1 /* 2 * ASPEED AST2400 Timer 3 * 4 * Andrew Jeffery <andrew@aj.id.au> 5 * 6 * Copyright (C) 2016 IBM Corp. 7 * 8 * This code is licensed under the GPL version 2 or later. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qapi/error.h" 14 #include "hw/irq.h" 15 #include "hw/sysbus.h" 16 #include "hw/timer/aspeed_timer.h" 17 #include "migration/vmstate.h" 18 #include "qemu/bitops.h" 19 #include "qemu/timer.h" 20 #include "qemu/log.h" 21 #include "qemu/module.h" 22 #include "trace.h" 23 24 #define TIMER_NR_REGS 4 25 26 #define TIMER_CTRL_BITS 4 27 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) 28 29 #define TIMER_CLOCK_USE_EXT true 30 #define TIMER_CLOCK_EXT_HZ 1000000 31 #define TIMER_CLOCK_USE_APB false 32 33 #define TIMER_REG_STATUS 0 34 #define TIMER_REG_RELOAD 1 35 #define TIMER_REG_MATCH_FIRST 2 36 #define TIMER_REG_MATCH_SECOND 3 37 38 #define TIMER_FIRST_CAP_PULSE 4 39 40 enum timer_ctrl_op { 41 op_enable = 0, 42 op_external_clock, 43 op_overflow_interrupt, 44 op_pulse_enable 45 }; 46 47 /* 48 * Minimum value of the reload register to filter out short period 49 * timers which have a noticeable impact in emulation. 5us should be 50 * enough, use 20us for "safety". 51 */ 52 #define TIMER_MIN_NS (20 * SCALE_US) 53 54 /** 55 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer 56 * structs, as it's a waste of memory. The ptimer BH callback needs to know 57 * whether a specific AspeedTimer is enabled, but this information is held in 58 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an 59 * arbitrary AspeedTimer to AspeedTimerCtrlState. 60 */ 61 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) 62 { 63 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); 64 return container_of(timers, AspeedTimerCtrlState, timers); 65 } 66 67 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) 68 { 69 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); 70 } 71 72 static inline bool timer_enabled(AspeedTimer *t) 73 { 74 return timer_ctrl_status(t, op_enable); 75 } 76 77 static inline bool timer_overflow_interrupt(AspeedTimer *t) 78 { 79 return timer_ctrl_status(t, op_overflow_interrupt); 80 } 81 82 static inline bool timer_can_pulse(AspeedTimer *t) 83 { 84 return t->id >= TIMER_FIRST_CAP_PULSE; 85 } 86 87 static inline bool timer_external_clock(AspeedTimer *t) 88 { 89 return timer_ctrl_status(t, op_external_clock); 90 } 91 92 static inline uint32_t calculate_rate(struct AspeedTimer *t) 93 { 94 AspeedTimerCtrlState *s = timer_to_ctrl(t); 95 96 return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : 97 aspeed_scu_get_apb_freq(s->scu); 98 } 99 100 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) 101 { 102 uint64_t delta_ns = now_ns - MIN(now_ns, t->start); 103 uint32_t rate = calculate_rate(t); 104 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); 105 106 return t->reload - MIN(t->reload, ticks); 107 } 108 109 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value) 110 { 111 uint32_t rate = calculate_rate(t); 112 uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND); 113 114 return value < min_ticks ? min_ticks : value; 115 } 116 117 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) 118 { 119 uint64_t delta_ns; 120 uint64_t delta_ticks; 121 122 delta_ticks = t->reload - MIN(t->reload, ticks); 123 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); 124 125 return t->start + delta_ns; 126 } 127 128 static inline uint32_t calculate_match(struct AspeedTimer *t, int i) 129 { 130 return t->match[i] < t->reload ? t->match[i] : 0; 131 } 132 133 static uint64_t calculate_next(struct AspeedTimer *t) 134 { 135 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 136 uint64_t next; 137 138 /* 139 * We don't know the relationship between the values in the match 140 * registers, so sort using MAX/MIN/zero. We sort in that order as 141 * the timer counts down to zero. 142 */ 143 144 next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1))); 145 if (now < next) { 146 return next; 147 } 148 149 next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1))); 