1 /* 2 * ASPEED AST2400 Timer 3 * 4 * Andrew Jeffery <andrew@aj.id.au> 5 * 6 * Copyright (C) 2016 IBM Corp. 7 * 8 * This code is licensed under the GPL version 2 or later. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qapi/error.h" 14 #include "hw/irq.h" 15 #include "hw/sysbus.h" 16 #include "hw/timer/aspeed_timer.h" 17 #include "migration/vmstate.h" 18 #include "qemu/bitops.h" 19 #include "qemu/timer.h" 20 #include "qemu/log.h" 21 #include "qemu/module.h" 22 #include "trace.h" 23 24 #define TIMER_NR_REGS 4 25 26 #define TIMER_CTRL_BITS 4 27 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) 28 29 #define TIMER_CLOCK_USE_EXT true 30 #define TIMER_CLOCK_EXT_HZ 1000000 31 #define TIMER_CLOCK_USE_APB false 32 33 #define TIMER_REG_STATUS 0 34 #define TIMER_REG_RELOAD 1 35 #define TIMER_REG_MATCH_FIRST 2 36 #define TIMER_REG_MATCH_SECOND 3 37 38 #define TIMER_FIRST_CAP_PULSE 4 39 40 enum timer_ctrl_op { 41 op_enable = 0, 42 op_external_clock, 43 op_overflow_interrupt, 44 op_pulse_enable 45 }; 46 47 /* 48 * Minimum value of the reload register to filter out short period 49 * timers which have a noticeable impact in emulation. 5us should be 50 * enough, use 20us for "safety". 51 */ 52 #define TIMER_MIN_NS (20 * SCALE_US) 53 54 /** 55 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer 56 * structs, as it's a waste of memory. The ptimer BH callback needs to know 57 * whether a specific AspeedTimer is enabled, but this information is held in 58 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an 59 * arbitrary AspeedTimer to AspeedTimerCtrlState. 60 */ 61 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) 62 { 63 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); 64 return container_of(timers, AspeedTimerCtrlState, timers); 65 } 66 67 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) 68 { 69 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); 70 } 71 72 static inline bool timer_enabled(AspeedTimer *t) 73 { 74 return timer_ctrl_status(t, op_enable); 75 } 76 77 static inline bool timer_overflow_interrupt(AspeedTimer *t) 78 { 79 return timer_ctrl_status(t, op_overflow_interrupt); 80 } 81 82 static inline bool timer_can_pulse(AspeedTimer *t) 83 { 84 return t->id >= TIMER_FIRST_CAP_PULSE; 85 } 86 87 static inline bool timer_external_clock(AspeedTimer *t) 88 { 89 return timer_ctrl_status(t, op_external_clock); 90 } 91 92 static inline uint32_t calculate_rate(struct AspeedTimer *t) 93 { 94 AspeedTimerCtrlState *s = timer_to_ctrl(t); 95 96 return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : 97 aspeed_scu_get_apb_freq(s->scu); 98 } 99 100 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) 101 { 102 uint64_t delta_ns = now_ns - MIN(now_ns, t->start); 103 uint32_t rate = calculate_rate(t); 104 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); 105 106 return t->reload - MIN(t->reload, ticks); 107 } 108 109 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value) 110 { 111 uint32_t rate = calculate_rate(t); 112 uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND); 113 114 return value < min_ticks ? min_ticks : value; 115 } 116 117 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) 118 { 119 uint64_t delta_ns; 120 uint64_t delta_ticks; 121 122 delta_ticks = t->reload - MIN(t->reload, ticks); 123 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); 124 125 return t->start + delta_ns; 126 } 127 128 static inline uint32_t calculate_match(struct AspeedTimer *t, int i) 129 { 130 return t->match[i] < t->reload ? t->match[i] : 0; 131 } 132 133 static uint64_t calculate_next(struct AspeedTimer *t) 134 { 135 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 136 uint64_t next; 137 138 /* 139 * We don't know the relationship between the values in the match 140 * registers, so sort using MAX/MIN/zero. We sort in that order as 141 * the timer counts down to zero. 142 */ 143 144 next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1))); 145 if (now < next) { 146 return next; 147 } 148 149 next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1))); 150 if (now < next) { 