1 /* 2 * ASPEED AST2400 Timer 3 * 4 * Andrew Jeffery <andrew@aj.id.au> 5 * 6 * Copyright (C) 2016 IBM Corp. 7 * 8 * This code is licensed under the GPL version 2 or later. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qapi/error.h" 14 #include "hw/sysbus.h" 15 #include "hw/timer/aspeed_timer.h" 16 #include "hw/misc/aspeed_scu.h" 17 #include "qemu-common.h" 18 #include "qemu/bitops.h" 19 #include "qemu/timer.h" 20 #include "qemu/log.h" 21 #include "trace.h" 22 23 #define TIMER_NR_REGS 4 24 25 #define TIMER_CTRL_BITS 4 26 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) 27 28 #define TIMER_CLOCK_USE_EXT true 29 #define TIMER_CLOCK_EXT_HZ 1000000 30 #define TIMER_CLOCK_USE_APB false 31 32 #define TIMER_REG_STATUS 0 33 #define TIMER_REG_RELOAD 1 34 #define TIMER_REG_MATCH_FIRST 2 35 #define TIMER_REG_MATCH_SECOND 3 36 37 #define TIMER_FIRST_CAP_PULSE 4 38 39 enum timer_ctrl_op { 40 op_enable = 0, 41 op_external_clock, 42 op_overflow_interrupt, 43 op_pulse_enable 44 }; 45 46 /** 47 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer 48 * structs, as it's a waste of memory. The ptimer BH callback needs to know 49 * whether a specific AspeedTimer is enabled, but this information is held in 50 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an 51 * arbitrary AspeedTimer to AspeedTimerCtrlState. 52 */ 53 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) 54 { 55 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); 56 return container_of(timers, AspeedTimerCtrlState, timers); 57 } 58 59 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) 60 { 61 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); 62 } 63 64 static inline bool timer_enabled(AspeedTimer *t) 65 { 66 return timer_ctrl_status(t, op_enable); 67 } 68 69 static inline bool timer_overflow_interrupt(AspeedTimer *t) 70 { 71 return timer_ctrl_status(t, op_overflow_interrupt); 72 } 73 74 static inline bool timer_can_pulse(AspeedTimer *t) 75 { 76 return t->id >= TIMER_FIRST_CAP_PULSE; 77 } 78 79 static inline bool timer_external_clock(AspeedTimer *t) 80 { 81 return timer_ctrl_status(t, op_external_clock); 82 } 83 84 static inline uint32_t calculate_rate(struct AspeedTimer *t) 85 { 86 AspeedTimerCtrlState *s = timer_to_ctrl(t); 87 88 return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : s->scu->apb_freq; 89 } 90 91 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) 92 { 93 uint64_t delta_ns = now_ns - MIN(now_ns, t->start); 94 uint32_t rate = calculate_rate(t); 95 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); 96 97 return t->reload - MIN(t->reload, ticks); 98 } 99 100 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) 101 { 102 uint64_t delta_ns; 103 uint64_t delta_ticks; 104 105 delta_ticks = t->reload - MIN(t->reload, ticks); 106 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); 107 108 return t->start + delta_ns; 109 } 110 111 static uint64_t calculate_next(struct AspeedTimer *t) 112 { 113 uint64_t next = 0; 114 uint32_t rate = calculate_rate(t); 115 116 while (!next) { 117 /* We don't know the relationship between the values in the match 118 * registers, so sort using MAX/MIN/zero. We sort in that order as the 119 * timer counts down to zero. */ 120 uint64_t seq[] = { 121 calculate_time(t, MAX(t->match[0], t->match[1])), 122 calculate_time(t, MIN(t->match[0], t->match[1])), 123 calculate_time(t, 0), 124 }; 125 uint64_t reload_ns; 126 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 127 128 if (now < seq[0]) { 129 next = seq[0]; 130 } else if (now < seq[1]) { 131 next = seq[1]; 132 } else if (now < seq[2]) { 133 next = seq[2]; 134 } else if (t->reload) { 135 reload_ns = muldiv64(t->reload, NANOSECONDS_PER_SECOND, rate); 136 t->start = now - ((now - t->start) % reload_ns); 137 } else { 138 /* no reload value, return 0 */ 139 