150 if (now < next) { 151 return next; 152 } 153 154 next = calculate_time(t, 0); 155 if (now < next) { 156 return next; 157 } 158 159 /* We've missed all deadlines, fire interrupt and try again */ 160 timer_del(&t->timer); 161 162 if (timer_overflow_interrupt(t)) { 163 t->level = !t->level; 164 qemu_set_irq(t->irq, t->level); 165 } 166 167 next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0); 168 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 169 170 return calculate_time(t, next); 171 } 172 173 static void aspeed_timer_mod(AspeedTimer *t) 174 { 175 uint64_t next = calculate_next(t); 176 if (next) { 177 timer_mod(&t->timer, next); 178 } 179 } 180 181 static void aspeed_timer_expire(void *opaque) 182 { 183 AspeedTimer *t = opaque; 184 bool interrupt = false; 185 uint32_t ticks; 186 187 if (!timer_enabled(t)) { 188 return; 189 } 190 191 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 192 193 if (!ticks) { 194 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; 195 } else if (ticks <= MIN(t->match[0], t->match[1])) { 196 interrupt = true; 197 } else if (ticks <= MAX(t->match[0], t->match[1])) { 198 interrupt = true; 199 } 200 201 if (interrupt) { 202 t->level = !t->level; 203 qemu_set_irq(t->irq, t->level); 204 } 205 206 aspeed_timer_mod(t); 207 } 208 209 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) 210 { 211 uint64_t value; 212 213 switch (reg) { 214 case TIMER_REG_STATUS: 215 if (timer_enabled(t)) { 216 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 217 } else { 218 value = t->reload; 219 } 220 break; 221 case TIMER_REG_RELOAD: 222 value = t->reload; 223 break; 224 case TIMER_REG_MATCH_FIRST: 225 case TIMER_REG_MATCH_SECOND: 226 value = t->match[reg - 2]; 227 break; 228 default: 229 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 230 __func__, reg); 231 value = 0; 232 break; 233 } 234 return value; 235 } 236 237 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) 238 { 239 AspeedTimerCtrlState *s = opaque; 240 const int reg = (offset & 0xf) / 4; 241 uint64_t value; 242 243 switch (offset) { 244 case 0x30: /* Control Register */ 245 value = s->ctrl; 246 break; 247 case 0x34: /* Control Register 2 */ 248 value = s->ctrl2; 249 break; 250 case 0x00 ... 0x2c: /* Timers 1 - 4 */ 251 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); 252 break; 253 case 0x40 ... 0x8c: /* Timers 5 - 8 */ 254 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); 255 break; 256 /* Illegal */ 257 case 0x38: 258 case 0x3C: 259 default: 260 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 261 __func__, offset); 262 value = 0; 263 break; 264 } 265 trace_aspeed_timer_read(offset, size, value); 266 return value; 267 } 268 269 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, 270 uint32_t value) 271 { 272 AspeedTimer *t; 273 uint32_t old_reload; 274 275 trace_aspeed_timer_set_value(timer, reg, value); 276 t = &s->timers[timer]; 277 switch (reg) { 278 case TIMER_REG_RELOAD: 279 old_reload = t->reload; 280 t->reload = calculate_min_ticks(t, value); 281 282 /* If the reload value was not previously set, or zero, and 283 * the current value is valid, try to start the timer if it is 284 * enabled. 285 */ 286 if (old_reload || !t->reload) { 287 break; 288 } 289 290 case TIMER_REG_STATUS: 291 if (timer_enabled(t)) { 292 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 293 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); 294 uint32_t rate = calculate_rate(t); 295 296 if (delta >= 0) { 297 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); 298 } else { 299 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate); 300 } 301 aspeed_timer_mod(t); 302 } 303 break; 304 case TIMER_REG_MATCH_FIRST: 305 case TIMER_REG_MATCH_SECOND: 306 t->match[reg - 2] = value; 307 if (timer_enabled(t)) { 308 aspeed_timer_mod(t); 309 } 310 break; 311 default: 312 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 313 __func__, reg); 314 break; 315 } 316 } 317 318 /* Control register operations are broken out into helpers that can be 319 * explicitly called on aspeed_timer_reset(), but also from 320 * aspeed_timer_ctrl_op(). 