151 return next; 152 } 153 154 next = calculate_time(t, 0); 155 if (now < next) { 156 return next; 157 } 158 159 /* We've missed all deadlines, fire interrupt and try again */ 160 timer_del(&t->timer); 161 162 if (timer_overflow_interrupt(t)) { 163 AspeedTimerCtrlState *s = timer_to_ctrl(t); 164 t->level = !t->level; 165 s->irq_sts |= BIT(t->id); 166 qemu_set_irq(t->irq, t->level); 167 } 168 169 next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0); 170 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 171 172 return calculate_time(t, next); 173 } 174 175 static void aspeed_timer_mod(AspeedTimer *t) 176 { 177 uint64_t next = calculate_next(t); 178 if (next) { 179 timer_mod(&t->timer, next); 180 } 181 } 182 183 static void aspeed_timer_expire(void *opaque) 184 { 185 AspeedTimer *t = opaque; 186 bool interrupt = false; 187 uint32_t ticks; 188 189 if (!timer_enabled(t)) { 190 return; 191 } 192 193 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 194 195 if (!ticks) { 196 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; 197 } else if (ticks <= MIN(t->match[0], t->match[1])) { 198 interrupt = true; 199 } else if (ticks <= MAX(t->match[0], t->match[1])) { 200 interrupt = true; 201 } 202 203 if (interrupt) { 204 AspeedTimerCtrlState *s = timer_to_ctrl(t); 205 t->level = !t->level; 206 s->irq_sts |= BIT(t->id); 207 qemu_set_irq(t->irq, t->level); 208 } 209 210 aspeed_timer_mod(t); 211 } 212 213 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) 214 { 215 uint64_t value; 216 217 switch (reg) { 218 case TIMER_REG_STATUS: 219 if (timer_enabled(t)) { 220 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 221 } else { 222 value = t->reload; 223 } 224 break; 225 case TIMER_REG_RELOAD: 226 value = t->reload; 227 break; 228 case TIMER_REG_MATCH_FIRST: 229 case TIMER_REG_MATCH_SECOND: 230 value = t->match[reg - 2]; 231 break; 232 default: 233 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 234 __func__, reg); 235 value = 0; 236 break; 237 } 238 return value; 239 } 240 241 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) 242 { 243 AspeedTimerCtrlState *s = opaque; 244 const int reg = (offset & 0xf) / 4; 245 uint64_t value; 246 247 switch (offset) { 248 case 0x30: /* Control Register */ 249 value = s->ctrl; 250 break; 251 case 0x00 ... 0x2c: /* Timers 1 - 4 */ 252 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); 253 break; 254 case 0x40 ... 0x8c: /* Timers 5 - 8 */ 255 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); 256 break; 257 default: 258 value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset); 259 break; 260 } 261 trace_aspeed_timer_read(offset, size, value); 262 return value; 263 } 264 265 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, 266 uint32_t value) 267 { 268 AspeedTimer *t; 269 uint32_t old_reload; 270 271 trace_aspeed_timer_set_value(timer, reg, value); 272 t = &s->timers[timer]; 273 switch (reg) { 274 case TIMER_REG_RELOAD: 275 old_reload = t->reload; 276 t->reload = calculate_min_ticks(t, value); 277 278 /* If the reload value was not previously set, or zero, and 279 * the current value is valid, try to start the timer if it is 280 * enabled. 281 */ 282 if (old_reload || !t->reload) { 283 break; 284 } 285 286 case TIMER_REG_STATUS: 287 if (timer_enabled(t)) { 288 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 289 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); 290 uint32_t rate = calculate_rate(t); 291 292 if (delta >= 0) { 293 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); 294 } else { 295 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate); 296 } 297 aspeed_timer_mod(t); 298 } 299 break; 300 case TIMER_REG_MATCH_FIRST: 301 case TIMER_REG_MATCH_SECOND: 302 t->match[reg - 2] = value; 303 if (timer_enabled(t)) { 304 aspeed_timer_mod(t); 305 } 306 break; 307 default: 308 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 309 __func__, reg); 310 break; 311 } 312 } 313 314 /* Control register operations are broken out into helpers that can be 315 * explicitly called on aspeed_timer_reset(), but also from 316 * aspeed_timer_ctrl_op(). 