1 /* 2 * Xilinx Zynq cadence TTC model 3 * 4 * Copyright (c) 2011 Xilinx Inc. 5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com) 6 * Copyright (c) 2012 PetaLogix Pty Ltd. 7 * Written By Haibing Ma 8 * M. Habib 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "hw/sysbus.h" 21 #include "qemu/timer.h" 22 23 #ifdef CADENCE_TTC_ERR_DEBUG 24 #define DB_PRINT(...) do { \ 25 fprintf(stderr, ": %s: ", __func__); \ 26 fprintf(stderr, ## __VA_ARGS__); \ 27 } while (0); 28 #else 29 #define DB_PRINT(...) 30 #endif 31 32 #define COUNTER_INTR_IV 0x00000001 33 #define COUNTER_INTR_M1 0x00000002 34 #define COUNTER_INTR_M2 0x00000004 35 #define COUNTER_INTR_M3 0x00000008 36 #define COUNTER_INTR_OV 0x00000010 37 #define COUNTER_INTR_EV 0x00000020 38 39 #define COUNTER_CTRL_DIS 0x00000001 40 #define COUNTER_CTRL_INT 0x00000002 41 #define COUNTER_CTRL_DEC 0x00000004 42 #define COUNTER_CTRL_MATCH 0x00000008 43 #define COUNTER_CTRL_RST 0x00000010 44 45 #define CLOCK_CTRL_PS_EN 0x00000001 46 #define CLOCK_CTRL_PS_V 0x0000001e 47 48 typedef struct { 49 QEMUTimer *timer; 50 int freq; 51 52 uint32_t reg_clock; 53 uint32_t reg_count; 54 uint32_t reg_value; 55 uint16_t reg_interval; 56 uint16_t reg_match[3]; 57 uint32_t reg_intr; 58 uint32_t reg_intr_en; 59 uint32_t reg_event_ctrl; 60 uint32_t reg_event; 61 62 uint64_t cpu_time; 63 unsigned int cpu_time_valid; 64 65 qemu_irq irq; 66 } CadenceTimerState; 67 68 #define TYPE_CADENCE_TTC "cadence_ttc" 69 #define CADENCE_TTC(obj) \ 70 OBJECT_CHECK(CadenceTTCState, (obj), TYPE_CADENCE_TTC) 71 72 typedef struct CadenceTTCState { 73 SysBusDevice parent_obj; 74 75 MemoryRegion iomem; 76 CadenceTimerState timer[3]; 77 } CadenceTTCState; 78 79 static void cadence_timer_update(CadenceTimerState *s) 80 { 81 qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en)); 82 } 83 84 static CadenceTimerState *cadence_timer_from_addr(void *opaque, 85 hwaddr offset) 86 { 87 unsigned int index; 88 CadenceTTCState *s = (CadenceTTCState *)opaque; 89 90 index = (offset >> 2) % 3; 91 92 return &s->timer[index]; 93 } 94 95 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps) 96 { 97 /* timer_steps has max value of 0x100000000. double check it 98 * (or overflow can happen below) */ 99 assert(timer_steps <= 1ULL << 32); 100 101 uint64_t r = timer_steps * 1000000000ULL; 102 if (s->reg_clock & CLOCK_CTRL_PS_EN) { 103 r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1); 104 } else { 105 r >>= 16; 106 } 107 r /= (uint64_t)s->freq; 108 return r; 109 } 110 111 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns) 112 { 113 uint64_t to_divide = 1000000000ULL; 114 115 uint64_t r = ns; 116 /* for very large intervals (> 8s) do some division first to stop 117 * overflow (costs some prescision) */ 118 while (r >= 8ULL << 30 && to_divide > 1) { 119 r /= 1000; 120 to_divide /= 1000; 121 } 122 r <<= 16; 123 /* keep early-dividing as needed */ 124 while (r >= 8ULL << 30 && to_divide > 1) { 125 r /= 1000; 126 to_divide /= 1000; 127 } 128 r *= (uint64_t)s->freq; 129 if (s->reg_clock & CLOCK_CTRL_PS_EN) { 130 r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1); 131 } 132 133 r /= to_divide; 134 return r; 135 } 136 137 /* determine if x is in between a and b, exclusive of a, inclusive of b */ 138 139 static inline int64_t is_between(int64_t x, int64_t a, int64_t b) 140 { 141 if (a < b) { 142 return x > a && x <= b; 143 } 144 return x < a && x >= b; 145 } 146 147 static void cadence_timer_run(CadenceTimerState *s) 148 { 149 int i; 150 int64_t event_interval, next_value; 151 152 assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */ 153 154 if (s->reg_count & COUNTER_CTRL_DIS) { 155 s->cpu_time_valid = 0; 156 return; 157 } 158 159 { /* figure out what's going to happen next (rollover or match) */ 160 int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ? 