321 */ 322 323 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) 324 { 325 trace_aspeed_timer_ctrl_enable(t->id, enable); 326 if (enable) { 327 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 328 aspeed_timer_mod(t); 329 } else { 330 timer_del(&t->timer); 331 } 332 } 333 334 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) 335 { 336 trace_aspeed_timer_ctrl_external_clock(t->id, enable); 337 } 338 339 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) 340 { 341 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); 342 } 343 344 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) 345 { 346 if (timer_can_pulse(t)) { 347 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); 348 } else { 349 qemu_log_mask(LOG_GUEST_ERROR, 350 "%s: Timer does not support pulse mode\n", __func__); 351 } 352 } 353 354 /** 355 * Given the actions are fixed in number and completely described in helper 356 * functions, dispatch with a lookup table rather than manage control flow with 357 * a switch statement. 358 */ 359 static void (*const ctrl_ops[])(AspeedTimer *, bool) = { 360 [op_enable] = aspeed_timer_ctrl_enable, 361 [op_external_clock] = aspeed_timer_ctrl_external_clock, 362 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, 363 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, 364 }; 365 366 /** 367 * Conditionally affect changes chosen by a timer's control bit. 368 * 369 * The aspeed_timer_ctrl_op() interface is convenient for the 370 * aspeed_timer_set_ctrl() function as the "no change" early exit can be 371 * calculated for all operations, which cleans up the caller code. However the 372 * interface isn't convenient for the reset function where we want to enter a 373 * specific state without artificially constructing old and new values that 374 * will fall through the change guard (and motivates extracting the actions 375 * out to helper functions). 376 * 377 * @t: The timer to manipulate 378 * @op: The type of operation to be performed 379 * @old: The old state of the timer's control bits 380 * @new: The incoming state for the timer's control bits 381 */ 382 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, 383 uint8_t old, uint8_t new) 384 { 385 const uint8_t mask = BIT(op); 386 const bool enable = !!(new & mask); 387 const bool changed = ((old ^ new) & mask); 388 if (!changed) { 389 return; 390 } 391 ctrl_ops[op](t, enable); 392 } 393 394 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) 395 { 396 int i; 397 int shift; 398 uint8_t t_old, t_new; 399 AspeedTimer *t; 400 const uint8_t enable_mask = BIT(op_enable); 401 402 /* Handle a dependency between the 'enable' and remaining three 403 * configuration bits - i.e. if more than one bit in the control set has 404 * changed, including the 'enable' bit, then we want either disable the 405 * timer and perform configuration, or perform configuration and then 406 * enable the timer 407 */ 408 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 409 t = &s->timers[i]; 410 shift = (i * TIMER_CTRL_BITS); 411 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; 412 t_new = (reg >> shift) & TIMER_CTRL_MASK; 413 414 /* If we are disabling, do so first */ 415 if ((t_old & enable_mask) && !(t_new & enable_mask)) { 416 aspeed_timer_ctrl_enable(t, false); 417 } 418 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); 419 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); 420 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); 421 /* If we are enabling, do so last */ 422 if (!(t_old & enable_mask) && (t_new & enable_mask)) { 423 aspeed_timer_ctrl_enable(t, true); 424 } 425 } 426 s->ctrl = reg; 427 } 428 429 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) 430 { 431 trace_aspeed_timer_set_ctrl2(value); 432 } 433 434 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, 435 unsigned size) 436 { 437 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 438 const int reg = (offset & 0xf) / 4; 439 AspeedTimerCtrlState *s = opaque; 440 441 switch (offset) { 442 /* Control Registers */ 443 case 0x30: 444 aspeed_timer_set_ctrl(s, tv); 445 break; 446 case 0x34: 447 aspeed_timer_set_ctrl2(s, tv); 448 break; 449 /* Timer Registers */ 450 case 0x00 ... 