317 */ 318 319 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) 320 { 321 trace_aspeed_timer_ctrl_enable(t->id, enable); 322 if (enable) { 323 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 324 aspeed_timer_mod(t); 325 } else { 326 timer_del(&t->timer); 327 } 328 } 329 330 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) 331 { 332 trace_aspeed_timer_ctrl_external_clock(t->id, enable); 333 } 334 335 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) 336 { 337 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); 338 } 339 340 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) 341 { 342 if (timer_can_pulse(t)) { 343 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); 344 } else { 345 qemu_log_mask(LOG_GUEST_ERROR, 346 "%s: Timer does not support pulse mode\n", __func__); 347 } 348 } 349 350 /** 351 * Given the actions are fixed in number and completely described in helper 352 * functions, dispatch with a lookup table rather than manage control flow with 353 * a switch statement. 354 */ 355 static void (*const ctrl_ops[])(AspeedTimer *, bool) = { 356 [op_enable] = aspeed_timer_ctrl_enable, 357 [op_external_clock] = aspeed_timer_ctrl_external_clock, 358 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, 359 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, 360 }; 361 362 /** 363 * Conditionally affect changes chosen by a timer's control bit. 364 * 365 * The aspeed_timer_ctrl_op() interface is convenient for the 366 * aspeed_timer_set_ctrl() function as the "no change" early exit can be 367 * calculated for all operations, which cleans up the caller code. However the 368 * interface isn't convenient for the reset function where we want to enter a 369 * specific state without artificially constructing old and new values that 370 * will fall through the change guard (and motivates extracting the actions 371 * out to helper functions). 372 * 373 * @t: The timer to manipulate 374 * @op: The type of operation to be performed 375 * @old: The old state of the timer's control bits 376 * @new: The incoming state for the timer's control bits 377 */ 378 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, 379 uint8_t old, uint8_t new) 380 { 381 const uint8_t mask = BIT(op); 382 const bool enable = !!(new & mask); 383 const bool changed = ((old ^ new) & mask); 384 if (!changed) { 385 return; 386 } 387 ctrl_ops[op](t, enable); 388 } 389 390 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) 391 { 392 int i; 393 int shift; 394 uint8_t t_old, t_new; 395 AspeedTimer *t; 396 const uint8_t enable_mask = BIT(op_enable); 397 398 /* Handle a dependency between the 'enable' and remaining three 399 * configuration bits - i.e. if more than one bit in the control set has 400 * changed, including the 'enable' bit, then we want either disable the 401 * timer and perform configuration, or perform configuration and then 402 * enable the timer 403 */ 404 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 405 t = &s->timers[i]; 406 shift = (i * TIMER_CTRL_BITS); 407 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; 408 t_new = (reg >> shift) & TIMER_CTRL_MASK; 409 410 /* If we are disabling, do so first */ 411 if ((t_old & enable_mask) && !(t_new & enable_mask)) { 412 aspeed_timer_ctrl_enable(t, false); 413 } 414 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); 415 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); 416 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); 417 /* If we are enabling, do so last */ 418 if (!(t_old & enable_mask) && (t_new & enable_mask)) { 419 aspeed_timer_ctrl_enable(t, true); 420 } 421 } 422 s->ctrl = reg; 423 } 424 425 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) 426 { 427 trace_aspeed_timer_set_ctrl2(value); 428 } 429 430 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, 431 unsigned size) 432 { 433 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 434 const int reg = (offset & 0xf) / 4; 435 AspeedTimerCtrlState *s = opaque; 436 437 switch (offset) { 438 /* Control Registers */ 439 case 0x30: 440 aspeed_timer_set_ctrl(s, tv); 441 break; 442 /* Timer Registers */ 443 case 0x00 ... 