1 /* 2 * High Precisition Event Timer emulation 3 * 4 * Copyright (c) 2007 Alexander Graf 5 * Copyright (c) 2008 IBM Corporation 6 * 7 * Authors: Beth Kon <bkon@us.ibm.com> 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 21 * 22 * ***************************************************************** 23 * 24 * This driver attempts to emulate an HPET device in software. 25 */ 26 27 #include "hw/hw.h" 28 #include "hw/i386/pc.h" 29 #include "ui/console.h" 30 #include "qemu/timer.h" 31 #include "hw/timer/hpet.h" 32 #include "hw/sysbus.h" 33 #include "hw/timer/mc146818rtc.h" 34 #include "hw/timer/i8254.h" 35 36 //#define HPET_DEBUG 37 #ifdef HPET_DEBUG 38 #define DPRINTF printf 39 #else 40 #define DPRINTF(...) 41 #endif 42 43 #define HPET_MSI_SUPPORT 0 44 45 #define TYPE_HPET "hpet" 46 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET) 47 48 struct HPETState; 49 typedef struct HPETTimer { /* timers */ 50 uint8_t tn; /*timer number*/ 51 QEMUTimer *qemu_timer; 52 struct HPETState *state; 53 /* Memory-mapped, software visible timer registers */ 54 uint64_t config; /* configuration/cap */ 55 uint64_t cmp; /* comparator */ 56 uint64_t fsb; /* FSB route */ 57 /* Hidden register state */ 58 uint64_t period; /* Last value written to comparator */ 59 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit 60 * mode. Next pop will be actual timer expiration. 61 */ 62 } HPETTimer; 63 64 typedef struct HPETState { 65 /*< private >*/ 66 SysBusDevice parent_obj; 67 /*< public >*/ 68 69 MemoryRegion iomem; 70 uint64_t hpet_offset; 71 qemu_irq irqs[HPET_NUM_IRQ_ROUTES]; 72 uint32_t flags; 73 uint8_t rtc_irq_level; 74 qemu_irq pit_enabled; 75 uint8_t num_timers; 76 HPETTimer timer[HPET_MAX_TIMERS]; 77 78 /* Memory-mapped, software visible registers */ 79 uint64_t capability; /* capabilities */ 80 uint64_t config; /* configuration */ 81 uint64_t isr; /* interrupt status reg */ 82 uint64_t hpet_counter; /* main counter */ 83 uint8_t hpet_id; /* instance id */ 84 } HPETState; 85 86 static uint32_t hpet_in_legacy_mode(HPETState *s) 87 { 88 return s->config & HPET_CFG_LEGACY; 89 } 90 91 static uint32_t timer_int_route(struct HPETTimer *timer) 92 { 93 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT; 94 } 95 96 static uint32_t timer_fsb_route(HPETTimer *t) 97 { 98 return t->config & HPET_TN_FSB_ENABLE; 99 } 100 101 static uint32_t hpet_enabled(HPETState *s) 102 { 103 return s->config & HPET_CFG_ENABLE; 104 } 105 106 static uint32_t timer_is_periodic(HPETTimer *t) 107 { 108 return t->config & HPET_TN_PERIODIC; 109 } 110 111 static uint32_t timer_enabled(HPETTimer *t) 112 { 113 return t->config & HPET_TN_ENABLE; 114 } 115 116 static uint32_t hpet_time_after(uint64_t a, uint64_t b) 117 { 118 return ((int32_t)(b) - (int32_t)(a) < 0); 119 } 120 121 static uint32_t hpet_time_after64(uint64_t a, uint64_t b) 122 { 123 return ((int64_t)(b) - (int64_t)(a) < 0); 124 } 125 126 static uint64_t ticks_to_ns(uint64_t value) 127 { 128 return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS)); 129 } 130 131 static uint64_t ns_to_ticks(uint64_t value) 132 { 133 return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD)); 134 } 135 136 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask) 137 { 138 new &= mask; 139 new |= old & ~mask; 140 return new; 141 } 142 143 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask) 144 { 145 return (!(old & mask) && (new & mask)); 146 } 147 148 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask) 149 { 150 return ((old & mask) && !