0x2c: 451 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); 452 break; 453 case 0x40 ... 0x8c: 454 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); 455 break; 456 /* Illegal */ 457 case 0x38: 458 case 0x3C: 459 default: 460 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 461 __func__, offset); 462 break; 463 } 464 } 465 466 static const MemoryRegionOps aspeed_timer_ops = { 467 .read = aspeed_timer_read, 468 .write = aspeed_timer_write, 469 .endianness = DEVICE_LITTLE_ENDIAN, 470 .valid.min_access_size = 4, 471 .valid.max_access_size = 4, 472 .valid.unaligned = false, 473 }; 474 475 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) 476 { 477 AspeedTimer *t = &s->timers[id]; 478 479 t->id = id; 480 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); 481 } 482 483 static void aspeed_timer_realize(DeviceState *dev, Error **errp) 484 { 485 int i; 486 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 487 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 488 Object *obj; 489 Error *err = NULL; 490 491 obj = object_property_get_link(OBJECT(dev), "scu", &err); 492 if (!obj) { 493 error_propagate_prepend(errp, err, "required link 'scu' not found: "); 494 return; 495 } 496 s->scu = ASPEED_SCU(obj); 497 498 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 499 aspeed_init_one_timer(s, i); 500 sysbus_init_irq(sbd, &s->timers[i].irq); 501 } 502 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, 503 TYPE_ASPEED_TIMER, 0x1000); 504 sysbus_init_mmio(sbd, &s->iomem); 505 } 506 507 static void aspeed_timer_reset(DeviceState *dev) 508 { 509 int i; 510 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 511 512 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 513 AspeedTimer *t = &s->timers[i]; 514 /* Explicitly call helpers to avoid any conditional behaviour through 515 * aspeed_timer_set_ctrl(). 516 */ 517 aspeed_timer_ctrl_enable(t, false); 518 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); 519 aspeed_timer_ctrl_overflow_interrupt(t, false); 520 aspeed_timer_ctrl_pulse_enable(t, false); 521 t->level = 0; 522 t->reload = 0; 523 t->match[0] = 0; 524 t->match[1] = 0; 525 } 526 s->ctrl = 0; 527 s->ctrl2 = 0; 528 } 529 530 static const VMStateDescription vmstate_aspeed_timer = { 531 .name = "aspeed.timer", 532 .version_id = 2, 533 .minimum_version_id = 2, 534 .fields = (VMStateField[]) { 535 VMSTATE_UINT8(id, AspeedTimer), 536 VMSTATE_INT32(level, AspeedTimer), 537 VMSTATE_TIMER(timer, AspeedTimer), 538 VMSTATE_UINT32(reload, AspeedTimer), 539 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), 540 VMSTATE_END_OF_LIST() 541 } 542 }; 543 544 static const VMStateDescription vmstate_aspeed_timer_state = { 545 .name = "aspeed.timerctrl", 546 .version_id = 1, 547 .minimum_version_id = 1, 548 .fields = (VMStateField[]) { 549 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), 550 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), 551 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, 552 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer, 553 AspeedTimer), 554 VMSTATE_END_OF_LIST() 555 } 556 }; 557 558 static void timer_class_init(ObjectClass *klass, void *data) 559 { 560 DeviceClass *dc = DEVICE_CLASS(klass); 561 562 dc->realize = aspeed_timer_realize; 563 dc->reset = aspeed_timer_reset; 564 dc->desc = "ASPEED Timer"; 565 dc->vmsd = &vmstate_aspeed_timer_state; 566 } 567 568 static const TypeInfo aspeed_timer_info = { 569 .name = TYPE_ASPEED_TIMER, 570 .parent = TYPE_SYS_BUS_DEVICE, 571 .instance_size = sizeof(AspeedTimerCtrlState), 572 .class_init = timer_class_init, 573 }; 574 575 static void aspeed_timer_register_types(void) 576 { 577 type_register_static(&aspeed_timer_info); 578 } 579 580 type_init(aspeed_timer_register_types) 581