xref: /openbmc/qemu/hw/timer/cadence_ttc.c (revision 2993683b)
1 /*
2  * Xilinx Zynq cadence TTC model
3  *
4  * Copyright (c) 2011 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written By Haibing Ma
8  *            M. Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "hw/sysbus.h"
20 #include "qemu/timer.h"
21 
22 #ifdef CADENCE_TTC_ERR_DEBUG
23 #define DB_PRINT(...) do { \
24     fprintf(stderr,  ": %s: ", __func__); \
25     fprintf(stderr, ## __VA_ARGS__); \
26     } while (0);
27 #else
28     #define DB_PRINT(...)
29 #endif
30 
31 #define COUNTER_INTR_IV     0x00000001
32 #define COUNTER_INTR_M1     0x00000002
33 #define COUNTER_INTR_M2     0x00000004
34 #define COUNTER_INTR_M3     0x00000008
35 #define COUNTER_INTR_OV     0x00000010
36 #define COUNTER_INTR_EV     0x00000020
37 
38 #define COUNTER_CTRL_DIS    0x00000001
39 #define COUNTER_CTRL_INT    0x00000002
40 #define COUNTER_CTRL_DEC    0x00000004
41 #define COUNTER_CTRL_MATCH  0x00000008
42 #define COUNTER_CTRL_RST    0x00000010
43 
44 #define CLOCK_CTRL_PS_EN    0x00000001
45 #define CLOCK_CTRL_PS_V     0x0000001e
46 
47 typedef struct {
48     QEMUTimer *timer;
49     int freq;
50 
51     uint32_t reg_clock;
52     uint32_t reg_count;
53     uint32_t reg_value;
54     uint16_t reg_interval;
55     uint16_t reg_match[3];
56     uint32_t reg_intr;
57     uint32_t reg_intr_en;
58     uint32_t reg_event_ctrl;
59     uint32_t reg_event;
60 
61     uint64_t cpu_time;
62     unsigned int cpu_time_valid;
63 
64     qemu_irq irq;
65 } CadenceTimerState;
66 
67 typedef struct {
68     SysBusDevice busdev;
69     MemoryRegion iomem;
70     CadenceTimerState timer[3];
71 } CadenceTTCState;
72 
73 static void cadence_timer_update(CadenceTimerState *s)
74 {
75     qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
76 }
77 
78 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
79                                         hwaddr offset)
80 {
81     unsigned int index;
82     CadenceTTCState *s = (CadenceTTCState *)opaque;
83 
84     index = (offset >> 2) % 3;
85 
86     return &s->timer[index];
87 }
88 
89 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
90 {
91     /* timer_steps has max value of 0x100000000. double check it
92      * (or overflow can happen below) */
93     assert(timer_steps <= 1ULL << 32);
94 
95     uint64_t r = timer_steps * 1000000000ULL;
96     if (s->reg_clock & CLOCK_CTRL_PS_EN) {
97         r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
98     } else {
99         r >>= 16;
100     }
101     r /= (uint64_t)s->freq;
102     return r;
103 }
104 
105 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
106 {
107     uint64_t to_divide = 1000000000ULL;
108 
109     uint64_t r = ns;
110      /* for very large intervals (> 8s) do some division first to stop
111       * overflow (costs some prescision) */
112     while (r >= 8ULL << 30 && to_divide > 1) {
113         r /= 1000;
114         to_divide /= 1000;
115     }
116     r <<= 16;
117     /* keep early-dividing as needed */
118     while (r >= 8ULL << 30 && to_divide > 1) {
119         r /= 1000;
120         to_divide /= 1000;
121     }
122     r *= (uint64_t)s->freq;
123     if (s->reg_clock & CLOCK_CTRL_PS_EN) {
124         r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
125     }
126 
127     r /= to_divide;
128     return r;
129 }
130 
131 /* determine if x is in between a and b, exclusive of a, inclusive of b */
132 
133 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
134 {
135     if (a < b) {
136         return x > a && x <= b;
137     }
138     return x < a && x >= b;
139 }
140 
141 static void cadence_timer_run(CadenceTimerState *s)
142 {
143     int i;
144     int64_t event_interval, next_value;
145 
146     assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
147 
148     if (s->reg_count & COUNTER_CTRL_DIS) {
149         s->cpu_time_valid = 0;
150         return;
151     }
152 
153     { /* figure out what's going to happen next (rollover or match) */
154         int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
155                 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
156         next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
157         for (i = 0; i < 3; ++i) {
158             int64_t cand = (uint64_t)s->reg_match[i] << 16;
159             if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
160                 next_value = cand;
161             }
162         }
163     }
164     DB_PRINT("next timer event value: %09llx\n",
165             (unsigned long long)next_value);
166 