(new & mask)); 151 } 152 153 static uint64_t hpet_get_ticks(HPETState *s) 154 { 155 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset); 156 } 157 158 /* 159 * calculate diff between comparator value and current ticks 160 */ 161 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current) 162 { 163 164 if (t->config & HPET_TN_32BIT) { 165 uint32_t diff, cmp; 166 167 cmp = (uint32_t)t->cmp; 168 diff = cmp - (uint32_t)current; 169 diff = (int32_t)diff > 0 ? diff : (uint32_t)1; 170 return (uint64_t)diff; 171 } else { 172 uint64_t diff, cmp; 173 174 cmp = t->cmp; 175 diff = cmp - current; 176 diff = (int64_t)diff > 0 ? diff : (uint64_t)1; 177 return diff; 178 } 179 } 180 181 static void update_irq(struct HPETTimer *timer, int set) 182 { 183 uint64_t mask; 184 HPETState *s; 185 int route; 186 187 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) { 188 /* if LegacyReplacementRoute bit is set, HPET specification requires 189 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC, 190 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC. 191 */ 192 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ; 193 } else { 194 route = timer_int_route(timer); 195 } 196 s = timer->state; 197 mask = 1 << timer->tn; 198 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) { 199 s->isr &= ~mask; 200 if (!timer_fsb_route(timer)) { 201 qemu_irq_lower(s->irqs[route]); 202 } 203 } else if (timer_fsb_route(timer)) { 204 stl_le_phys(timer->fsb >> 32, timer->fsb & 0xffffffff); 205 } else if (timer->config & HPET_TN_TYPE_LEVEL) { 206 s->isr |= mask; 207 qemu_irq_raise(s->irqs[route]); 208 } else { 209 s->isr &= ~mask; 210 qemu_irq_pulse(s->irqs[route]); 211 } 212 } 213 214 static void hpet_pre_save(void *opaque) 215 { 216 HPETState *s = opaque; 217 218 /* save current counter value */ 219 s->hpet_counter = hpet_get_ticks(s); 220 } 221 222 static int hpet_pre_load(void *opaque) 223 { 224 HPETState *s = opaque; 225 226 /* version 1 only supports 3, later versions will load the actual value */ 227 s->num_timers = HPET_MIN_TIMERS; 228 return 0; 229 } 230 231 static int hpet_post_load(void *opaque, int version_id) 232 { 233 HPETState *s = opaque; 234 235 /* Recalculate the offset between the main counter and guest time */ 236 s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 237 238 /* Push number of timers into capability returned via HPET_ID */ 239 s->capability &= ~HPET_ID_NUM_TIM_MASK; 240 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT; 241 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability; 242 243 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */ 244 s->flags &= ~(1 << HPET_MSI_SUPPORT); 245 if (s->timer[0].config & HPET_TN_FSB_CAP) { 246 s->flags |= 1 << HPET_MSI_SUPPORT; 247 } 248 return 0; 249 } 250 251 static bool hpet_rtc_irq_level_needed(void *opaque) 252 { 253 HPETState *s = opaque; 254 255 return s->rtc_irq_level != 0; 256 } 257 258 static const VMStateDescription vmstate_hpet_rtc_irq_level = { 259 .name = "hpet/rtc_irq_level", 260 .version_id = 1, 261 .minimum_version_id = 1, 262 .minimum_version_id_old = 1, 263 .fields = (VMStateField[]) { 264 VMSTATE_UINT8(rtc_irq_level, HPETState), 265 VMSTATE_END_OF_LIST() 266 } 267 }; 268 269 static const VMStateDescription vmstate_hpet_timer = { 270 .name = "hpet_timer", 271 .version_id = 1, 272 .minimum_version_id = 1, 273 .minimum_version_id_old = 1, 274 .fields = (VMStateField []) { 275 VMSTATE_UINT8(tn, HPETTimer), 276 VMSTATE_UINT64(config, HPETTimer), 277 VMSTATE_UINT64(cmp, HPETTimer), 278 VMSTATE_UINT64(fsb, HPETTimer), 279 VMSTATE_UINT64(period, HPETTimer), 