xref: /openbmc/qemu/hw/timer/cadence_ttc.c (revision f7160f32)
1 /*
2  * Xilinx Zynq cadence TTC model
3  *
4  * Copyright (c) 2011 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written By Haibing Ma
8  *            M. Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "hw/irq.h"
21 #include "hw/sysbus.h"
22 #include "migration/vmstate.h"
23 #include "qemu/module.h"
24 #include "qemu/timer.h"
25 
26 #ifdef CADENCE_TTC_ERR_DEBUG
27 #define DB_PRINT(...) do { \
28     fprintf(stderr,  ": %s: ", __func__); \
29     fprintf(stderr, ## __VA_ARGS__); \
30     } while (0)
31 #else
32     #define DB_PRINT(...)
33 #endif
34 
35 #define COUNTER_INTR_IV     0x00000001
36 #define COUNTER_INTR_M1     0x00000002
37 #define COUNTER_INTR_M2     0x00000004
38 #define COUNTER_INTR_M3     0x00000008
39 #define COUNTER_INTR_OV     0x00000010
40 #define COUNTER_INTR_EV     0x00000020
41 
42 #define COUNTER_CTRL_DIS    0x00000001
43 #define COUNTER_CTRL_INT    0x00000002
44 #define COUNTER_CTRL_DEC    0x00000004
45 #define COUNTER_CTRL_MATCH  0x00000008
46 #define COUNTER_CTRL_RST    0x00000010
47 
48 #define CLOCK_CTRL_PS_EN    0x00000001
49 #define CLOCK_CTRL_PS_V     0x0000001e
50 
51 typedef struct {
52     QEMUTimer *timer;
53     int freq;
54 
55     uint32_t reg_clock;
56     uint32_t reg_count;
57     uint32_t reg_value;
58     uint16_t reg_interval;
59     uint16_t reg_match[3];
60     uint32_t reg_intr;
61     uint32_t reg_intr_en;
62     uint32_t reg_event_ctrl;
63     uint32_t reg_event;
64 
65     uint64_t cpu_time;
66     unsigned int cpu_time_valid;
67 
68     qemu_irq irq;
69 } CadenceTimerState;
70 
71 #define TYPE_CADENCE_TTC "cadence_ttc"
72 #define CADENCE_TTC(obj) \
73     OBJECT_CHECK(CadenceTTCState, (obj), TYPE_CADENCE_TTC)
74 
75 typedef struct CadenceTTCState {
76     SysBusDevice parent_obj;
77 
78     MemoryRegion iomem;
79     CadenceTimerState timer[3];
80 } CadenceTTCState;
81 
82 static void cadence_timer_update(CadenceTimerState *s)
83 {
84     qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
85 }
86 
87 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
88                                         hwaddr offset)
89 {
90     unsigned int index;
91     CadenceTTCState *s = (CadenceTTCState *)opaque;
92 
93     index = (offset >> 2) % 3;
94 
95     return &s->timer[index];
96 }
97 
98 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
99 {
100     /* timer_steps has max value of 0x100000000. double check it
101      * (or overflow can happen below) */
102     assert(timer_steps <= 1ULL << 32);
103 
104     uint64_t r = timer_steps * 1000000000ULL;
105     if (s->reg_clock & CLOCK_CTRL_PS_EN) {
106         r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
107     } else {
108         r >>= 16;
109     }
110     r /= (uint64_t)s->freq;
111     return r;
112 }
113 
114 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
115 {
116     uint64_t to_divide = 1000000000ULL;
117 
118     uint64_t r = ns;
119      /* for very large intervals (> 8s) do some division first to stop
120       * overflow (costs some prescision) */
121     while (r >= 8ULL << 30 && to_divide > 1) {
122         r /= 1000;
123         to_divide /= 1000;
124     }
125     r <<= 16;
126     /* keep early-dividing as needed */
127     while (r >= 8ULL << 30 && to_divide > 1) {
128         r /= 1000;
129         to_divide /= 1000;
130     }
131     r *= (uint64_t)s->freq;
132     if (s->reg_clock & CLOCK_CTRL_PS_EN) {
133         r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
134     }
135 
136     r /= to_divide;
137     return r;
138 }
139 
140 /* determine if x is in between a and b, exclusive of a, inclusive of b */
141 
142 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
143 {
144     if (a < b) {
145         return x > a && x <= b;
146     }
147     return x < a && x >= b;
148 }
149 
150 static void cadence_timer_run(CadenceTimerState *s)
151 {
152     int i;
153     int64_t event_interval, next_value;
154 
155     assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
156 
157     if (s->reg_count & COUNTER_CTRL_DIS) {
158         s->cpu_time_valid = 0;
159         return;
160     }
161 
162     { /* figure out what's going to happen next (rollover or match) */
163         int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
164                 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
165         next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
166         for (i = 0; i < 3; ++i) {
167             int64_t cand = (uint64_t)s->reg_match[i] << 16;
168             if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
169                 next_value = cand;
170             }
171         }
172     }