break; 140 } 141 } 142 143 return next; 144 } 145 146 static void aspeed_timer_mod(AspeedTimer *t) 147 { 148 uint64_t next = calculate_next(t); 149 if (next) { 150 timer_mod(&t->timer, next); 151 } 152 } 153 154 static void aspeed_timer_expire(void *opaque) 155 { 156 AspeedTimer *t = opaque; 157 bool interrupt = false; 158 uint32_t ticks; 159 160 if (!timer_enabled(t)) { 161 return; 162 } 163 164 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 165 166 if (!ticks) { 167 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; 168 } else if (ticks <= MIN(t->match[0], t->match[1])) { 169 interrupt = true; 170 } else if (ticks <= MAX(t->match[0], t->match[1])) { 171 interrupt = true; 172 } 173 174 if (interrupt) { 175 t->level = !t->level; 176 qemu_set_irq(t->irq, t->level); 177 } 178 179 aspeed_timer_mod(t); 180 } 181 182 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) 183 { 184 uint64_t value; 185 186 switch (reg) { 187 case TIMER_REG_STATUS: 188 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 189 break; 190 case TIMER_REG_RELOAD: 191 value = t->reload; 192 break; 193 case TIMER_REG_MATCH_FIRST: 194 case TIMER_REG_MATCH_SECOND: 195 value = t->match[reg - 2]; 196 break; 197 default: 198 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 199 __func__, reg); 200 value = 0; 201 break; 202 } 203 return value; 204 } 205 206 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) 207 { 208 AspeedTimerCtrlState *s = opaque; 209 const int reg = (offset & 0xf) / 4; 210 uint64_t value; 211 212 switch (offset) { 213 case 0x30: /* Control Register */ 214 value = s->ctrl; 215 break; 216 case 0x34: /* Control Register 2 */ 217 value = s->ctrl2; 218 break; 219 case 0x00 ... 0x2c: /* Timers 1 - 4 */ 220 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); 221 break; 222 case 0x40 ... 0x8c: /* Timers 5 - 8 */ 223 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); 224 break; 225 /* Illegal */ 226 case 0x38: 227 case 0x3C: 228 default: 229 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 230 __func__, offset); 231 value = 0; 232 break; 233 } 234 trace_aspeed_timer_read(offset, size, value); 235 return value; 236 } 237 238 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, 239 uint32_t value) 240 { 241 AspeedTimer *t; 242 uint32_t old_reload; 243 244 trace_aspeed_timer_set_value(timer, reg, value); 245 t = &s->timers[timer]; 246 switch (reg) { 247 case TIMER_REG_RELOAD: 248 old_reload = t->reload; 249 t->reload = value; 250 251 /* If the reload value was not previously set, or zero, and 252 * the current value is valid, try to start the timer if it is 253 * enabled. 254 */ 255 if (old_reload || !t->reload) { 256 break; 257 } 258 259 case TIMER_REG_STATUS: 260 if (timer_enabled(t)) { 261 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 262 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); 263 uint32_t rate = calculate_rate(t); 264 265 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); 266 aspeed_timer_mod(t); 267 } 268 break; 269 case TIMER_REG_MATCH_FIRST: 270 case TIMER_REG_MATCH_SECOND: 271 t->match[reg - 2] = value; 272 if (timer_enabled(t)) { 273 aspeed_timer_mod(t); 274 } 275 break; 276 default: 277 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 278 __func__, reg); 279 break; 280 } 281 } 282 283 /* Control register operations are broken out into helpers that can be 284 * explicitly called on aspeed_timer_reset(), but also from 285 * aspeed_timer_ctrl_op(). 