280 VMSTATE_UINT8(wrap_flag, HPETTimer), 281 VMSTATE_TIMER(qemu_timer, HPETTimer), 282 VMSTATE_END_OF_LIST() 283 } 284 }; 285 286 static const VMStateDescription vmstate_hpet = { 287 .name = "hpet", 288 .version_id = 2, 289 .minimum_version_id = 1, 290 .minimum_version_id_old = 1, 291 .pre_save = hpet_pre_save, 292 .pre_load = hpet_pre_load, 293 .post_load = hpet_post_load, 294 .fields = (VMStateField []) { 295 VMSTATE_UINT64(config, HPETState), 296 VMSTATE_UINT64(isr, HPETState), 297 VMSTATE_UINT64(hpet_counter, HPETState), 298 VMSTATE_UINT8_V(num_timers, HPETState, 2), 299 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0, 300 vmstate_hpet_timer, HPETTimer), 301 VMSTATE_END_OF_LIST() 302 }, 303 .subsections = (VMStateSubsection[]) { 304 { 305 .vmsd = &vmstate_hpet_rtc_irq_level, 306 .needed = hpet_rtc_irq_level_needed, 307 }, { 308 /* empty */ 309 } 310 } 311 }; 312 313 /* 314 * timer expiration callback 315 */ 316 static void hpet_timer(void *opaque) 317 { 318 HPETTimer *t = opaque; 319 uint64_t diff; 320 321 uint64_t period = t->period; 322 uint64_t cur_tick = hpet_get_ticks(t->state); 323 324 if (timer_is_periodic(t) && period != 0) { 325 if (t->config & HPET_TN_32BIT) { 326 while (hpet_time_after(cur_tick, t->cmp)) { 327 t->cmp = (uint32_t)(t->cmp + t->period); 328 } 329 } else { 330 while (hpet_time_after64(cur_tick, t->cmp)) { 331 t->cmp += period; 332 } 333 } 334 diff = hpet_calculate_diff(t, cur_tick); 335 timer_mod(t->qemu_timer, 336 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff)); 337 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) { 338 if (t->wrap_flag) { 339 diff = hpet_calculate_diff(t, cur_tick); 340 timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 341 (int64_t)ticks_to_ns(diff)); 342 t->wrap_flag = 0; 343 } 344 } 345 update_irq(t, 1); 346 } 347 348 static void hpet_set_timer(HPETTimer *t) 349 { 350 uint64_t diff; 351 uint32_t wrap_diff; /* how many ticks until we wrap? */ 352 uint64_t cur_tick = hpet_get_ticks(t->state); 353 354 /* whenever new timer is being set up, make sure wrap_flag is 0 */ 355 t->wrap_flag = 0; 356 diff = hpet_calculate_diff(t, cur_tick); 357 358 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when 359 * counter wraps in addition to an interrupt with comparator match. 360 */ 361 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) { 362 wrap_diff = 0xffffffff - (uint32_t)cur_tick; 363 if (wrap_diff < (uint32_t)diff) { 364 diff = wrap_diff; 365 t->wrap_flag = 1; 366 } 367 } 368 timer_mod(t->qemu_timer, 369 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff)); 370 } 371 372 static void hpet_del_timer(HPETTimer *t) 373 { 374 timer_del(t->qemu_timer); 375 update_irq(t, 0); 376 } 377 378 #ifdef HPET_DEBUG 379 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr) 380 { 381 printf("qemu: hpet_read b at %" PRIx64 "\n", addr); 382 return 0; 383 } 384 385 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr) 386 { 387 printf("qemu: hpet_read w at %" PRIx64 "\n", addr); 388 return 0; 389 } 390 #endif 391 392 static uint64_t hpet_ram_read(void *opaque, hwaddr addr, 393 unsigned size) 394 { 395 HPETState *s = opaque; 396 uint64_t cur_tick, index; 397 398 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr); 399 index = addr; 400 /*address range of all TN regs*/ 401 if (index >= 0x100 && index <= 0x3ff) { 402 uint8_t timer_id = (addr - 0x100) / 0x20; 403 HPETTimer *timer = &s->timer[timer_id]; 404 405 if (timer_id > s->num_timers) { 406 DPRINTF("qemu: timer id out of range\n"); 407 return 0; 408 } 409 410 switch ((addr - 0x100) % 0x20) { 411 case HPET_TN_CFG: 412 return timer->config; 413 case HPET_TN_CFG + 4: // Interrupt capabilities 414 return timer->config >> 32; 415 case HPET_TN_CMP: // comparator register 416 return timer->cmp; 417 case HPET_TN_CMP + 4: 418 return timer->cmp >> 32; 419 case HPET_TN_ROUTE: 420 return timer->fsb; 421 case HPET_TN_ROUTE + 4: 422 return timer->fsb >> 32; 423 default: 424 DPRINTF("qemu: invalid hpet_ram_readl\n"); 425 break; 426 } 427 } else { 428 switch (index) { 429 case HPET_ID: 430 return s->capability; 431 case HPET_PERIOD: 432 return s->capability >> 32; 433 case HPET_CFG: 434 return s->config; 435 case HPET_CFG + 4: 436 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n"); 437 return 0; 438 case HPET_COUNTER: 439 if (hpet_enabled(s)) { 440 cur_tick = hpet_get_ticks(s); 441 } else { 442 cur_tick = s->hpet_counter; 443 } 444 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick); 445 return cur_tick; 446 case HPET_COUNTER + 4: 447 if (hpet_enabled(s)) { 448 cur_tick = hpet_get_ticks(s); 449 } else { 450 cur_tick = s->hpet_counter; 451 } 452 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick); 453 return cur_tick >> 32; 454 case HPET_STATUS: 455 return s->isr; 456 default: 457 DPRINTF("qemu: invalid hpet_ram_readl\n"); 458 break; 459 } 460 } 461 return 0; 462 } 463 464 static void hpet_ram_write(void *opaque, hwaddr addr, 465 uint64_t value, unsigned size) 466 { 467 int i; 468 HPETState *s = opaque; 469 uint64_t old_val, new_val, val, index; 470 471 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value); 472 index = addr; 473 old_val = hpet_ram_read(opaque, addr, 4); 474 new_val = value; 475 476 /*address range of all TN regs*/ 477 if (index >= 0x100 && index <= 0x3ff) { 478 uint8_t timer_id = (addr - 0x100) / 0x20; 479 HPETTimer *timer = &s->timer[timer_id]; 480 481 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id); 482 if (timer_id > s->num_timers) { 483 DPRINTF("qemu: timer id out of range\n"); 484 return; 485 } 486 switch ((addr - 0x100) % 0x20) { 487 case HPET_TN_CFG: 488 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n"); 489 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) { 490 update_irq(timer, 0); 491 } 492 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK); 493 timer->config = (timer->config & 0xffffffff00000000ULL) | val; 494 if (new_val & HPET_TN_32BIT) { 495 timer->cmp = (uint32_t)timer->cmp; 496 timer->period = (uint32_t)timer->period; 497 } 498 if (activating_bit(old_val, new_val, HPET_TN_ENABLE)) { 499 hpet_set_timer(timer); 500 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) { 501 hpet_del_timer(timer); 502 } 503 break; 504 case HPET_TN_CFG + 4: // Interrupt capabilities 505 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n"); 506 break; 507 case HPET_TN_CMP: // comparator register 508 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n"); 509 if (timer->config & HPET_TN_32BIT) { 510 new_val = (uint32_t)new_val; 511 } 512 if (!timer_is_periodic(timer) 513 || (timer->config & HPET_TN_SETVAL)) { 514 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val; 515 } 516 if (timer_is_periodic(timer)) { 517 /* 518 * FIXME: Clamp period to reasonable min value? 519 * Clamp period to reasonable max value 520 */ 521 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1; 522 timer->period = 523 (timer->period & 0xffffffff00000000ULL) | new_val; 524 } 525 timer->config &= ~HPET_TN_SETVAL; 526 if (hpet_enabled(s)) { 527 hpet_set_timer(timer); 528 } 529 break; 530 case HPET_TN_CMP + 4: // comparator register high order 531 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n"); 532 if (!timer_is_periodic(timer) 533 || (timer->config & HPET_TN_SETVAL)) { 534 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32; 535 } else { 536 /* 537 * FIXME: Clamp period to reasonable min value? 