173     DB_PRINT("next timer event value: %09llx\n",
174             (unsigned long long)next_value);
175 
176     event_interval = next_value - (int64_t)s->reg_value;
177     event_interval = (event_interval < 0) ? -event_interval : event_interval;
178 
179     timer_mod(s->timer, s->cpu_time +
180                 cadence_timer_get_ns(s, event_interval));
181 }
182 
183 static void cadence_timer_sync(CadenceTimerState *s)
184 {
185     int i;
186     int64_t r, x;
187     int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
188             (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
189     uint64_t old_time = s->cpu_time;
190 
191     s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
192     DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
193 
194     if (!s->cpu_time_valid || old_time == s->cpu_time) {
195         s->cpu_time_valid = 1;
196         return;
197     }
198 
199     r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
200     x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
201 
202     for (i = 0; i < 3; ++i) {
203         int64_t m = (int64_t)s->reg_match[i] << 16;
204         if (m > interval) {
205             continue;
206         }
207         /* check to see if match event has occurred. check m +/- interval
208          * to account for match events in wrap around cases */
209         if (is_between(m, s->reg_value, x) ||
210             is_between(m + interval, s->reg_value, x) ||
211             is_between(m - interval, s->reg_value, x)) {
212             s->reg_intr |= (2 << i);
213         }
214     }
215     if ((x < 0) || (x >= interval)) {
216         s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
217             COUNTER_INTR_IV : COUNTER_INTR_OV;
218     }
219     while (x < 0) {
220         x += interval;
221     }
222     s->reg_value = (uint32_t)(x % interval);
223     cadence_timer_update(s);
224 }
225 
226 static void cadence_timer_tick(void *opaque)
227 {
228     CadenceTimerState *s = opaque;
229 
230     DB_PRINT("\n");
231     cadence_timer_sync(s);
232     cadence_timer_run(s);
233 }
234 
235 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
236 {
237     CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
238     uint32_t value;
239 
240     cadence_timer_sync(s);
241     cadence_timer_run(s);
242 
243     switch (offset) {
244     case 0x00: /* clock control */
245     case 0x04:
246     case 0x08:
247         return s->reg_clock;
248 
249     case 0x0c: /* counter control */
250     case 0x10:
251     case 0x14:
252         return s->reg_count;
253 
254     case 0x18: /* counter value */
255     case 0x1c:
256     case 0x20:
257         return (uint16_t)(s->reg_value >> 16);
258 
259     case 0x24: /* reg_interval counter */
260     case 0x28:
261     case 0x2c:
262         return s->reg_interval;
263 
264     case 0x30: /* match 1 counter */
265     case 0x34:
266     case 0x38:
267         return s->reg_match[0];
268 
269     case 0x3c: /* match 2 counter */
270     case 0x40:
271     case 0x44:
272         return s->reg_match[1];
273 
274     case 0x48: /* match 3 counter */
275     case 0x4c:
276     case 0x50:
277         return s->reg_match[2];
278 
279     case 0x54: /* interrupt register */
280     case 0x58:
281     case 0x5c:
282         /* cleared after read */
283         value = s->reg_intr;
284         s->reg_intr = 0;
285         cadence_timer_update(s);
286         return value;
287 
288     case 0x60: /* interrupt enable */
289     case 0x64:
290     case 0x68:
291         return s->reg_intr_en;
292 
293     case 0x6c:
294     case 0x70:
295     case 0x74:
296         return s->reg_event_ctrl;
297 
298     case 0x78:
299     case 0x7c:
300     case 0x80:
301         return s->reg_event;
302 
303     default:
304         return 0;
305     }
306 }
307 
308 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
309     unsigned size)
310 {
311     uint32_t ret = cadence_ttc_read_imp(opaque, offset);
312 
313     DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
314     return ret;
315 }
316 
317 static void cadence_ttc_write(void *opaque, hwaddr offset,
318         uint64_t value, unsigned size)
319 {
320     CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
321 
322     DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
323 
324     cadence_timer_sync(s);
325 
326     switch (offset) {
327     case 0x00: /* clock control */
328     case 0x04:
329     case 0x08:
330         s->reg_clock = value & 0x3F;
331         break;
332 
333     case 0x0c: /* counter control */
334     case 0x10:
335     case 0x14:
336         if (value & COUNTER_CTRL_RST) {
337             s->reg_value = 0;
338         }
