xref: /openbmc/qemu/hw/timer/aspeed_timer.c (revision e6e03dcf)
1 /*
2  * ASPEED AST2400 Timer
3  *
4  * Andrew Jeffery <andrew@aj.id.au>
5  *
6  * Copyright (C) 2016 IBM Corp.
7  *
8  * This code is licensed under the GPL version 2 or later.  See
9  * the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qapi/error.h"
14 #include "hw/irq.h"
15 #include "hw/sysbus.h"
16 #include "hw/timer/aspeed_timer.h"
17 #include "migration/vmstate.h"
18 #include "qemu/bitops.h"
19 #include "qemu/timer.h"
20 #include "qemu/log.h"
21 #include "qemu/module.h"
22 #include "trace.h"
23 
24 #define TIMER_NR_REGS 4
25 
26 #define TIMER_CTRL_BITS 4
27 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
28 
29 #define TIMER_CLOCK_USE_EXT true
30 #define TIMER_CLOCK_EXT_HZ 1000000
31 #define TIMER_CLOCK_USE_APB false
32 
33 #define TIMER_REG_STATUS 0
34 #define TIMER_REG_RELOAD 1
35 #define TIMER_REG_MATCH_FIRST 2
36 #define TIMER_REG_MATCH_SECOND 3
37 
38 #define TIMER_FIRST_CAP_PULSE 4
39 
40 enum timer_ctrl_op {
41     op_enable = 0,
42     op_external_clock,
43     op_overflow_interrupt,
44     op_pulse_enable
45 };
46 
47 /*
48  * Minimum value of the reload register to filter out short period
49  * timers which have a noticeable impact in emulation. 5us should be
50  * enough, use 20us for "safety".
51  */
52 #define TIMER_MIN_NS (20 * SCALE_US)
53 
54 /**
55  * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
56  * structs, as it's a waste of memory. The ptimer BH callback needs to know
57  * whether a specific AspeedTimer is enabled, but this information is held in
58  * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
59  * arbitrary AspeedTimer to AspeedTimerCtrlState.
60  */
61 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
62 {
63     const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
64     return container_of(timers, AspeedTimerCtrlState, timers);
65 }
66 
67 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
68 {
69     return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
70 }
71 
72 static inline bool timer_enabled(AspeedTimer *t)
73 {
74     return timer_ctrl_status(t, op_enable);
75 }
76 
77 static inline bool timer_overflow_interrupt(AspeedTimer *t)
78 {
79     return timer_ctrl_status(t, op_overflow_interrupt);
80 }
81 
82 static inline bool timer_can_pulse(AspeedTimer *t)
83 {
84     return t->id >= TIMER_FIRST_CAP_PULSE;
85 }
86 
87 static inline bool timer_external_clock(AspeedTimer *t)
88 {
89     return timer_ctrl_status(t, op_external_clock);
90 }
91 
92 static inline uint32_t calculate_rate(struct AspeedTimer *t)
93 {
94     AspeedTimerCtrlState *s = timer_to_ctrl(t);
95 
96     return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ :
97         aspeed_scu_get_apb_freq(s->scu);
98 }
99 
100 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
101 {
102     uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
103     uint32_t rate = calculate_rate(t);
104     uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
105 
106     return t->reload - MIN(t->reload, ticks);
107 }
108 
109 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
110 {
111     uint32_t rate = calculate_rate(t);
112     uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
113 
114     return  value < min_ticks ? min_ticks : value;
115 }
116 
117 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
118 {
119     uint64_t delta_ns;
120     uint64_t delta_ticks;
121 
122     delta_ticks = t->reload - MIN(t->reload, ticks);
123     delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
124 
125     return t->start + delta_ns;
126 }
127 
128 static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
129 {
130     return t->match[i] < t->reload ? t->match[i] : 0;
131 }
132 
133 static uint64_t calculate_next(struct AspeedTimer *t)
134 {
135     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
136     uint64_t next;
137 
138     /*
139      * We don't know the relationship between the values in the match
140      * registers, so sort using MAX/MIN/zero. We sort in that order as
141      * the timer counts down to zero.