538 * Clamp period to reasonable max value 539 */ 540 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1; 541 timer->period = 542 (timer->period & 0xffffffffULL) | new_val << 32; 543 } 544 timer->config &= ~HPET_TN_SETVAL; 545 if (hpet_enabled(s)) { 546 hpet_set_timer(timer); 547 } 548 break; 549 case HPET_TN_ROUTE: 550 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val; 551 break; 552 case HPET_TN_ROUTE + 4: 553 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff); 554 break; 555 default: 556 DPRINTF("qemu: invalid hpet_ram_writel\n"); 557 break; 558 } 559 return; 560 } else { 561 switch (index) { 562 case HPET_ID: 563 return; 564 case HPET_CFG: 565 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK); 566 s->config = (s->config & 0xffffffff00000000ULL) | val; 567 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) { 568 /* Enable main counter and interrupt generation. */ 569 s->hpet_offset = 570 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 571 for (i = 0; i < s->num_timers; i++) { 572 if ((&s->timer[i])->cmp != ~0ULL) { 573 hpet_set_timer(&s->timer[i]); 574 } 575 } 576 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) { 577 /* Halt main counter and disable interrupt generation. */ 578 s->hpet_counter = hpet_get_ticks(s); 579 for (i = 0; i < s->num_timers; i++) { 580 hpet_del_timer(&s->timer[i]); 581 } 582 } 583 /* i8254 and RTC output pins are disabled 584 * when HPET is in legacy mode */ 585 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) { 586 qemu_set_irq(s->pit_enabled, 0); 587 qemu_irq_lower(s->irqs[0]); 588 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]); 589 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) { 590 qemu_irq_lower(s->irqs[0]); 591 qemu_set_irq(s->pit_enabled, 1); 592 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level); 593 } 594 break; 595 case HPET_CFG + 4: 596 DPRINTF("qemu: invalid HPET_CFG+4 write\n"); 597 break; 598 case HPET_STATUS: 599 val = new_val & s->isr; 600 for (i = 0; i < s->num_timers; i++) { 601 if (val & (1 << i)) { 602 update_irq(&s->timer[i], 0); 603 } 604 } 605 break; 606 case HPET_COUNTER: 607 if (hpet_enabled(s)) { 608 DPRINTF("qemu: Writing counter while HPET enabled!\n"); 609 } 610 s->hpet_counter = 611 (s->hpet_counter & 0xffffffff00000000ULL) | value; 612 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n", 613 value, s->hpet_counter); 614 break; 615 case HPET_COUNTER + 4: 616 if (hpet_enabled(s)) { 617 DPRINTF("qemu: Writing counter while HPET enabled!\n"); 618 } 619 s->hpet_counter = 620 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32); 621 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n", 622 value, s->hpet_counter); 623 break; 624 default: 625 DPRINTF("qemu: invalid hpet_ram_writel\n"); 626 break; 627 } 628 } 629 } 630 631 static const MemoryRegionOps hpet_ram_ops = { 632 .read = hpet_ram_read, 633 .write = hpet_ram_write, 634 .valid = { 635 .min_access_size = 4, 636 .max_access_size = 4, 637 }, 638 .endianness = DEVICE_NATIVE_ENDIAN, 639 }; 640 641 static void hpet_reset(DeviceState *d) 642 { 643 HPETState *s = HPET(d); 644 SysBusDevice *sbd = SYS_BUS_DEVICE(d); 645 int i; 646 647 for (i = 0; i < s->num_timers; i++) { 648 HPETTimer *timer = &s->timer[i]; 649 650 hpet_del_timer(timer); 