrap_diff < (uint32_t)diff) { 386 diff = wrap_diff; 387 t->wrap_flag = 1; 388 } 389 } 390 timer_mod(t->qemu_timer, 391 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff)); 392 } 393 394 static void hpet_del_timer(HPETTimer *t) 395 { 396 timer_del(t->qemu_timer); 397 update_irq(t, 0); 398 } 399 400 #ifdef HPET_DEBUG 401 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr) 402 { 403 printf("qemu: hpet_read b at %" PRIx64 "\n", addr); 404 return 0; 405 } 406 407 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr) 408 { 409 printf("qemu: hpet_read w at %" PRIx64 "\n", addr); 410 return 0; 411 } 412 #endif 413 414 static uint64_t hpet_ram_read(void *opaque, hwaddr addr, 415 unsigned size) 416 { 417 HPETState *s = opaque; 418 uint64_t cur_tick, index; 419 420 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr); 421 index = addr; 422 /*address range of all TN regs*/ 423 if (index >= 0x100 && index <= 0x3ff) { 424 uint8_t timer_id = (addr - 0x100) / 0x20; 425 HPETTimer *timer = &s->timer[timer_id]; 426 427 if (timer_id > s->num_timers) { 428 DPRINTF("qemu: timer id out of range\n"); 429 return 0; 430 } 431 432 switch ((addr - 0x100) % 0x20) { 433 case HPET_TN_CFG: 434 return timer->config; 435 case HPET_TN_CFG + 4: // Interrupt capabilities 436 return timer->config >> 32; 437 case HPET_TN_CMP: // comparator register 438 return timer->cmp; 439 case HPET_TN_CMP + 4: 440 return timer->cmp >> 32; 441 case HPET_TN_ROUTE: 442 return timer->fsb; 443 case HPET_TN_ROUTE + 4: 444 return timer->fsb >> 32; 445 default: 446 DPRINTF("qemu: invalid hpet_ram_readl\n"); 447 break; 448 } 449 } else { 450 switch (index) { 451 case HPET_ID: 452 return s->capability; 453 case HPET_PERIOD: 454 return s->capability >> 32; 455 case HPET_CFG: 456 return s->config; 457 case HPET_CFG + 4: 458 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n"); 459 return 0; 460 case HPET_COUNTER: 461 if (hpet_enabled(s)) { 462 cur_tick = hpet_get_ticks(s); 463 } else { 464 cur_tick = s->hpet_counter; 465 } 466 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick); 467 return cur_tick; 468 case HPET_COUNTER + 4: 469 if (hpet_enabled(s)) { 470 cur_tick = hpet_get_ticks(s); 471 } else { 472 cur_tick = s->hpet_counter; 473 } 474 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick); 475 return cur_tick >> 32; 476 case HPET_STATUS: 477 return s->isr; 478 default: 479 DPRINTF("qemu: invalid hpet_ram_readl\n"); 480 break; 481 } 482 } 483 return 0; 484 } 485 486 static void hpet_ram_write(void *opaque, hwaddr addr, 487 uint64_t value, unsigned size) 488 { 489 int i; 490 HPETState *s = opaque; 491 uint64_t old_val, new_val, val, index; 492 493 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value); 494 index = addr; 495 old_val = hpet_ram_read(opaque, addr, 4); 496 new_val = value; 497 498 /*address range of all TN regs*/ 499 if (index >= 0x100 && index <= 0x3ff) { 500 uint8_t timer_id = (addr - 0x100) / 0x20; 501 HPETTimer *timer = &s->timer[timer_id]; 502 503 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id); 504 if (timer_id > s->num_timers) { 505 DPRINTF("qemu: timer id out of range\n"); 506 return; 507 } 508 switch ((addr - 0x100) % 0x20) { 509 case HPET_TN_CFG: 510 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n"); 511 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) { 512 update_irq(timer, 0); 513 } 514 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK); 515 timer->config = (timer->config & 0xffffffff00000000ULL) | val; 516 if (new_val & HPET_TN_32BIT) { 517 timer->cmp = (uint32_t)timer->cmp; 518 timer->period = (uint32_t)timer->period; 519 } 520 if (activating_bit(old_val, new_val, HPET_TN_ENABLE) && 521 hpet_enabled(s)) { 522 hpet_set_timer(timer); 523 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) { 524 hpet_del_timer(timer); 525 } 526 break; 527 case HPET_TN_CFG + 4: // Interrupt capabilities 528 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n"); 529 break; 530 case HPET_TN_CMP: // comparator register 531 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n"); 532 if (timer->config & HPET_TN_32BIT) { 533 new_val = (uint32_t)new_val; 534 } 535 if (!timer_is_periodic(timer) 536 || (timer->config & HPET_TN_SETVAL)) { 537 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val; 538 } 539 if (timer_is_periodic(timer)) { 540 /* 541 * FIXME: Clamp period to reasonable min value? 