286 */ 287 288 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) 289 { 290 trace_aspeed_timer_ctrl_enable(t->id, enable); 291 if (enable) { 292 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 293 aspeed_timer_mod(t); 294 } else { 295 timer_del(&t->timer); 296 } 297 } 298 299 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) 300 { 301 trace_aspeed_timer_ctrl_external_clock(t->id, enable); 302 } 303 304 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) 305 { 306 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); 307 } 308 309 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) 310 { 311 if (timer_can_pulse(t)) { 312 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); 313 } else { 314 qemu_log_mask(LOG_GUEST_ERROR, 315 "%s: Timer does not support pulse mode\n", __func__); 316 } 317 } 318 319 /** 320 * Given the actions are fixed in number and completely described in helper 321 * functions, dispatch with a lookup table rather than manage control flow with 322 * a switch statement. 323 */ 324 static void (*const ctrl_ops[])(AspeedTimer *, bool) = { 325 [op_enable] = aspeed_timer_ctrl_enable, 326 [op_external_clock] = aspeed_timer_ctrl_external_clock, 327 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, 328 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, 329 }; 330 331 /** 332 * Conditionally affect changes chosen by a timer's control bit. 333 * 334 * The aspeed_timer_ctrl_op() interface is convenient for the 335 * aspeed_timer_set_ctrl() function as the "no change" early exit can be 336 * calculated for all operations, which cleans up the caller code. However the 337 * interface isn't convenient for the reset function where we want to enter a 338 * specific state without artificially constructing old and new values that 339 * will fall through the change guard (and motivates extracting the actions 340 * out to helper functions). 341 * 342 * @t: The timer to manipulate 343 * @op: The type of operation to be performed 344 * @old: The old state of the timer's control bits 345 * @new: The incoming state for the timer's control bits 346 */ 347 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, 348 uint8_t old, uint8_t new) 349 { 350 const uint8_t mask = BIT(op); 351 const bool enable = !!(new & mask); 352 const bool changed = ((old ^ new) & mask); 353 if (!changed) { 354 return; 355 } 356 ctrl_ops[op](t, enable); 357 } 358 359 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) 360 { 361 int i; 362 int shift; 363 uint8_t t_old, t_new; 364 AspeedTimer *t; 365 const uint8_t enable_mask = BIT(op_enable); 366 367 /* Handle a dependency between the 'enable' and remaining three 368 * configuration bits - i.e. if more than one bit in the control set has 369 * changed, including the 'enable' bit, then we want either disable the 370 * timer and perform configuration, or perform configuration and then 371 * enable the timer 372 */ 373 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 374 t = &s->timers[i]; 375 shift = (i * TIMER_CTRL_BITS); 376 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; 377 t_new = (reg >> shift) & TIMER_CTRL_MASK; 378 379 /* If we are disabling, do so first */ 380 if ((t_old & enable_mask) && !(t_new & enable_mask)) { 381 aspeed_timer_ctrl_enable(t, false); 382 } 383 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); 384 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); 385 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); 386 /* If we are enabling, do so last */ 387 if (!(t_old & enable_mask) && (t_new & enable_mask)) { 388 aspeed_timer_ctrl_enable(t, true); 389 } 390 } 391 s->ctrl = reg; 392 } 393 394 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) 395 { 396 trace_aspeed_timer_set_ctrl2(value); 397 } 398 399 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, 400 unsigned size) 401 { 402 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 403 const int reg = (offset & 0xf) / 4; 404 AspeedTimerCtrlState *s = opaque; 405 406 switch (offset) { 407 /* Control Registers */ 408 case 0x30: 409 aspeed_timer_set_ctrl(s, tv); 410 break; 411 case 0x34: 412 aspeed_timer_set_ctrl2(s, tv); 413 break; 414 /* Timer Registers */ 415 case 0x00 ... 