1 /* 2 * ASPEED AST2400 Timer 3 * 4 * Andrew Jeffery <andrew@aj.id.au> 5 * 6 * Copyright (C) 2016 IBM Corp. 7 * 8 * This code is licensed under the GPL version 2 or later. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qapi/error.h" 14 #include "hw/irq.h" 15 #include "hw/sysbus.h" 16 #include "hw/timer/aspeed_timer.h" 17 #include "migration/vmstate.h" 18 #include "qemu/bitops.h" 19 #include "qemu/timer.h" 20 #include "qemu/log.h" 21 #include "qemu/module.h" 22 #include "trace.h" 23 24 #define TIMER_NR_REGS 4 25 26 #define TIMER_CTRL_BITS 4 27 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) 28 29 #define TIMER_CLOCK_USE_EXT true 30 #define TIMER_CLOCK_EXT_HZ 1000000 31 #define TIMER_CLOCK_USE_APB false 32 33 #define TIMER_REG_STATUS 0 34 #define TIMER_REG_RELOAD 1 35 #define TIMER_REG_MATCH_FIRST 2 36 #define TIMER_REG_MATCH_SECOND 3 37 38 #define TIMER_FIRST_CAP_PULSE 4 39 40 enum timer_ctrl_op { 41 op_enable = 0, 42 op_external_clock, 43 op_overflow_interrupt, 44 op_pulse_enable 45 }; 46 47 /* 48 * Minimum value of the reload register to filter out short period 49 * timers which have a noticeable impact in emulation. 5us should be 50 * enough, use 20us for "safety". 51 */ 52 #define TIMER_MIN_NS (20 * SCALE_US) 53 54 /** 55 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer 56 * structs, as it's a waste of memory. The ptimer BH callback needs to know 57 * whether a specific AspeedTimer is enabled, but this information is held in 58 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an 59 * arbitrary AspeedTimer to AspeedTimerCtrlState. 60 */ 61 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) 62 { 63 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); 64 return container_of(timers, AspeedTimerCtrlState, timers); 65 } 66 67 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) 68 { 69 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); 70 } 71 72 static inline bool timer_enabled(AspeedTimer *t) 73 { 74 return timer_ctrl_status(t, op_enable); 75 } 76 77 static inline bool timer_overflow_interrupt(AspeedTimer *t) 78 { 79 return timer_ctrl_status(t, op_overflow_interrupt); 80 } 81 82 static inline bool timer_can_pulse(AspeedTimer *t) 83 { 84 return t->id >= TIMER_FIRST_CAP_PULSE; 85 } 86 87 static inline bool timer_external_clock(AspeedTimer *t) 88 { 89 return timer_ctrl_status(t, op_external_clock); 90 } 91 92 static inline uint32_t calculate_rate(struct AspeedTimer *t) 93 { 94 AspeedTimerCtrlState *s = timer_to_ctrl(t); 95 96 return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : 97 aspeed_scu_get_apb_freq(s->scu); 98 } 99 100 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) 101 { 102 uint64_t delta_ns = now_ns - MIN(now_ns, t->start); 103 uint32_t rate = calculate_rate(t); 104 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); 105 106 return t->reload - MIN(t->reload, ticks); 107 } 108 109 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value) 110 { 111 uint32_t rate = calculate_rate(t); 112 uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND); 113 114 return value < min_ticks ? min_ticks : value; 115 } 116 117 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) 118 { 119 uint64_t delta_ns; 120 uint64_t delta_ticks; 121 122 delta_ticks = t->reload - MIN(t->reload, ticks); 123 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); 124 125 return t->start + delta_ns; 126 } 127 128 static inline uint32_t calculate_match(struct AspeedTimer *t, int i) 129 { 130 return t->match[i] < t->reload ? t->match[i] : 0; 131 } 132 133 static uint64_t calculate_next(struct AspeedTimer *t) 134 { 135 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 136 uint64_t next; 137 138 /* 139 * We don't know the relationship between the values in the match 140 * registers, so sort using MAX/MIN/zero. We sort in that order as 141 * the timer counts down to zero. 142 */ 143 144 next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1))); 145 if (now < next) { 146 return next; 147 } 148 149 next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1))); 150 if (now < next) { 151 return next; 152 } 153 154 next = calculate_time(t, 0); 155 if (now < next) { 156 return next; 157 } 158 159 /* We've missed all deadlines, fire interrupt and try again */ 160 timer_del(&t->timer); 161 162 if (timer_overflow_interrupt(t)) { 163 t->level = !t->level; 164 qemu_set_irq(t->irq, t->level); 165 } 166 167 next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0); 168 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 169 170 return calculate_time(t, next); 171 } 172 173 static void aspeed_timer_mod(AspeedTimer *t) 174 { 175 uint64_t next = calculate_next(t); 176 if (next) { 177 timer_mod(&t->timer, next); 178 } 179 } 180 181 static void aspeed_timer_expire(void *opaque) 182 { 183 AspeedTimer *t = opaque; 184 bool interrupt = false; 185 uint32_t ticks; 186 187 if (!timer_enabled(t)) { 188 return; 189 } 190 191 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 192 193 if (!ticks) { 194 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; 195 } else if (ticks <= MIN(t->match[0], t->match[1])) { 196 interrupt = true; 197 } else if (ticks <= MAX(t->match[0], t->match[1])) { 198 interrupt = true; 199 } 200 201 if (interrupt) { 202 t->level = !t->level; 203 qemu_set_irq(t->irq, t->level); 204 } 205 206 aspeed_timer_mod(t); 207 } 208 209 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) 210 { 211 uint64_t value; 212 213 switch (reg) { 214 case TIMER_REG_STATUS: 215 if (timer_enabled(t)) { 216 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 217 } else { 218 value = t->reload; 219 } 220 break; 221 case TIMER_REG_RELOAD: 222 value = t->reload; 223 break; 224 case TIMER_REG_MATCH_FIRST: 225 case TIMER_REG_MATCH_SECOND: 226 value = t->match[reg - 2]; 227 break; 228 default: 229 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 230 __func__, reg); 231 value = 0; 232 break; 233 } 234 return value; 235 } 236 237 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) 238 { 239 AspeedTimerCtrlState *s = opaque; 240 const int reg = (offset & 0xf) / 4; 241 uint64_t value; 242 243 switch (offset) { 244 case 0x30: /* Control Register */ 245 value = s->ctrl; 246 break; 247 case 0x34: /* Control Register 2 */ 248 value = s->ctrl2; 249 break; 250 case 0x00 ... 0x2c: /* Timers 1 - 4 */ 251 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); 252 break; 253 case 0x40 ... 0x8c: /* Timers 5 - 8 */ 254 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); 255 break; 256 default: 257 value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset); 258 break; 259 } 260 trace_aspeed_timer_read(offset, size, value); 261 return value; 262 } 263 264 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, 265 uint32_t value) 266 { 267 AspeedTimer *t; 268 uint32_t old_reload; 269 270 trace_aspeed_timer_set_value(timer, reg, value); 271 t = &s->timers[timer]; 272 switch (reg) { 273 case TIMER_REG_RELOAD: 274 old_reload = t->reload; 275 t->reload = calculate_min_ticks(t, value); 276 277 /* If the reload value was not previously set, or zero, and 278 * the current value is valid, try to start the timer if it is 279 * enabled. 280 */ 281 if (old_reload || !t->reload) { 282 break; 283 } 284 285 case TIMER_REG_STATUS: 286 if (timer_enabled(t)) { 287 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 288 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); 289 uint32_t rate = calculate_rate(t); 290 291 if (delta >= 0) { 292 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); 293 } else { 294 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate); 295 } 296 aspeed_timer_mod(t); 297 } 298 break; 299 case TIMER_REG_MATCH_FIRST: 300 case TIMER_REG_MATCH_SECOND: 301 t->match[reg - 2] = value; 302 if (timer_enabled(t)) { 303 aspeed_timer_mod(t); 304 } 305 break; 306 default: 307 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 308 __func__, reg); 309 break; 310 } 311 } 312 313 /* Control register operations are broken out into helpers that can be 314 * explicitly called on aspeed_timer_reset(), but also from 315 * aspeed_timer_ctrl_op(). 