542 * Clamp period to reasonable max value 543 */ 544 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1; 545 timer->period = 546 (timer->period & 0xffffffff00000000ULL) | new_val; 547 } 548 timer->config &= ~HPET_TN_SETVAL; 549 if (hpet_enabled(s)) { 550 hpet_set_timer(timer); 551 } 552 break; 553 case HPET_TN_CMP + 4: // comparator register high order 554 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n"); 555 if (!timer_is_periodic(timer) 556 || (timer->config & HPET_TN_SETVAL)) { 557 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32; 558 } else { 559 /* 560 * FIXME: Clamp period to reasonable min value? 561 * Clamp period to reasonable max value 562 */ 563 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1; 564 timer->period = 565 (timer->period & 0xffffffffULL) | new_val << 32; 566 } 567 timer->config &= ~HPET_TN_SETVAL; 568 if (hpet_enabled(s)) { 569 hpet_set_timer(timer); 570 } 571 break; 572 case HPET_TN_ROUTE: 573 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val; 574 break; 575 case HPET_TN_ROUTE + 4: 576 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff); 577 break; 578 default: 579 DPRINTF("qemu: invalid hpet_ram_writel\n"); 580 break; 581 } 582 return; 583 } else { 584 switch (index) { 585 case HPET_ID: 586 return; 587 case HPET_CFG: 588 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK); 589 s->config = (s->config & 0xffffffff00000000ULL) | val; 590 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) { 591 /* Enable main counter and interrupt generation. */ 592 s->hpet_offset = 593 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 594 for (i = 0; i < s->num_timers; i++) { 595 if ((&s->timer[i])->cmp != ~0ULL) { 596 hpet_set_timer(&s->timer[i]); 597 } 598 } 599 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) { 600 /* Halt main counter and disable interrupt generation. */ 601 s->hpet_counter = hpet_get_ticks(s); 602 for (i = 0; i < s->num_timers; i++) { 603 hpet_del_timer(&s->timer[i]); 604 } 605 } 606 /* i8254 and RTC output pins are disabled 607 * when HPET is in legacy mode */ 608 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) { 609 qemu_set_irq(s->pit_enabled, 0); 610 qemu_irq_lower(s->irqs[0]); 611 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]); 612 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) { 613 qemu_irq_lower(s->irqs[0]); 614 qemu_set_irq(s->pit_enabled, 1); 615 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level); 616 } 617 break; 618 case HPET_CFG + 4: 619 DPRINTF("qemu: invalid HPET_CFG+4 write\n"); 620 break; 621 case HPET_STATUS: 622 val = new_val & s->isr; 623 for (i = 0; i < s->num_timers; i++) { 624 if (val & (1 << i)) { 625 update_irq(&s->timer[i], 0); 626 } 627 } 628 break; 629 case HPET_COUNTER: 630 if (hpet_enabled(s)) { 631 DPRINTF("qemu: Writing counter while HPET enabled!\n"); 632 } 633 s->hpet_counter = 634 (s->hpet_counter & 0xffffffff00000000ULL) | value; 635 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n", 636 value, s->hpet_counter); 637 break; 638 case HPET_COUNTER + 4: 639 if (hpet_enabled(s)) { 640 DPRINTF("qemu: Writing counter while HPET enabled!