1 /* 2 * ASPEED AST2400 Timer 3 * 4 * Andrew Jeffery <andrew@aj.id.au> 5 * 6 * Copyright (C) 2016 IBM Corp. 7 * 8 * This code is licensed under the GPL version 2 or later. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qapi/error.h" 14 #include "hw/irq.h" 15 #include "hw/sysbus.h" 16 #include "hw/timer/aspeed_timer.h" 17 #include "migration/vmstate.h" 18 #include "qemu/bitops.h" 19 #include "qemu/timer.h" 20 #include "qemu/log.h" 21 #include "qemu/module.h" 22 #include "trace.h" 23 24 #define TIMER_NR_REGS 4 25 26 #define TIMER_CTRL_BITS 4 27 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) 28 29 #define TIMER_CLOCK_USE_EXT true 30 #define TIMER_CLOCK_EXT_HZ 1000000 31 #define TIMER_CLOCK_USE_APB false 32 33 #define TIMER_REG_STATUS 0 34 #define TIMER_REG_RELOAD 1 35 #define TIMER_REG_MATCH_FIRST 2 36 #define TIMER_REG_MATCH_SECOND 3 37 38 #define TIMER_FIRST_CAP_PULSE 4 39 40 enum timer_ctrl_op { 41 op_enable = 0, 42 op_external_clock, 43 op_overflow_interrupt, 44 op_pulse_enable 45 }; 46 47 /* 48 * Minimum value of the reload register to filter out short period 49 * timers which have a noticeable impact in emulation. 5us should be 50 * enough, use 20us for "safety". 51 */ 52 #define TIMER_MIN_NS (20 * SCALE_US) 53 54 /** 55 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer 56 * structs, as it's a waste of memory. The ptimer BH callback needs to know 57 * whether a specific AspeedTimer is enabled, but this information is held in 58 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an 59 * arbitrary AspeedTimer to AspeedTimerCtrlState. 60 */ 61 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) 62 { 63 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); 64 return container_of(timers, AspeedTimerCtrlState, timers); 65 } 66 67 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) 68 { 69 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); 70 } 71 72 static inline bool timer_enabled(AspeedTimer *t) 73 { 74 return timer_ctrl_status(t, op_enable); 75 } 76 77 static inline bool timer_overflow_interrupt(AspeedTimer *t) 78 { 79 return timer_ctrl_status(t, op_overflow_interrupt); 80 } 81 82 static inline bool timer_can_pulse(AspeedTimer *t) 83 { 84 return t->id >= TIMER_FIRST_CAP_PULSE; 85 } 86 87 static inline bool timer_external_clock(AspeedTimer *t) 88 { 89 return timer_ctrl_status(t, op_external_clock); 90 } 91 92 static inline uint32_t calculate_rate(struct AspeedTimer *t) 93 { 94 AspeedTimerCtrlState *s = timer_to_ctrl(t); 95 96 return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : s->scu->apb_freq; 97 } 98 99 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) 100 { 101 uint64_t delta_ns = now_ns - MIN(now_ns, t->start); 102 uint32_t rate = calculate_rate(t); 103 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); 104 105 return t->reload - MIN(t->reload, ticks); 106 } 107 108 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value) 109 { 110 uint32_t rate = calculate_rate(t); 111 uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND); 112 113 return value < min_ticks ? min_ticks : value; 114 } 115 116 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) 117 { 118 uint64_t delta_ns; 119 uint64_t delta_ticks; 120 121 delta_ticks = t->reload - MIN(t->reload, ticks); 122 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); 123 124 return t->start + delta_ns; 125 } 126 127 static inline uint32_t calculate_match(struct AspeedTimer *t, int i) 128 { 129 return t->match[i] < t->reload ? t->match[i] : 0; 130 } 131 132 static uint64_t calculate_next(struct AspeedTimer *t) 133 { 134 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 135 uint64_t next; 136 137 /* 138 * We don't know the relationship between the values in the match 139 * registers, so sort using MAX/MIN/zero. We sort in that order as 140 * the timer counts down to zero. 141 */ 142 143 next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1))); 144 if (now < next) { 145 return next; 146 } 147 148 next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1))); 