142      */
143 
144     next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
145     if (now < next) {
146         return next;
147     }
148 
149     next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
150     if (now < next) {
151         return next;
152     }
153 
154     next = calculate_time(t, 0);
155     if (now < next) {
156         return next;
157     }
158 
159     /* We've missed all deadlines, fire interrupt and try again */
160     timer_del(&t->timer);
161 
162     if (timer_overflow_interrupt(t)) {
163         AspeedTimerCtrlState *s = timer_to_ctrl(t);
164         t->level = !t->level;
165         s->irq_sts |= BIT(t->id);
166         qemu_set_irq(t->irq, t->level);
167     }
168 
169     next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0);
170     t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
171 
172     return calculate_time(t, next);
173 }
174 
175 static void aspeed_timer_mod(AspeedTimer *t)
176 {
177     uint64_t next = calculate_next(t);
178     if (next) {
179         timer_mod(&t->timer, next);
180     }
181 }
182 
183 static void aspeed_timer_expire(void *opaque)
184 {
185     AspeedTimer *t = opaque;
186     bool interrupt = false;
187     uint32_t ticks;
188 
189     if (!timer_enabled(t)) {
190         return;
191     }
192 
193     ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
194 
195     if (!ticks) {
196         interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
197     } else if (ticks <= MIN(t->match[0], t->match[1])) {
198         interrupt = true;
199     } else if (ticks <= MAX(t->match[0], t->match[1])) {
200         interrupt = true;
201     }
202 
203     if (interrupt) {
204         AspeedTimerCtrlState *s = timer_to_ctrl(t);
205         t->level = !t->level;
206         s->irq_sts |= BIT(t->id);
207         qemu_set_irq(t->irq, t->level);
208     }
209 
210     aspeed_timer_mod(t);
211 }
212 
213 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
214 {
215     uint64_t value;
216 
217     switch (reg) {
218     case TIMER_REG_STATUS:
219         if (timer_enabled(t)) {
220             value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
221         } else {
222             value = t->reload;
223         }
224         break;
225     case TIMER_REG_RELOAD:
226         value = t->reload;
227         break;
228     case TIMER_REG_MATCH_FIRST:
229     case TIMER_REG_MATCH_SECOND:
230         value = t->match[reg - 2];
231         break;
232     default:
233         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
234                       __func__, reg);
235         value = 0;
236         break;
237     }
238     return value;
239 }
240 
241 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
242 {
243     AspeedTimerCtrlState *s = opaque;
244     const int reg = (offset & 0xf) / 4;
245     uint64_t value;
246 
247     switch (offset) {
248     case 0x30: /* Control Register */
249         value = s->ctrl;
250         break;
251     case 0x00 ... 0x2c: /* Timers 1 - 4 */
252         value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
253         break;
254     case 0x40 ... 0x8c: /* Timers 5 - 8 */
255         value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
256         break;
257     default:
258         value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset);
259         break;
260     }
261     trace_aspeed_timer_read(offset, size, value);
262     return value;
263 }
264 
265 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
266                                    uint32_t value)
267 {
268     AspeedTimer *t;
269     uint32_t old_reload;
270 
271     trace_aspeed_timer_set_value(timer, reg, value);
272     t = &s->timers[timer];
273     switch (reg) {
274     case TIMER_REG_RELOAD:
275         old_reload = t->reload;
276         t->reload = calculate_min_ticks(t, value);
277 
278         /* If the reload value was not previously set, or zero, and
279          * the current value is valid, try to start the timer if it is
280          * enabled.
281          */
282         if (old_reload || !t->reload) {
283             break;
284         }
285 
286     case TIMER_REG_STATUS:
287         if (timer_enabled(t)) {
288             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
289             int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
290             uint32_t rate = calculate_rate(t);
291 
292             if (delta >= 0) {
293                 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
294             } else {
295                 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
296             }
297             aspeed_timer_mod(t);
298         }
299         break;
300     case TIMER_REG_MATCH_FIRST:
301     case TIMER_REG_MATCH_SECOND:
302         t->match[reg - 2] = value;
303         if (timer_enabled(t)) {
304             aspeed_timer_mod(t);
305         }
306         break;
307     default:
308         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
309                       __func__, reg);
310         break;
311     }
312 }
313 
314 /* Control register operations are broken out into helpers that can be
315  * explicitly called on aspeed_timer_reset(), but also from
316  * aspeed_timer_ctrl_op().