\n"); 641 } 642 s->hpet_counter = 643 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32); 644 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n", 645 value, s->hpet_counter); 646 break; 647 default: 648 DPRINTF("qemu: invalid hpet_ram_writel\n"); 649 break; 650 } 651 } 652 } 653 654 static const MemoryRegionOps hpet_ram_ops = { 655 .read = hpet_ram_read, 656 .write = hpet_ram_write, 657 .valid = { 658 .min_access_size = 4, 659 .max_access_size = 4, 660 }, 661 .endianness = DEVICE_NATIVE_ENDIAN, 662 }; 663 664 static void hpet_reset(DeviceState *d) 665 { 666 HPETState *s = HPET(d); 667 SysBusDevice *sbd = SYS_BUS_DEVICE(d); 668 int i; 669 670 for (i = 0; i < s->num_timers; i++) { 671 HPETTimer *timer = &s->timer[i]; 672 673 hpet_del_timer(timer); 674 timer->cmp = ~0ULL; 675 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP; 676 if (s->flags & (1 << HPET_MSI_SUPPORT)) { 677 timer->config |= HPET_TN_FSB_CAP; 678 } 679 /* advertise availability of ioapic int */ 680 timer->config |= (uint64_t)s->intcap << 32; 681 timer->period = 0ULL; 682 timer->wrap_flag = 0; 683 } 684 685 qemu_set_irq(s->pit_enabled, 1); 686 s->hpet_counter = 0ULL; 687 s->hpet_offset = 0ULL; 688 s->config = 0ULL; 689 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability; 690 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr; 691 692 /* to document that the RTC lowers its output on reset as well */ 693 s->rtc_irq_level = 0; 694 } 695 696 static void hpet_handle_legacy_irq(void *opaque, int n, int level) 697 { 698 HPETState *s = HPET(opaque); 699 700 if (n == HPET_LEGACY_PIT_INT) { 701 if (!hpet_in_legacy_mode(s)) { 702 qemu_set_irq(s->irqs[0], level); 703 } 704 } else { 705 s->rtc_irq_level = level; 706 if (!hpet_in_legacy_mode(s)) { 707 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level); 708 } 709 } 710 } 711 712 static void hpet_init(Object *obj) 713 { 714 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 715 HPETState *s = HPET(obj); 716 717 /* HPET Area */ 718 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN); 719 sysbus_init_mmio(sbd, &s->iomem); 720 } 721 722 static void hpet_realize(DeviceState *dev, Error **errp) 723 { 724 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 725 HPETState *s = HPET(dev); 726 int i; 727 HPETTimer *timer; 728 729 if (!s->intcap) { 730 error_printf("Hpet's intcap not initialized.\n"); 731 } 732 if (hpet_cfg.count == UINT8_MAX) { 733 /* first instance */ 734 hpet_cfg.count = 0; 735 } 736 737 if (hpet_cfg.count == 8) { 738 error_setg(errp, "Only 8 instances of HPET is allowed"); 739 return; 740 } 741 742 s->hpet_id = hpet_cfg.count++; 743 744 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) { 745 sysbus_init_irq(sbd, &s->irqs[i]); 746 } 747 748 if (s->num_timers < HPET_MIN_TIMERS) { 749 s->num_timers = HPET_MIN_TIMERS; 750 } else if (s->num_timers > HPET_MAX_TIMERS) { 751 s->num_timers = HPET_MAX_TIMERS; 752 } 753 for (i = 0; i < HPET_MAX_TIMERS; i++) { 754 timer = &s->timer[i]; 755 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer); 756 timer->tn = i; 757 timer->state = s; 758 } 759 760 /* 64-bit main counter; LegacyReplacementRoute. */ 761 s->capability = 0x8086a001ULL; 762 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT; 763 s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32); 764 765 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2); 766 qdev_init_gpio_out(dev, &s->pit_enabled, 1); 767 } 768 769 static Property hpet_device_properties[] = { 770 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS), 771 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false), 772 DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0), 773 DEFINE_PROP_END_OF_LIST(), 774 }; 775 776 static void hpet_device_class_init(ObjectClass *klass, void *data) 777 { 778 DeviceClass *dc = DEVICE_CLASS(klass); 779 780 dc->realize = hpet_realize; 781 dc->reset = hpet_reset; 782 dc->vmsd = &vmstate_hpet; 783 dc->props = hpet_device_properties; 784 } 785 786 static const TypeInfo hpet_device_info = { 787 .name = TYPE_HPET, 788 .parent = TYPE_SYS_BUS_DEVICE, 789 .instance_size = sizeof(HPETState), 790 .instance_init = hpet_init, 791 .class_init = hpet_device_class_init, 792 }; 793 794 static void hpet_register_types(void) 795 { 796 type_register_static(&hpet_device_info); 797 } 798 799 type_init(hpet_register_types) 800