149 if (now < next) { 150 return next; 151 } 152 153 next = calculate_time(t, 0); 154 if (now < next) { 155 return next; 156 } 157 158 /* We've missed all deadlines, fire interrupt and try again */ 159 timer_del(&t->timer); 160 161 if (timer_overflow_interrupt(t)) { 162 t->level = !t->level; 163 qemu_set_irq(t->irq, t->level); 164 } 165 166 next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0); 167 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 168 169 return calculate_time(t, next); 170 } 171 172 static void aspeed_timer_mod(AspeedTimer *t) 173 { 174 uint64_t next = calculate_next(t); 175 if (next) { 176 timer_mod(&t->timer, next); 177 } 178 } 179 180 static void aspeed_timer_expire(void *opaque) 181 { 182 AspeedTimer *t = opaque; 183 bool interrupt = false; 184 uint32_t ticks; 185 186 if (!timer_enabled(t)) { 187 return; 188 } 189 190 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 191 192 if (!ticks) { 193 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; 194 } else if (ticks <= MIN(t->match[0], t->match[1])) { 195 interrupt = true; 196 } else if (ticks <= MAX(t->match[0], t->match[1])) { 197 interrupt = true; 198 } 199 200 if (interrupt) { 201 t->level = !t->level; 202 qemu_set_irq(t->irq, t->level); 203 } 204 205 aspeed_timer_mod(t); 206 } 207 208 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) 209 { 210 uint64_t value; 211 212 switch (reg) { 213 case TIMER_REG_STATUS: 214 if (timer_enabled(t)) { 215 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 216 } else { 217 value = t->reload; 218 } 219 break; 220 case TIMER_REG_RELOAD: 221 value = t->reload; 222 break; 223 case TIMER_REG_MATCH_FIRST: 224 case TIMER_REG_MATCH_SECOND: 225 value = t->match[reg - 2]; 226 break; 227 default: 228 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 229 __func__, reg); 230 value = 0; 231 break; 232 } 233 return value; 234 } 235 236 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) 237 { 238 AspeedTimerCtrlState *s = opaque; 239 const int reg = (offset & 0xf) / 4; 240 uint64_t value; 241 242 switch (offset) { 243 case 0x30: /* Control Register */ 244 value = s->ctrl; 245 break; 246 case 0x34: /* Control Register 2 */ 247 value = s->ctrl2; 248 break; 249 case 0x00 ... 0x2c: /* Timers 1 - 4 */ 250 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); 251 break; 252 case 0x40 ... 0x8c: /* Timers 5 - 8 */ 253 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); 254 break; 255 /* Illegal */ 256 case 0x38: 257 case 0x3C: 258 default: 259 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 260 __func__, offset); 261 value = 0; 262 break; 263 } 264 trace_aspeed_timer_read(offset, size, value); 265 return value; 266 } 267 268 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, 269 uint32_t value) 270 { 271 AspeedTimer *t; 272 uint32_t old_reload; 273 274 trace_aspeed_timer_set_value(timer, reg, value); 275 t = &s->timers[timer]; 276 switch (reg) { 277 case TIMER_REG_RELOAD: 278 old_reload = t->reload; 279 t->reload = calculate_min_ticks(t, value); 280 281 /* If the reload value was not previously set, or zero, and 282 * the current value is valid, try to start the timer if it is 283 * enabled. 284 */ 285 if (old_reload || !t->reload) { 286 break; 287 } 288 289 case TIMER_REG_STATUS: 290 if (timer_enabled(t)) { 291 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 292 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); 293 uint32_t rate = calculate_rate(t); 294 295 if (delta >= 0) { 296 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); 297 } else { 298 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate); 299 } 300 aspeed_timer_mod(t); 301 } 302 break; 303 case TIMER_REG_MATCH_FIRST: 304 case TIMER_REG_MATCH_SECOND: 305 t->match[reg - 2] = value; 306 if (timer_enabled(t)) { 307 aspeed_timer_mod(t); 308 } 309 break; 310 default: 311 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 312 __func__, reg); 313 break; 314 } 315 } 316 317 /* Control register operations are broken out into helpers that can be 318 * explicitly called on aspeed_timer_reset(), but also from 319 * aspeed_timer_ctrl_op(). 