167     event_interval = next_value - (int64_t)s->reg_value;
168     event_interval = (event_interval < 0) ? -event_interval : event_interval;
169 
170     qemu_mod_timer(s->timer, s->cpu_time +
171                 cadence_timer_get_ns(s, event_interval));
172 }
173 
174 static void cadence_timer_sync(CadenceTimerState *s)
175 {
176     int i;
177     int64_t r, x;
178     int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
179             (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
180     uint64_t old_time = s->cpu_time;
181 
182     s->cpu_time = qemu_get_clock_ns(vm_clock);
183     DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
184 
185     if (!s->cpu_time_valid || old_time == s->cpu_time) {
186         s->cpu_time_valid = 1;
187         return;
188     }
189 
190     r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
191     x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
192 
193     for (i = 0; i < 3; ++i) {
194         int64_t m = (int64_t)s->reg_match[i] << 16;
195         if (m > interval) {
196             continue;
197         }
198         /* check to see if match event has occurred. check m +/- interval
199          * to account for match events in wrap around cases */
200         if (is_between(m, s->reg_value, x) ||
201             is_between(m + interval, s->reg_value, x) ||
202             is_between(m - interval, s->reg_value, x)) {
203             s->reg_intr |= (2 << i);
204         }
205     }
206     while (x < 0) {
207         x += interval;
208     }
209     s->reg_value = (uint32_t)(x % interval);
210 
211     if (s->reg_value != x) {
212         s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
213             COUNTER_INTR_IV : COUNTER_INTR_OV;
214     }
215     cadence_timer_update(s);
216 }
217 
218 static void cadence_timer_tick(void *opaque)
219 {
220     CadenceTimerState *s = opaque;
221 
222     DB_PRINT("\n");
223     cadence_timer_sync(s);
224     cadence_timer_run(s);
225 }
226 
227 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
228 {
229     CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
230     uint32_t value;
231 
232     cadence_timer_sync(s);
233     cadence_timer_run(s);
234 
235     switch (offset) {
236     case 0x00: /* clock control */
237     case 0x04:
238     case 0x08:
239         return s->reg_clock;
240 
241     case 0x0c: /* counter control */
242     case 0x10:
243     case 0x14:
244         return s->reg_count;
245 
246     case 0x18: /* counter value */
247     case 0x1c:
248     case 0x20:
249         return (uint16_t)(s->reg_value >> 16);
250 
251     case 0x24: /* reg_interval counter */
252     case 0x28:
253     case 0x2c:
254         return s->reg_interval;
255 
256     case 0x30: /* match 1 counter */
257     case 0x34:
258     case 0x38:
259         return s->reg_match[0];
260 
261     case 0x3c: /* match 2 counter */
262     case 0x40:
263     case 0x44:
264         return s->reg_match[1];
265 
266     case 0x48: /* match 3 counter */
267     case 0x4c:
268     case 0x50:
269         return s->reg_match[2];
270 
271     case 0x54: /* interrupt register */
272     case 0x58:
273     case 0x5c:
274         /* cleared after read */
275         value = s->reg_intr;
276         s->reg_intr = 0;
277         cadence_timer_update(s);
278         return value;
279 
280     case 0x60: /* interrupt enable */
281     case 0x64:
282     case 0x68:
283         return s->reg_intr_en;
284 
285     case 0x6c:
286     case 0x70:
287     case 0x74:
288         return s->reg_event_ctrl;
289 
290     case 0x78:
291     case 0x7c:
292     case 0x80:
293         return s->reg_event;
294 
295     default:
296         return 0;
297     }
298 }
299 
300 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
301     unsigned size)
302 {
303     uint32_t ret = cadence_ttc_read_imp(opaque, offset);
304 
305     DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
306     return ret;
307 }
308 
309 static void cadence_ttc_write(void *opaque, hwaddr offset,
310         uint64_t value, unsigned size)
311 {
312     CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
313 
314     DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
315 
316     cadence_timer_sync(s);
317 
318     switch (offset) {
319     case 0x00: /* clock control */
320     case 0x04:
321     case 0x08:
322         s->reg_clock = value & 0x3F;
323         break;
324 
325     case 0x0c: /* counter control */
326     case 0x10:
327     case 0x14:
328         if (value & COUNTER_CTRL_RST) {
329             s->reg_value = 0;
330         }