317  */
318 
319 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
320 {
321     trace_aspeed_timer_ctrl_enable(t->id, enable);
322     if (enable) {
323         t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
324         aspeed_timer_mod(t);
325     } else {
326         timer_del(&t->timer);
327     }
328 }
329 
330 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
331 {
332     trace_aspeed_timer_ctrl_external_clock(t->id, enable);
333 }
334 
335 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
336 {
337     trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
338 }
339 
340 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
341 {
342     if (timer_can_pulse(t)) {
343         trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
344     } else {
345         qemu_log_mask(LOG_GUEST_ERROR,
346                 "%s: Timer does not support pulse mode\n", __func__);
347     }
348 }
349 
350 /**
351  * Given the actions are fixed in number and completely described in helper
352  * functions, dispatch with a lookup table rather than manage control flow with
353  * a switch statement.
354  */
355 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
356     [op_enable] = aspeed_timer_ctrl_enable,
357     [op_external_clock] = aspeed_timer_ctrl_external_clock,
358     [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
359     [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
360 };
361 
362 /**
363  * Conditionally affect changes chosen by a timer's control bit.
364  *
365  * The aspeed_timer_ctrl_op() interface is convenient for the
366  * aspeed_timer_set_ctrl() function as the "no change" early exit can be
367  * calculated for all operations, which cleans up the caller code. However the
368  * interface isn't convenient for the reset function where we want to enter a
369  * specific state without artificially constructing old and new values that
370  * will fall through the change guard (and motivates extracting the actions
371  * out to helper functions).
372  *
373  * @t: The timer to manipulate
374  * @op: The type of operation to be performed
375  * @old: The old state of the timer's control bits
376  * @new: The incoming state for the timer's control bits
377  */
378 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
379                                  uint8_t old, uint8_t new)
380 {
381     const uint8_t mask = BIT(op);
382     const bool enable = !!(new & mask);
383     const bool changed = ((old ^ new) & mask);
384     if (!changed) {
385         return;
386     }
387     ctrl_ops[op](t, enable);
388 }
389 
390 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
391 {
392     int i;
393     int shift;
394     uint8_t t_old, t_new;
395     AspeedTimer *t;
396     const uint8_t enable_mask = BIT(op_enable);
397 
398     /* Handle a dependency between the 'enable' and remaining three
399      * configuration bits - i.e. if more than one bit in the control set has
400      * changed, including the 'enable' bit, then we want either disable the
401      * timer and perform configuration, or perform configuration and then
402      * enable the timer
403      */
404     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
405         t = &s->timers[i];
406         shift = (i * TIMER_CTRL_BITS);
407         t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
408         t_new = (reg >> shift) & TIMER_CTRL_MASK;
409 
410         /* If we are disabling, do so first */
411         if ((t_old & enable_mask) && !(t_new & enable_mask)) {
412             aspeed_timer_ctrl_enable(t, false);
413         }
414         aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
415         aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
416         aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
417         /* If we are enabling, do so last */
418         if (!(t_old & enable_mask) && (t_new & enable_mask)) {
419             aspeed_timer_ctrl_enable(t, true);
420         }
421     }
422     s->ctrl = reg;
423 }
424 
425 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
426 {
427     trace_aspeed_timer_set_ctrl2(value);
428 }
429 
430 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
431                                unsigned size)
432 {
433     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
434     const int reg = (offset & 0xf) / 4;
435     AspeedTimerCtrlState *s = opaque;
436 
437     switch (offset) {
438     /* Control Registers */
439     case 0x30:
440         aspeed_timer_set_ctrl(s, tv);
441         break;
442     /* Timer Registers */
443     case 0x00 ... 0x2c:
444         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
445         break;
446     case 0x40 ... 0x8c:
447         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
448         break;
449     default:
450         ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value);
451         break;
452     }
453 }
454 
455 static const MemoryRegionOps aspeed_timer_ops = {