161 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16; 162 next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval; 163 for (i = 0; i < 3; ++i) { 164 int64_t cand = (uint64_t)s->reg_match[i] << 16; 165 if (is_between(cand, (uint64_t)s->reg_value, next_value)) { 166 next_value = cand; 167 } 168 } 169 } 170 DB_PRINT("next timer event value: %09llx\n", 171 (unsigned long long)next_value); 172 173 event_interval = next_value - (int64_t)s->reg_value; 174 event_interval = (event_interval < 0) ? -event_interval : event_interval; 175 176 timer_mod(s->timer, s->cpu_time + 177 cadence_timer_get_ns(s, event_interval)); 178 } 179 180 static void cadence_timer_sync(CadenceTimerState *s) 181 { 182 int i; 183 int64_t r, x; 184 int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ? 185 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16; 186 uint64_t old_time = s->cpu_time; 187 188 s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 189 DB_PRINT("cpu time: %lld ns\n", (long long)old_time); 190 191 if (!s->cpu_time_valid || old_time == s->cpu_time) { 192 s->cpu_time_valid = 1; 193 return; 194 } 195 196 r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time); 197 x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r); 198 199 for (i = 0; i < 3; ++i) { 200 int64_t m = (int64_t)s->reg_match[i] << 16; 201 if (m > interval) { 202 continue; 203 } 204 /* check to see if match event has occurred. check m +/- interval 205 * to account for match events in wrap around cases */ 206 if (is_between(m, s->reg_value, x) || 207 is_between(m + interval, s->reg_value, x) || 208 is_between(m - interval, s->reg_value, x)) { 209 s->reg_intr |= (2 << i); 210 } 211 } 212 if ((x < 0) || (x >= interval)) { 213 s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ? 214 COUNTER_INTR_IV : COUNTER_INTR_OV; 215 } 216 while (x < 0) { 217 x += interval; 218 } 219 s->reg_value = (uint32_t)(x % interval); 220 cadence_timer_update(s); 221 } 222 223 static void cadence_timer_tick(void *opaque) 224 { 225 CadenceTimerState *s = opaque; 226 227 DB_PRINT("\n"); 228 cadence_timer_sync(s); 229 cadence_timer_run(s); 230 } 231 232 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset) 233 { 234 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset); 235 uint32_t value; 236 237 cadence_timer_sync(s); 238 cadence_timer_run(s); 239 240 switch (offset) { 241 case 0x00: /* clock control */ 242 case 0x04: 243 case 0x08: 244 return s->reg_clock; 245 246 case 0x0c: /* counter control */ 247 case 0x10: 248 case 0x14: 249 return s->reg_count; 250 251 case 0x18: /* counter value */ 252 case 0x1c: 253 case 0x20: 254 return (uint16_t)(s->reg_value >> 16); 255 256 case 0x24: /* reg_interval counter */ 257 case 0x28: 258 case 0x2c: 259 return s->reg_interval; 260 261 case 0x30: /* match 1 counter */ 262 case 0x34: 263 case 0x38: 264 return s->reg_match[0]; 265 266 case 0x3c: /* match 2 counter */ 267 case 0x40: 268 case 0x44: 269 return s->reg_match[1]; 270 271 case 0x48: /* match 3 counter */ 272 case 0x4c: 273 case 0x50: 274 return s->reg_match[2]; 275 276 case 0x54: /* interrupt register */ 277 case 0x58: 278 case 0x5c: 279 /* cleared after read */ 280 value = s->reg_intr; 281 s->reg_intr = 0; 282 cadence_timer_update(s); 283 return value; 284 285 case 0x60: /* interrupt enable */ 286 case 0x64: 287 case 0x68: 288 return s->reg_intr_en; 289 290 case 0x6c: 291 case 0x70: 292 case 0x74: 293 return s->reg_event_ctrl; 294 295 case 0x78: 296 case 0x7c: 297 case 0x80: 298 return s->reg_event; 299 300 default: 301 return 0; 302 } 303 } 304 305 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset, 306 unsigned size) 307 { 308 uint32_t ret = cadence_ttc_read_imp(opaque, offset); 309 310 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret); 311 return ret; 312 } 313 314 static void cadence_ttc_write(void *opaque, hwaddr offset, 315 uint64_t value, unsigned size) 316 { 317 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset); 318 319 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value); 320 321 cadence_timer_sync(s); 322 323 switch (offset) { 324 case 0x00: /* clock control */ 325 case 0x04: 326 case 0x08: 327 s->reg_clock = value & 0x3F; 328 break; 329 330 case 0x0c: /* counter control */ 331 case 