339         s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
340         break;
341 
342     case 0x24: /* interval register */
343     case 0x28:
344     case 0x2c:
345         s->reg_interval = value & 0xffff;
346         break;
347 
348     case 0x30: /* match register */
349     case 0x34:
350     case 0x38:
351         s->reg_match[0] = value & 0xffff;
352         break;
353 
354     case 0x3c: /* match register */
355     case 0x40:
356     case 0x44:
357         s->reg_match[1] = value & 0xffff;
358         break;
359 
360     case 0x48: /* match register */
361     case 0x4c:
362     case 0x50:
363         s->reg_match[2] = value & 0xffff;
364         break;
365 
366     case 0x54: /* interrupt register */
367     case 0x58:
368     case 0x5c:
369         break;
370 
371     case 0x60: /* interrupt enable */
372     case 0x64:
373     case 0x68:
374         s->reg_intr_en = value & 0x3f;
375         break;
376 
377     case 0x6c: /* event control */
378     case 0x70:
379     case 0x74:
380         s->reg_event_ctrl = value & 0x07;
381         break;
382 
383     default:
384         return;
385     }
386 
387     cadence_timer_run(s);
388     cadence_timer_update(s);
389 }
390 
391 static const MemoryRegionOps cadence_ttc_ops = {
392     .read = cadence_ttc_read,
393     .write = cadence_ttc_write,
394     .endianness = DEVICE_NATIVE_ENDIAN,
395 };
396 
397 static void cadence_timer_reset(CadenceTimerState *s)
398 {
399    s->reg_count = 0x21;
400 }
401 
402 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
403 {
404     memset(s, 0, sizeof(CadenceTimerState));
405     s->freq = freq;
406 
407     cadence_timer_reset(s);
408 
409     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
410 }
411 
412 static void cadence_ttc_init(Object *obj)
413 {
414     CadenceTTCState *s = CADENCE_TTC(obj);
415 
416     memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
417                           "timer", 0x1000);
418     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
419 }
420 
421 static void cadence_ttc_realize(DeviceState *dev, Error **errp)
422 {
423     CadenceTTCState *s = CADENCE_TTC(dev);
424     int i;
425 
426     for (i = 0; i < 3; ++i) {
427         cadence_timer_init(133000000, &s->timer[i]);
428         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->timer[i].irq);
429     }
430 }
431 
432 static int cadence_timer_pre_save(void *opaque)
433 {
434     cadence_timer_sync((CadenceTimerState *)opaque);
435 
436     return 0;
437 }
438 
439 static int cadence_timer_post_load(void *opaque, int version_id)
440 {
441     CadenceTimerState *s = opaque;
442 
443     s->cpu_time_valid = 0;
444     cadence_timer_sync(s);
445     cadence_timer_run(s);
446     cadence_timer_update(s);
447     return 0;
448 }
449 
450 static const VMStateDescription vmstate_cadence_timer = {
451     .name = "cadence_timer",
452     .version_id = 1,
453     .minimum_version_id = 1,
454     .pre_save = cadence_timer_pre_save,
455     .post_load = cadence_timer_post_load,
456     .fields = (VMStateField[]) {
457         VMSTATE_UINT32(reg_clock, CadenceTimerState),
458         VMSTATE_UINT32(reg_count, CadenceTimerState),
459         VMSTATE_UINT32(reg_value, CadenceTimerState),
460         VMSTATE_UINT16(reg_interval, CadenceTimerState),
461         VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
462         VMSTATE_UINT32(reg_intr, CadenceTimerState),
463         VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
464         VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
465         VMSTATE_UINT32(reg_event, CadenceTimerState),
466         VMSTATE_END_OF_LIST()
467     }
468 };
469 
470 static const VMStateDescription vmstate_cadence_ttc = {
471     .name = "cadence_TTC",
472     .version_id = 1,
473     .minimum_version_id = 1,
474     .fields = (VMStateField[]) {
475         VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
476                             vmstate_cadence_timer,
477                             CadenceTimerState),
478         VMSTATE_END_OF_LIST()
479     }
480 };
481 
482 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
483 {
484     DeviceClass *dc = DEVICE_CLASS(klass);
485 
486     dc->vmsd = &vmstate_cadence_ttc;
487     dc->realize = cadence_ttc_realize;
488 }
489 
490 static const TypeInfo cadence_ttc_info = {
491     .name  = TYPE_CADENCE_TTC,
492     .parent = TYPE_SYS_BUS_DEVICE,
493     .instance_size  = sizeof(CadenceTTCState),
494     .instance_init = cadence_ttc_init,
495     .class_init = cadence_ttc_class_init,
496 };
497 
498 static void cadence_ttc_register_types(void)
499 {
500     type_register_static(&cadence_ttc_info);
501 }
502 
503 type_init(cadence_ttc_register_types)
504