651 timer->cmp = ~0ULL; 652 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP; 653 if (s->flags & (1 << HPET_MSI_SUPPORT)) { 654 timer->config |= HPET_TN_FSB_CAP; 655 } 656 /* advertise availability of ioapic inti2 */ 657 timer->config |= 0x00000004ULL << 32; 658 timer->period = 0ULL; 659 timer->wrap_flag = 0; 660 } 661 662 qemu_set_irq(s->pit_enabled, 1); 663 s->hpet_counter = 0ULL; 664 s->hpet_offset = 0ULL; 665 s->config = 0ULL; 666 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability; 667 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr; 668 669 /* to document that the RTC lowers its output on reset as well */ 670 s->rtc_irq_level = 0; 671 } 672 673 static void hpet_handle_legacy_irq(void *opaque, int n, int level) 674 { 675 HPETState *s = HPET(opaque); 676 677 if (n == HPET_LEGACY_PIT_INT) { 678 if (!hpet_in_legacy_mode(s)) { 679 qemu_set_irq(s->irqs[0], level); 680 } 681 } else { 682 s->rtc_irq_level = level; 683 if (!hpet_in_legacy_mode(s)) { 684 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level); 685 } 686 } 687 } 688 689 static void hpet_init(Object *obj) 690 { 691 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 692 HPETState *s = HPET(obj); 693 694 /* HPET Area */ 695 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", 0x400); 696 sysbus_init_mmio(sbd, &s->iomem); 697 } 698 699 static void hpet_realize(DeviceState *dev, Error **errp) 700 { 701 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 702 HPETState *s = HPET(dev); 703 int i; 704 HPETTimer *timer; 705 706 if (hpet_cfg.count == UINT8_MAX) { 707 /* first instance */ 708 hpet_cfg.count = 0; 709 } 710 711 if (hpet_cfg.count == 8) { 712 error_setg(errp, "Only 8 instances of HPET is allowed"); 713 return; 714 } 715 716 s->hpet_id = hpet_cfg.count++; 717 718 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) { 719 sysbus_init_irq(sbd, &s->irqs[i]); 720 } 721 722 if (s->num_timers < HPET_MIN_TIMERS) { 723 s->num_timers = HPET_MIN_TIMERS; 724 } else if (s->num_timers > HPET_MAX_TIMERS) { 725 s->num_timers = HPET_MAX_TIMERS; 726 } 727 for (i = 0; i < HPET_MAX_TIMERS; i++) { 728 timer = &s->timer[i]; 729 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer); 730 timer->tn = i; 731 timer->state = s; 732 } 733 734 /* 64-bit main counter; LegacyReplacementRoute. */ 735 s->capability = 0x8086a001ULL; 736 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT; 737 s->capability |= ((HPET_CLK_PERIOD) << 32); 738 739 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2); 740 qdev_init_gpio_out(dev, &s->pit_enabled, 1); 741 } 742 743 static Property hpet_device_properties[] = { 744 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS), 745 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false), 746 DEFINE_PROP_END_OF_LIST(), 747 }; 748 749 static void hpet_device_class_init(ObjectClass *klass, void *data) 750 { 751 DeviceClass *dc = DEVICE_CLASS(klass); 752 753 dc->realize = hpet_realize; 754 dc->no_user = 1; 755 dc->reset = hpet_reset; 756 dc->vmsd = &vmstate_hpet; 757 dc->props = hpet_device_properties; 758 } 759 760 bool hpet_find(void) 761 { 762 return object_resolve_path_type("", TYPE_HPET, NULL); 763 } 764 765 static const TypeInfo hpet_device_info = { 766 .name = TYPE_HPET, 767 .parent = TYPE_SYS_BUS_DEVICE, 768 .instance_size = sizeof(HPETState), 769 .instance_init = hpet_init, 770 .class_init = hpet_device_class_init, 771 }; 772 773 static void hpet_register_types(void) 774 { 775 type_register_static(&hpet_device_info); 776 } 777 778 type_init(hpet_register_types) 779