0x2c: 416 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); 417 break; 418 case 0x40 ... 0x8c: 419 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); 420 break; 421 /* Illegal */ 422 case 0x38: 423 case 0x3C: 424 default: 425 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 426 __func__, offset); 427 break; 428 } 429 } 430 431 static const MemoryRegionOps aspeed_timer_ops = { 432 .read = aspeed_timer_read, 433 .write = aspeed_timer_write, 434 .endianness = DEVICE_LITTLE_ENDIAN, 435 .valid.min_access_size = 4, 436 .valid.max_access_size = 4, 437 .valid.unaligned = false, 438 }; 439 440 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) 441 { 442 AspeedTimer *t = &s->timers[id]; 443 444 t->id = id; 445 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); 446 } 447 448 static void aspeed_timer_realize(DeviceState *dev, Error **errp) 449 { 450 int i; 451 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 452 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 453 Object *obj; 454 Error *err = NULL; 455 456 obj = object_property_get_link(OBJECT(dev), "scu", &err); 457 if (!obj) { 458 error_propagate(errp, err); 459 error_prepend(errp, "required link 'scu' not found: "); 460 return; 461 } 462 s->scu = ASPEED_SCU(obj); 463 464 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 465 aspeed_init_one_timer(s, i); 466 sysbus_init_irq(sbd, &s->timers[i].irq); 467 } 468 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, 469 TYPE_ASPEED_TIMER, 0x1000); 470 sysbus_init_mmio(sbd, &s->iomem); 471 } 472 473 static void aspeed_timer_reset(DeviceState *dev) 474 { 475 int i; 476 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 477 478 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 479 AspeedTimer *t = &s->timers[i]; 480 /* Explicitly call helpers to avoid any conditional behaviour through 481 * aspeed_timer_set_ctrl(). 482 */ 483 aspeed_timer_ctrl_enable(t, false); 484 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); 485 aspeed_timer_ctrl_overflow_interrupt(t, false); 486 aspeed_timer_ctrl_pulse_enable(t, false); 487 t->level = 0; 488 t->reload = 0; 489 t->match[0] = 0; 490 t->match[1] = 0; 491 } 492 s->ctrl = 0; 493 s->ctrl2 = 0; 494 } 495 496 static const VMStateDescription vmstate_aspeed_timer = { 497 .name = "aspeed.timer", 498 .version_id = 2, 499 .minimum_version_id = 2, 500 .fields = (VMStateField[]) { 501 VMSTATE_UINT8(id, AspeedTimer), 502 VMSTATE_INT32(level, AspeedTimer), 503 VMSTATE_TIMER(timer, AspeedTimer), 504 VMSTATE_UINT32(reload, AspeedTimer), 505 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), 506 VMSTATE_END_OF_LIST() 507 } 508 }; 509 510 static const VMStateDescription vmstate_aspeed_timer_state = { 511 .name = "aspeed.timerctrl", 512 .version_id = 1, 513 .minimum_version_id = 1, 514 .fields = (VMStateField[]) { 515 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), 516 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), 517 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, 518 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer, 519 AspeedTimer), 520 VMSTATE_END_OF_LIST() 521 } 522 }; 523 524 static void timer_class_init(ObjectClass *klass, void *data) 525 { 526 DeviceClass *dc = DEVICE_CLASS(klass); 527 528 dc->realize = aspeed_timer_realize; 529 dc->reset = aspeed_timer_reset; 530 dc->desc = "ASPEED Timer"; 531 dc->vmsd = &vmstate_aspeed_timer_state; 532 } 533 534 static const TypeInfo aspeed_timer_info = { 535 .name = TYPE_ASPEED_TIMER, 536 .parent = TYPE_SYS_BUS_DEVICE, 537 .instance_size = sizeof(AspeedTimerCtrlState), 538 .class_init = timer_class_init, 539 }; 540 541 static void aspeed_timer_register_types(void) 542 { 543 type_register_static(&aspeed_timer_info); 544 } 545 546 type_init(aspeed_timer_register_types) 547