316 */ 317 318 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) 319 { 320 trace_aspeed_timer_ctrl_enable(t->id, enable); 321 if (enable) { 322 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 323 aspeed_timer_mod(t); 324 } else { 325 timer_del(&t->timer); 326 } 327 } 328 329 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) 330 { 331 trace_aspeed_timer_ctrl_external_clock(t->id, enable); 332 } 333 334 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) 335 { 336 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); 337 } 338 339 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) 340 { 341 if (timer_can_pulse(t)) { 342 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); 343 } else { 344 qemu_log_mask(LOG_GUEST_ERROR, 345 "%s: Timer does not support pulse mode\n", __func__); 346 } 347 } 348 349 /** 350 * Given the actions are fixed in number and completely described in helper 351 * functions, dispatch with a lookup table rather than manage control flow with 352 * a switch statement. 353 */ 354 static void (*const ctrl_ops[])(AspeedTimer *, bool) = { 355 [op_enable] = aspeed_timer_ctrl_enable, 356 [op_external_clock] = aspeed_timer_ctrl_external_clock, 357 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, 358 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, 359 }; 360 361 /** 362 * Conditionally affect changes chosen by a timer's control bit. 363 * 364 * The aspeed_timer_ctrl_op() interface is convenient for the 365 * aspeed_timer_set_ctrl() function as the "no change" early exit can be 366 * calculated for all operations, which cleans up the caller code. However the 367 * interface isn't convenient for the reset function where we want to enter a 368 * specific state without artificially constructing old and new values that 369 * will fall through the change guard (and motivates extracting the actions 370 * out to helper functions). 371 * 372 * @t: The timer to manipulate 373 * @op: The type of operation to be performed 374 * @old: The old state of the timer's control bits 375 * @new: The incoming state for the timer's control bits 376 */ 377 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, 378 uint8_t old, uint8_t new) 379 { 380 const uint8_t mask = BIT(op); 381 const bool enable = !!(new & mask); 382 const bool changed = ((old ^ new) & mask); 383 if (!changed) { 384 return; 385 } 386 ctrl_ops[op](t, enable); 387 } 388 389 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) 390 { 391 int i; 392 int shift; 393 uint8_t t_old, t_new; 394 AspeedTimer *t; 395 const uint8_t enable_mask = BIT(op_enable); 396 397 /* Handle a dependency between the 'enable' and remaining three 398 * configuration bits - i.e. if more than one bit in the control set has 399 * changed, including the 'enable' bit, then we want either disable the 400 * timer and perform configuration, or perform configuration and then 401 * enable the timer 402 */ 403 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 404 t = &s->timers[i]; 405 shift = (i * TIMER_CTRL_BITS); 406 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; 407 t_new = (reg >> shift) & TIMER_CTRL_MASK; 408 409 /* If we are disabling, do so first */ 410 if ((t_old & enable_mask) && !(t_new & enable_mask)) { 411 aspeed_timer_ctrl_enable(t, false); 412 } 413 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); 414 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); 415 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); 416 /* If we are enabling, do so last */ 417 if (!(t_old & enable_mask) && (t_new & enable_mask)) { 418 aspeed_timer_ctrl_enable(t, true); 419 } 420 } 421 s->ctrl = reg; 422 } 423 424 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) 425 { 426 trace_aspeed_timer_set_ctrl2(value); 427 } 428 429 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, 430 unsigned size) 431 { 432 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 433 const int reg = (offset & 0xf) / 4; 434 AspeedTimerCtrlState *s = opaque; 435 436 switch (offset) { 437 /* Control Registers */ 438 case 0x30: 439 aspeed_timer_set_ctrl(s, tv); 440 break; 441 case 0x34: 442 aspeed_timer_set_ctrl2(s, tv); 443 break; 444 /* Timer Registers */ 445 case 0x00 ... 