331         s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
332         break;
333 
334     case 0x24: /* interval register */
335     case 0x28:
336     case 0x2c:
337         s->reg_interval = value & 0xffff;
338         break;
339 
340     case 0x30: /* match register */
341     case 0x34:
342     case 0x38:
343         s->reg_match[0] = value & 0xffff;
344 
345     case 0x3c: /* match register */
346     case 0x40:
347     case 0x44:
348         s->reg_match[1] = value & 0xffff;
349 
350     case 0x48: /* match register */
351     case 0x4c:
352     case 0x50:
353         s->reg_match[2] = value & 0xffff;
354         break;
355 
356     case 0x54: /* interrupt register */
357     case 0x58:
358     case 0x5c:
359         break;
360 
361     case 0x60: /* interrupt enable */
362     case 0x64:
363     case 0x68:
364         s->reg_intr_en = value & 0x3f;
365         break;
366 
367     case 0x6c: /* event control */
368     case 0x70:
369     case 0x74:
370         s->reg_event_ctrl = value & 0x07;
371         break;
372 
373     default:
374         return;
375     }
376 
377     cadence_timer_run(s);
378     cadence_timer_update(s);
379 }
380 
381 static const MemoryRegionOps cadence_ttc_ops = {
382     .read = cadence_ttc_read,
383     .write = cadence_ttc_write,
384     .endianness = DEVICE_NATIVE_ENDIAN,
385 };
386 
387 static void cadence_timer_reset(CadenceTimerState *s)
388 {
389    s->reg_count = 0x21;
390 }
391 
392 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
393 {
394     memset(s, 0, sizeof(CadenceTimerState));
395     s->freq = freq;
396 
397     cadence_timer_reset(s);
398 
399     s->timer = qemu_new_timer_ns(vm_clock, cadence_timer_tick, s);
400 }
401 
402 static int cadence_ttc_init(SysBusDevice *dev)
403 {
404     CadenceTTCState *s = FROM_SYSBUS(CadenceTTCState, dev);
405     int i;
406 
407     for (i = 0; i < 3; ++i) {
408         cadence_timer_init(133000000, &s->timer[i]);
409         sysbus_init_irq(dev, &s->timer[i].irq);
410     }
411 
412     memory_region_init_io(&s->iomem, &cadence_ttc_ops, s, "timer", 0x1000);
413     sysbus_init_mmio(dev, &s->iomem);
414 
415     return 0;
416 }
417 
418 static void cadence_timer_pre_save(void *opaque)
419 {
420     cadence_timer_sync((CadenceTimerState *)opaque);
421 }
422 
423 static int cadence_timer_post_load(void *opaque, int version_id)
424 {
425     CadenceTimerState *s = opaque;
426 
427     s->cpu_time_valid = 0;
428     cadence_timer_sync(s);
429     cadence_timer_run(s);
430     cadence_timer_update(s);
431     return 0;
432 }
433 
434 static const VMStateDescription vmstate_cadence_timer = {
435     .name = "cadence_timer",
436     .version_id = 1,
437     .minimum_version_id = 1,
438     .minimum_version_id_old = 1,
439     .pre_save = cadence_timer_pre_save,
440     .post_load = cadence_timer_post_load,
441     .fields = (VMStateField[]) {
442         VMSTATE_UINT32(reg_clock, CadenceTimerState),
443         VMSTATE_UINT32(reg_count, CadenceTimerState),
444         VMSTATE_UINT32(reg_value, CadenceTimerState),
445         VMSTATE_UINT16(reg_interval, CadenceTimerState),
446         VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
447         VMSTATE_UINT32(reg_intr, CadenceTimerState),
448         VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
449         VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
450         VMSTATE_UINT32(reg_event, CadenceTimerState),
451         VMSTATE_END_OF_LIST()
452     }
453 };
454 
455 static const VMStateDescription vmstate_cadence_ttc = {
456     .name = "cadence_TTC",
457     .version_id = 1,
458     .minimum_version_id = 1,
459     .minimum_version_id_old = 1,
460     .fields = (VMStateField[]) {
461         VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
462                             vmstate_cadence_timer,
463                             CadenceTimerState),
464         VMSTATE_END_OF_LIST()
465     }
466 };
467 
468 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
469 {
470     DeviceClass *dc = DEVICE_CLASS(klass);
471     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
472 
473     sdc->init = cadence_ttc_init;
474     dc->vmsd = &vmstate_cadence_ttc;
475 }
476 
477 static const TypeInfo cadence_ttc_info = {
478     .name  = "cadence_ttc",
479     .parent = TYPE_SYS_BUS_DEVICE,
480     .instance_size  = sizeof(CadenceTTCState),
481     .class_init = cadence_ttc_class_init,
482 };
483 
484 static void cadence_ttc_register_types(void)
485 {
486     type_register_static(&cadence_ttc_info);
487 }
488 
489 type_init(cadence_ttc_register_types)
490