320 */ 321 322 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) 323 { 324 trace_aspeed_timer_ctrl_enable(t->id, enable); 325 if (enable) { 326 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 327 aspeed_timer_mod(t); 328 } else { 329 timer_del(&t->timer); 330 } 331 } 332 333 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) 334 { 335 trace_aspeed_timer_ctrl_external_clock(t->id, enable); 336 } 337 338 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) 339 { 340 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); 341 } 342 343 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) 344 { 345 if (timer_can_pulse(t)) { 346 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); 347 } else { 348 qemu_log_mask(LOG_GUEST_ERROR, 349 "%s: Timer does not support pulse mode\n", __func__); 350 } 351 } 352 353 /** 354 * Given the actions are fixed in number and completely described in helper 355 * functions, dispatch with a lookup table rather than manage control flow with 356 * a switch statement. 357 */ 358 static void (*const ctrl_ops[])(AspeedTimer *, bool) = { 359 [op_enable] = aspeed_timer_ctrl_enable, 360 [op_external_clock] = aspeed_timer_ctrl_external_clock, 361 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, 362 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, 363 }; 364 365 /** 366 * Conditionally affect changes chosen by a timer's control bit. 367 * 368 * The aspeed_timer_ctrl_op() interface is convenient for the 369 * aspeed_timer_set_ctrl() function as the "no change" early exit can be 370 * calculated for all operations, which cleans up the caller code. However the 371 * interface isn't convenient for the reset function where we want to enter a 372 * specific state without artificially constructing old and new values that 373 * will fall through the change guard (and motivates extracting the actions 374 * out to helper functions). 375 * 376 * @t: The timer to manipulate 377 * @op: The type of operation to be performed 378 * @old: The old state of the timer's control bits 379 * @new: The incoming state for the timer's control bits 380 */ 381 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, 382 uint8_t old, uint8_t new) 383 { 384 const uint8_t mask = BIT(op); 385 const bool enable = !!(new & mask); 386 const bool changed = ((old ^ new) & mask); 387 if (!changed) { 388 return; 389 } 390 ctrl_ops[op](t, enable); 391 } 392 393 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) 394 { 395 int i; 396 int shift; 397 uint8_t t_old, t_new; 398 AspeedTimer *t; 399 const uint8_t enable_mask = BIT(op_enable); 400 401 /* Handle a dependency between the 'enable' and remaining three 402 * configuration bits - i.e. if more than one bit in the control set has 403 * changed, including the 'enable' bit, then we want either disable the 404 * timer and perform configuration, or perform configuration and then 405 * enable the timer 406 */ 407 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 408 t = &s->timers[i]; 409 shift = (i * TIMER_CTRL_BITS); 410 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; 411 t_new = (reg >> shift) & TIMER_CTRL_MASK; 412 413 /* If we are disabling, do so first */ 414 if ((t_old & enable_mask) && !(t_new & enable_mask)) { 415 aspeed_timer_ctrl_enable(t, false); 416 } 417 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); 418 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); 419 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); 420 /* If we are enabling, do so last */ 421 if (!(t_old & enable_mask) && (t_new & enable_mask)) { 422 aspeed_timer_ctrl_enable(t, true); 423 } 424 } 425 s->ctrl = reg; 426 } 427 428 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) 429 { 430 trace_aspeed_timer_set_ctrl2(value); 431 } 432 433 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, 434 unsigned size) 435 { 436 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 437 const int reg = (offset & 0xf) / 4; 438 AspeedTimerCtrlState *s = opaque; 439 440 switch (offset) { 441 /* Control Registers */ 442 case 0x30: 443 aspeed_timer_set_ctrl(s, tv); 444 break; 445 case 0x34: 446 aspeed_timer_set_ctrl2(s, tv); 447 break; 448 /* Timer Registers */ 449 case 0x00 ... 