0x2c: 444 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); 445 break; 446 case 0x40 ... 0x8c: 447 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); 448 break; 449 default: 450 ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value); 451 break; 452 } 453 } 454 455 static const MemoryRegionOps aspeed_timer_ops = { 456 .read = aspeed_timer_read, 457 .write = aspeed_timer_write, 458 .endianness = DEVICE_LITTLE_ENDIAN, 459 .valid.min_access_size = 4, 460 .valid.max_access_size = 4, 461 .valid.unaligned = false, 462 }; 463 464 static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 465 { 466 uint64_t value; 467 468 switch (offset) { 469 case 0x34: 470 value = s->ctrl2; 471 break; 472 case 0x38: 473 case 0x3C: 474 default: 475 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 476 __func__, offset); 477 value = 0; 478 break; 479 } 480 return value; 481 } 482 483 static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 484 uint64_t value) 485 { 486 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 487 488 switch (offset) { 489 case 0x34: 490 aspeed_timer_set_ctrl2(s, tv); 491 break; 492 case 0x38: 493 case 0x3C: 494 default: 495 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 496 __func__, offset); 497 break; 498 } 499 } 500 501 static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 502 { 503 uint64_t value; 504 505 switch (offset) { 506 case 0x34: 507 value = s->ctrl2; 508 break; 509 case 0x38: 510 value = s->ctrl3 & BIT(0); 511 break; 512 case 0x3C: 513 default: 514 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 515 __func__, offset); 516 value = 0; 517 break; 518 } 519 return value; 520 } 521 522 static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 523 uint64_t value) 524 { 525 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 526 uint8_t command; 527 528 switch (offset) { 529 case 0x34: 530 aspeed_timer_set_ctrl2(s, tv); 531 break; 532 case 0x38: 533 command = (value >> 1) & 0xFF; 534 if (command == 0xAE) { 535 s->ctrl3 = 0x1; 536 } else if (command == 0xEA) { 537 s->ctrl3 = 0x0; 538 } 539 break; 540 case 0x3C: 541 if (s->ctrl3 & BIT(0)) { 542 aspeed_timer_set_ctrl(s, s->ctrl & ~tv); 543 } 544 break; 545 546 default: 547 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 548 __func__, offset); 549 break; 550 } 551 } 552 553 static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 554 { 555 uint64_t value; 556 557 switch (offset) { 558 case 0x34: 559 value = s->irq_sts; 560 break; 561 case 0x38: 562 case 0x3C: 563 default: 564 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 565 __func__, offset); 566 value = 0; 567 break; 568 } 569 return value; 570 } 571 572 static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 573 uint64_t value) 574 { 575 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 576 577 switch (offset) { 578 case 0x34: 579 s->irq_sts &= tv; 580 break; 581 case 0x3C: 582 aspeed_timer_set_ctrl(s, s->ctrl & ~tv); 583 break; 584 585 case 0x38: 586 default: 587 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 588 __func__, offset); 589 break; 590 } 591 } 592 593 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) 594 { 595 AspeedTimer *t = &s->timers[id]; 596 597 t->id = id; 598 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); 599 } 600 601 static void aspeed_timer_realize(DeviceState *dev, Error **errp) 602 { 603 int i; 604 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 605 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 606 Object *obj; 607 Error *err = NULL; 608 609 obj = object_property_get_link(OBJECT(dev), "scu", &err); 610 if (!obj) { 611 error_propagate_prepend(errp, err, "required link 'scu' not found: "); 612 return; 613 } 614 s->scu = ASPEED_SCU(obj); 615 616 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 617 aspeed_init_one_timer(s, i); 618 sysbus_init_irq(sbd, &s->timers[i].irq); 619 } 620 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, 621 TYPE_ASPEED_TIMER, 0x1000); 622 sysbus_init_mmio(sbd, &s->iomem); 623 } 624 625 static void aspeed_timer_reset(DeviceState *dev) 626 { 627 int i; 628 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 629 630 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 631 AspeedTimer *t = &s->timers[i]; 632 /* Explicitly call helpers to avoid any conditional behaviour through 633 * aspeed_timer_set_ctrl(). 