0x2c: 446 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); 447 break; 448 case 0x40 ... 0x8c: 449 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); 450 break; 451 default: 452 ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value); 453 break; 454 } 455 } 456 457 static const MemoryRegionOps aspeed_timer_ops = { 458 .read = aspeed_timer_read, 459 .write = aspeed_timer_write, 460 .endianness = DEVICE_LITTLE_ENDIAN, 461 .valid.min_access_size = 4, 462 .valid.max_access_size = 4, 463 .valid.unaligned = false, 464 }; 465 466 static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 467 { 468 uint64_t value; 469 470 switch (offset) { 471 case 0x38: 472 case 0x3C: 473 default: 474 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 475 __func__, offset); 476 value = 0; 477 break; 478 } 479 return value; 480 } 481 482 static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 483 uint64_t value) 484 { 485 switch (offset) { 486 case 0x38: 487 case 0x3C: 488 default: 489 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 490 __func__, offset); 491 break; 492 } 493 } 494 495 static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 496 { 497 uint64_t value; 498 499 switch (offset) { 500 case 0x38: 501 value = s->ctrl3 & BIT(0); 502 break; 503 case 0x3C: 504 default: 505 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 506 __func__, offset); 507 value = 0; 508 break; 509 } 510 return value; 511 } 512 513 static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 514 uint64_t value) 515 { 516 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 517 uint8_t command; 518 519 switch (offset) { 520 case 0x38: 521 command = (value >> 1) & 0xFF; 522 if (command == 0xAE) { 523 s->ctrl3 = 0x1; 524 } else if (command == 0xEA) { 525 s->ctrl3 = 0x0; 526 } 527 break; 528 case 0x3C: 529 if (s->ctrl3 & BIT(0)) { 530 aspeed_timer_set_ctrl(s, s->ctrl & ~tv); 531 } 532 break; 533 534 default: 535 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 536 __func__, offset); 537 break; 538 } 539 } 540 541 static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 542 { 543 uint64_t value; 544 545 switch (offset) { 546 case 0x38: 547 case 0x3C: 548 default: 549 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 550 __func__, offset); 551 value = 0; 552 break; 553 } 554 return value; 555 } 556 557 static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 558 uint64_t value) 559 { 560 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 561 562 switch (offset) { 563 case 0x3C: 564 aspeed_timer_set_ctrl(s, s->ctrl & ~tv); 565 break; 566 567 case 0x38: 568 default: 569 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 570 __func__, offset); 571 break; 572 } 573 } 574 575 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) 576 { 577 AspeedTimer *t = &s->timers[id]; 578 579 t->id = id; 580 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); 581 } 582 583 static void aspeed_timer_realize(DeviceState *dev, Error **errp) 584 { 585 int i; 586 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 587 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 588 Object *obj; 589 Error *err = NULL; 590 591 obj = object_property_get_link(OBJECT(dev), "scu", &err); 592 if (!obj) { 593 error_propagate_prepend(errp, err, "required link 'scu' not found: "); 594 return; 595 } 596 s->scu = ASPEED_SCU(obj); 597 598 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 599 aspeed_init_one_timer(s, i); 600 sysbus_init_irq(sbd, &s->timers[i].irq); 601 } 602 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, 603 TYPE_ASPEED_TIMER, 0x1000); 604 sysbus_init_mmio(sbd, &s->iomem); 605 } 606 607 static void aspeed_timer_reset(DeviceState *dev) 608 { 609 int i; 610 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 611 612 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 613 AspeedTimer *t = &s->timers[i]; 614 /* Explicitly call helpers to avoid any conditional behaviour through 615 * aspeed_timer_set_ctrl(). 