456     .read = aspeed_timer_read,
457     .write = aspeed_timer_write,
458     .endianness = DEVICE_LITTLE_ENDIAN,
459     .valid.min_access_size = 4,
460     .valid.max_access_size = 4,
461     .valid.unaligned = false,
462 };
463 
464 static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
465 {
466     uint64_t value;
467 
468     switch (offset) {
469     case 0x34:
470         value = s->ctrl2;
471         break;
472     case 0x38:
473     case 0x3C:
474     default:
475         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
476                 __func__, offset);
477         value = 0;
478         break;
479     }
480     return value;
481 }
482 
483 static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
484                                     uint64_t value)
485 {
486     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
487 
488     switch (offset) {
489     case 0x34:
490         aspeed_timer_set_ctrl2(s, tv);
491         break;
492     case 0x38:
493     case 0x3C:
494     default:
495         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
496                 __func__, offset);
497         break;
498     }
499 }
500 
501 static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
502 {
503     uint64_t value;
504 
505     switch (offset) {
506     case 0x34:
507         value = s->ctrl2;
508         break;
509     case 0x38:
510         value = s->ctrl3 & BIT(0);
511         break;
512     case 0x3C:
513     default:
514         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
515                 __func__, offset);
516         value = 0;
517         break;
518     }
519     return value;
520 }
521 
522 static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
523                                     uint64_t value)
524 {
525     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
526     uint8_t command;
527 
528     switch (offset) {
529     case 0x34:
530         aspeed_timer_set_ctrl2(s, tv);
531         break;
532     case 0x38:
533         command = (value >> 1) & 0xFF;
534         if (command == 0xAE) {
535             s->ctrl3 = 0x1;
536         } else if (command == 0xEA) {
537             s->ctrl3 = 0x0;
538         }
539         break;
540     case 0x3C:
541         if (s->ctrl3 & BIT(0)) {
542             aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
543         }
544         break;
545 
546     default:
547         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
548                 __func__, offset);
549         break;
550     }
551 }
552 
553 static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
554 {
555     uint64_t value;
556 
557     switch (offset) {
558     case 0x34:
559         value = s->irq_sts;
560         break;
561     case 0x38:
562     case 0x3C:
563     default:
564         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
565                 __func__, offset);
566         value = 0;
567         break;
568     }
569     return value;
570 }
571 
572 static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
573                                     uint64_t value)
574 {
575     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
576 
577     switch (offset) {
578     case 0x34:
579         s->irq_sts &= tv;
580         break;
581     case 0x3C:
582         aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
583         break;
584 
585     case 0x38:
586     default:
587         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
588                 __func__, offset);
589         break;
590     }
591 }
592 
593 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
594 {
595     AspeedTimer *t = &s->timers[id];
596 
597     t->id = id;
598     timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
599 }
600 
601 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
602 {
603     int i;
604     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
605     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
606     Object *obj;
607     Error *err = NULL;
608 
609     obj = object_property_get_link(OBJECT(dev), "scu", &err);
610     if (!obj) {
611         error_propagate_prepend(errp, err, "required link 'scu' not found: ");
612         return;
613     }
614     s->scu = ASPEED_SCU(obj);
615 
616     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
617         aspeed_init_one_timer(s, i);
618         sysbus_init_irq(sbd, &s->timers[i].irq);
619     }
620     memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
621                           TYPE_ASPEED_TIMER, 0x1000);
622     sysbus_init_mmio(sbd, &s->iomem);
623 }
624 
625 static void aspeed_timer_reset(DeviceState *dev)
626 {
627     int i;
628     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
629 
630     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
631         AspeedTimer *t = &s->timers[i];
632         /* Explicitly call helpers to avoid any conditional behaviour through
633          * aspeed_timer_set_ctrl().