634 */ 635 aspeed_timer_ctrl_enable(t, false); 636 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); 637 aspeed_timer_ctrl_overflow_interrupt(t, false); 638 aspeed_timer_ctrl_pulse_enable(t, false); 639 t->level = 0; 640 t->reload = 0; 641 t->match[0] = 0; 642 t->match[1] = 0; 643 } 644 s->ctrl = 0; 645 s->ctrl2 = 0; 646 s->ctrl3 = 0; 647 s->irq_sts = 0; 648 } 649 650 static const VMStateDescription vmstate_aspeed_timer = { 651 .name = "aspeed.timer", 652 .version_id = 2, 653 .minimum_version_id = 2, 654 .fields = (VMStateField[]) { 655 VMSTATE_UINT8(id, AspeedTimer), 656 VMSTATE_INT32(level, AspeedTimer), 657 VMSTATE_TIMER(timer, AspeedTimer), 658 VMSTATE_UINT32(reload, AspeedTimer), 659 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), 660 VMSTATE_END_OF_LIST() 661 } 662 }; 663 664 static const VMStateDescription vmstate_aspeed_timer_state = { 665 .name = "aspeed.timerctrl", 666 .version_id = 2, 667 .minimum_version_id = 2, 668 .fields = (VMStateField[]) { 669 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), 670 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), 671 VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState), 672 VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState), 673 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, 674 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer, 675 AspeedTimer), 676 VMSTATE_END_OF_LIST() 677 } 678 }; 679 680 static void timer_class_init(ObjectClass *klass, void *data) 681 { 682 DeviceClass *dc = DEVICE_CLASS(klass); 683 684 dc->realize = aspeed_timer_realize; 685 dc->reset = aspeed_timer_reset; 686 dc->desc = "ASPEED Timer"; 687 dc->vmsd = &vmstate_aspeed_timer_state; 688 } 689 690 static const TypeInfo aspeed_timer_info = { 691 .name = TYPE_ASPEED_TIMER, 692 .parent = TYPE_SYS_BUS_DEVICE, 693 .instance_size = sizeof(AspeedTimerCtrlState), 694 .class_init = timer_class_init, 695 .class_size = sizeof(AspeedTimerClass), 696 .abstract = true, 697 }; 698 699 static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data) 700 { 701 DeviceClass *dc = DEVICE_CLASS(klass); 702 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 703 704 dc->desc = "ASPEED 2400 Timer"; 705 awc->read = aspeed_2400_timer_read; 706 awc->write = aspeed_2400_timer_write; 707 } 708 709 static const TypeInfo aspeed_2400_timer_info = { 710 .name = TYPE_ASPEED_2400_TIMER, 711 .parent = TYPE_ASPEED_TIMER, 712 .class_init = aspeed_2400_timer_class_init, 713 }; 714 715 static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data) 716 { 717 DeviceClass *dc = DEVICE_CLASS(klass); 718 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 719 720 dc->desc = "ASPEED 2500 Timer"; 721 awc->read = aspeed_2500_timer_read; 722 awc->write = aspeed_2500_timer_write; 723 } 724 725 static const TypeInfo aspeed_2500_timer_info = { 726 .name = TYPE_ASPEED_2500_TIMER, 727 .parent = TYPE_ASPEED_TIMER, 728 .class_init = aspeed_2500_timer_class_init, 729 }; 730 731 static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data) 732 { 733 DeviceClass *dc = DEVICE_CLASS(klass); 734 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 735 736 dc->desc = "ASPEED 2600 Timer"; 737 awc->read = aspeed_2600_timer_read; 738 awc->write = aspeed_2600_timer_write; 739 } 740 741 static const TypeInfo aspeed_2600_timer_info = { 742 .name = TYPE_ASPEED_2600_TIMER, 743 .parent = TYPE_ASPEED_TIMER, 744 .class_init = aspeed_2600_timer_class_init, 745 }; 746 747 static void aspeed_timer_register_types(void) 748 { 749 type_register_static(&aspeed_timer_info); 750 type_register_static(&aspeed_2400_timer_info); 751 type_register_static(&aspeed_2500_timer_info); 752 type_register_static(&aspeed_2600_timer_info); 753 } 754 755 type_init(aspeed_timer_register_types) 756