616 */ 617 aspeed_timer_ctrl_enable(t, false); 618 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); 619 aspeed_timer_ctrl_overflow_interrupt(t, false); 620 aspeed_timer_ctrl_pulse_enable(t, false); 621 t->level = 0; 622 t->reload = 0; 623 t->match[0] = 0; 624 t->match[1] = 0; 625 } 626 s->ctrl = 0; 627 s->ctrl2 = 0; 628 s->ctrl3 = 0; 629 } 630 631 static const VMStateDescription vmstate_aspeed_timer = { 632 .name = "aspeed.timer", 633 .version_id = 2, 634 .minimum_version_id = 2, 635 .fields = (VMStateField[]) { 636 VMSTATE_UINT8(id, AspeedTimer), 637 VMSTATE_INT32(level, AspeedTimer), 638 VMSTATE_TIMER(timer, AspeedTimer), 639 VMSTATE_UINT32(reload, AspeedTimer), 640 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), 641 VMSTATE_END_OF_LIST() 642 } 643 }; 644 645 static const VMStateDescription vmstate_aspeed_timer_state = { 646 .name = "aspeed.timerctrl", 647 .version_id = 1, 648 .minimum_version_id = 1, 649 .fields = (VMStateField[]) { 650 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), 651 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), 652 VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState), 653 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, 654 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer, 655 AspeedTimer), 656 VMSTATE_END_OF_LIST() 657 } 658 }; 659 660 static void timer_class_init(ObjectClass *klass, void *data) 661 { 662 DeviceClass *dc = DEVICE_CLASS(klass); 663 664 dc->realize = aspeed_timer_realize; 665 dc->reset = aspeed_timer_reset; 666 dc->desc = "ASPEED Timer"; 667 dc->vmsd = &vmstate_aspeed_timer_state; 668 } 669 670 static const TypeInfo aspeed_timer_info = { 671 .name = TYPE_ASPEED_TIMER, 672 .parent = TYPE_SYS_BUS_DEVICE, 673 .instance_size = sizeof(AspeedTimerCtrlState), 674 .class_init = timer_class_init, 675 .class_size = sizeof(AspeedTimerClass), 676 .abstract = true, 677 }; 678 679 static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data) 680 { 681 DeviceClass *dc = DEVICE_CLASS(klass); 682 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 683 684 dc->desc = "ASPEED 2400 Timer"; 685 awc->read = aspeed_2400_timer_read; 686 awc->write = aspeed_2400_timer_write; 687 } 688 689 static const TypeInfo aspeed_2400_timer_info = { 690 .name = TYPE_ASPEED_2400_TIMER, 691 .parent = TYPE_ASPEED_TIMER, 692 .class_init = aspeed_2400_timer_class_init, 693 }; 694 695 static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data) 696 { 697 DeviceClass *dc = DEVICE_CLASS(klass); 698 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 699 700 dc->desc = "ASPEED 2500 Timer"; 701 awc->read = aspeed_2500_timer_read; 702 awc->write = aspeed_2500_timer_write; 703 } 704 705 static const TypeInfo aspeed_2500_timer_info = { 706 .name = TYPE_ASPEED_2500_TIMER, 707 .parent = TYPE_ASPEED_TIMER, 708 .class_init = aspeed_2500_timer_class_init, 709 }; 710 711 static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data) 712 { 713 DeviceClass *dc = DEVICE_CLASS(klass); 714 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 715 716 dc->desc = "ASPEED 2600 Timer"; 717 awc->read = aspeed_2600_timer_read; 718 awc->write = aspeed_2600_timer_write; 719 } 720 721 static const TypeInfo aspeed_2600_timer_info = { 722 .name = TYPE_ASPEED_2600_TIMER, 723 .parent = TYPE_ASPEED_TIMER, 724 .class_init = aspeed_2600_timer_class_init, 725 }; 726 727 static void aspeed_timer_register_types(void) 728 { 729 type_register_static(&aspeed_timer_info); 730 type_register_static(&aspeed_2400_timer_info); 731 type_register_static(&aspeed_2500_timer_info); 732 type_register_static(&aspeed_2600_timer_info); 733 } 734 735 type_init(aspeed_timer_register_types) 736