0x10: 332 case 0x14: 333 if (value & COUNTER_CTRL_RST) { 334 s->reg_value = 0; 335 } 336 s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST; 337 break; 338 339 case 0x24: /* interval register */ 340 case 0x28: 341 case 0x2c: 342 s->reg_interval = value & 0xffff; 343 break; 344 345 case 0x30: /* match register */ 346 case 0x34: 347 case 0x38: 348 s->reg_match[0] = value & 0xffff; 349 break; 350 351 case 0x3c: /* match register */ 352 case 0x40: 353 case 0x44: 354 s->reg_match[1] = value & 0xffff; 355 break; 356 357 case 0x48: /* match register */ 358 case 0x4c: 359 case 0x50: 360 s->reg_match[2] = value & 0xffff; 361 break; 362 363 case 0x54: /* interrupt register */ 364 case 0x58: 365 case 0x5c: 366 break; 367 368 case 0x60: /* interrupt enable */ 369 case 0x64: 370 case 0x68: 371 s->reg_intr_en = value & 0x3f; 372 break; 373 374 case 0x6c: /* event control */ 375 case 0x70: 376 case 0x74: 377 s->reg_event_ctrl = value & 0x07; 378 break; 379 380 default: 381 return; 382 } 383 384 cadence_timer_run(s); 385 cadence_timer_update(s); 386 } 387 388 static const MemoryRegionOps cadence_ttc_ops = { 389 .read = cadence_ttc_read, 390 .write = cadence_ttc_write, 391 .endianness = DEVICE_NATIVE_ENDIAN, 392 }; 393 394 static void cadence_timer_reset(CadenceTimerState *s) 395 { 396 s->reg_count = 0x21; 397 } 398 399 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s) 400 { 401 memset(s, 0, sizeof(CadenceTimerState)); 402 s->freq = freq; 403 404 cadence_timer_reset(s); 405 406 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s); 407 } 408 409 static void cadence_ttc_init(Object *obj) 410 { 411 CadenceTTCState *s = CADENCE_TTC(obj); 412 int i; 413 414 for (i = 0; i < 3; ++i) { 415 cadence_timer_init(133000000, &s->timer[i]); 416 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->timer[i].irq); 417 } 418 419 memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s, 420 "timer", 0x1000); 421 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); 422 } 423 424 static void cadence_timer_pre_save(void *opaque) 425 { 426 cadence_timer_sync((CadenceTimerState *)opaque); 427 } 428 429 static int cadence_timer_post_load(void *opaque, int version_id) 430 { 431 CadenceTimerState *s = opaque; 432 433 s->cpu_time_valid = 0; 434 cadence_timer_sync(s); 435 cadence_timer_run(s); 436 cadence_timer_update(s); 437 return 0; 438 } 439 440 static const VMStateDescription vmstate_cadence_timer = { 441 .name = "cadence_timer", 442 .version_id = 1, 443 .minimum_version_id = 1, 444 .pre_save = cadence_timer_pre_save, 445 .post_load = cadence_timer_post_load, 446 .fields = (VMStateField[]) { 447 VMSTATE_UINT32(reg_clock, CadenceTimerState), 448 VMSTATE_UINT32(reg_count, CadenceTimerState), 449 VMSTATE_UINT32(reg_value, CadenceTimerState), 450 VMSTATE_UINT16(reg_interval, CadenceTimerState), 451 VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3), 452 VMSTATE_UINT32(reg_intr, CadenceTimerState), 453 VMSTATE_UINT32(reg_intr_en, CadenceTimerState), 454 VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState), 455 VMSTATE_UINT32(reg_event, CadenceTimerState), 456 VMSTATE_END_OF_LIST() 457 } 458 }; 459 460 static const VMStateDescription vmstate_cadence_ttc = { 461 .name = "cadence_TTC", 462 .version_id = 1, 463 .minimum_version_id = 1, 464 .fields = (VMStateField[]) { 465 VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0, 466 vmstate_cadence_timer, 467 CadenceTimerState), 468 VMSTATE_END_OF_LIST() 469 } 470 }; 471 472 static void cadence_ttc_class_init(ObjectClass *klass, void *data) 473 { 474 DeviceClass *dc = DEVICE_CLASS(klass); 475 476 dc->vmsd = &vmstate_cadence_ttc; 477 } 478 479 static const TypeInfo cadence_ttc_info = { 480 .name = TYPE_CADENCE_TTC, 481 .parent = TYPE_SYS_BUS_DEVICE, 482 .instance_size = sizeof(CadenceTTCState), 483 .instance_init = cadence_ttc_init, 484 .class_init = cadence_ttc_class_init, 485 }; 486 487 static void cadence_ttc_register_types(void) 488 { 489 type_register_static(&cadence_ttc_info); 490 } 491 492 type_init(cadence_ttc_register_types) 493