634          */
635         aspeed_timer_ctrl_enable(t, false);
636         aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
637         aspeed_timer_ctrl_overflow_interrupt(t, false);
638         aspeed_timer_ctrl_pulse_enable(t, false);
639         t->level = 0;
640         t->reload = 0;
641         t->match[0] = 0;
642         t->match[1] = 0;
643     }
644     s->ctrl = 0;
645     s->ctrl2 = 0;
646     s->ctrl3 = 0;
647     s->irq_sts = 0;
648 }
649 
650 static const VMStateDescription vmstate_aspeed_timer = {
651     .name = "aspeed.timer",
652     .version_id = 2,
653     .minimum_version_id = 2,
654     .fields = (VMStateField[]) {
655         VMSTATE_UINT8(id, AspeedTimer),
656         VMSTATE_INT32(level, AspeedTimer),
657         VMSTATE_TIMER(timer, AspeedTimer),
658         VMSTATE_UINT32(reload, AspeedTimer),
659         VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
660         VMSTATE_END_OF_LIST()
661     }
662 };
663 
664 static const VMStateDescription vmstate_aspeed_timer_state = {
665     .name = "aspeed.timerctrl",
666     .version_id = 2,
667     .minimum_version_id = 2,
668     .fields = (VMStateField[]) {
669         VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
670         VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
671         VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState),
672         VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState),
673         VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
674                              ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
675                              AspeedTimer),
676         VMSTATE_END_OF_LIST()
677     }
678 };
679 
680 static void timer_class_init(ObjectClass *klass, void *data)
681 {
682     DeviceClass *dc = DEVICE_CLASS(klass);
683 
684     dc->realize = aspeed_timer_realize;
685     dc->reset = aspeed_timer_reset;
686     dc->desc = "ASPEED Timer";
687     dc->vmsd = &vmstate_aspeed_timer_state;
688 }
689 
690 static const TypeInfo aspeed_timer_info = {
691     .name = TYPE_ASPEED_TIMER,
692     .parent = TYPE_SYS_BUS_DEVICE,
693     .instance_size = sizeof(AspeedTimerCtrlState),
694     .class_init = timer_class_init,
695     .class_size = sizeof(AspeedTimerClass),
696     .abstract   = true,
697 };
698 
699 static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data)
700 {
701     DeviceClass *dc = DEVICE_CLASS(klass);
702     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
703 
704     dc->desc = "ASPEED 2400 Timer";
705     awc->read = aspeed_2400_timer_read;
706     awc->write = aspeed_2400_timer_write;
707 }
708 
709 static const TypeInfo aspeed_2400_timer_info = {
710     .name = TYPE_ASPEED_2400_TIMER,
711     .parent = TYPE_ASPEED_TIMER,
712     .class_init = aspeed_2400_timer_class_init,
713 };
714 
715 static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data)
716 {
717     DeviceClass *dc = DEVICE_CLASS(klass);
718     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
719 
720     dc->desc = "ASPEED 2500 Timer";
721     awc->read = aspeed_2500_timer_read;
722     awc->write = aspeed_2500_timer_write;
723 }
724 
725 static const TypeInfo aspeed_2500_timer_info = {
726     .name = TYPE_ASPEED_2500_TIMER,
727     .parent = TYPE_ASPEED_TIMER,
728     .class_init = aspeed_2500_timer_class_init,
729 };
730 
731 static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data)
732 {
733     DeviceClass *dc = DEVICE_CLASS(klass);
734     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
735 
736     dc->desc = "ASPEED 2600 Timer";
737     awc->read = aspeed_2600_timer_read;
738     awc->write = aspeed_2600_timer_write;
739 }
740 
741 static const TypeInfo aspeed_2600_timer_info = {
742     .name = TYPE_ASPEED_2600_TIMER,
743     .parent = TYPE_ASPEED_TIMER,
744     .class_init = aspeed_2600_timer_class_init,
745 };
746 
747 static void aspeed_timer_register_types(void)
748 {
749     type_register_static(&aspeed_timer_info);
750     type_register_static(&aspeed_2400_timer_info);
751     type_register_static(&aspeed_2500_timer_info);
752     type_register_static(&aspeed_2600_timer_info);
753 }
754 
755 type_init(aspeed_timer_register_types)
756