0x2c: 450 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); 451 break; 452 case 0x40 ... 0x8c: 453 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); 454 break; 455 /* Illegal */ 456 case 0x38: 457 case 0x3C: 458 default: 459 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 460 __func__, offset); 461 break; 462 } 463 } 464 465 static const MemoryRegionOps aspeed_timer_ops = { 466 .read = aspeed_timer_read, 467 .write = aspeed_timer_write, 468 .endianness = DEVICE_LITTLE_ENDIAN, 469 .valid.min_access_size = 4, 470 .valid.max_access_size = 4, 471 .valid.unaligned = false, 472 }; 473 474 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) 475 { 476 AspeedTimer *t = &s->timers[id]; 477 478 t->id = id; 479 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); 480 } 481 482 static void aspeed_timer_realize(DeviceState *dev, Error **errp) 483 { 484 int i; 485 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 486 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 487 Object *obj; 488 Error *err = NULL; 489 490 obj = object_property_get_link(OBJECT(dev), "scu", &err); 491 if (!obj) { 492 error_propagate_prepend(errp, err, "required link 'scu' not found: "); 493 return; 494 } 495 s->scu = ASPEED_SCU(obj); 496 497 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 498 aspeed_init_one_timer(s, i); 499 sysbus_init_irq(sbd, &s->timers[i].irq); 500 } 501 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, 502 TYPE_ASPEED_TIMER, 0x1000); 503 sysbus_init_mmio(sbd, &s->iomem); 504 } 505 506 static void aspeed_timer_reset(DeviceState *dev) 507 { 508 int i; 509 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 510 511 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 512 AspeedTimer *t = &s->timers[i]; 513 /* Explicitly call helpers to avoid any conditional behaviour through 514 * aspeed_timer_set_ctrl(). 515 */ 516 aspeed_timer_ctrl_enable(t, false); 517 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); 518 aspeed_timer_ctrl_overflow_interrupt(t, false); 519 aspeed_timer_ctrl_pulse_enable(t, false); 520 t->level = 0; 521 t->reload = 0; 522 t->match[0] = 0; 523 t->match[1] = 0; 524 } 525 s->ctrl = 0; 526 s->ctrl2 = 0; 527 } 528 529 static const VMStateDescription vmstate_aspeed_timer = { 530 .name = "aspeed.timer", 531 .version_id = 2, 532 .minimum_version_id = 2, 533 .fields = (VMStateField[]) { 534 VMSTATE_UINT8(id, AspeedTimer), 535 VMSTATE_INT32(level, AspeedTimer), 536 VMSTATE_TIMER(timer, AspeedTimer), 537 VMSTATE_UINT32(reload, AspeedTimer), 538 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), 539 VMSTATE_END_OF_LIST() 540 } 541 }; 542 543 static const VMStateDescription vmstate_aspeed_timer_state = { 544 .name = "aspeed.timerctrl", 545 .version_id = 1, 546 .minimum_version_id = 1, 547 .fields = (VMStateField[]) { 548 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), 549 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), 550 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, 551 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer, 552 AspeedTimer), 553 VMSTATE_END_OF_LIST() 554 } 555 }; 556 557 static void timer_class_init(ObjectClass *klass, void *data) 558 { 559 DeviceClass *dc = DEVICE_CLASS(klass); 560 561 dc->realize = aspeed_timer_realize; 562 dc->reset = aspeed_timer_reset; 563 dc->desc = "ASPEED Timer"; 564 dc->vmsd = &vmstate_aspeed_timer_state; 565 } 566 567 static const TypeInfo aspeed_timer_info = { 568 .name = TYPE_ASPEED_TIMER, 569 .parent = TYPE_SYS_BUS_DEVICE, 570 .instance_size = sizeof(AspeedTimerCtrlState), 571 .class_init = timer_class_init, 572 }; 573 574 static void aspeed_timer_register_types(void) 575 { 576 type_register_static(&aspeed_timer_info); 577 } 578 579 type_init(aspeed_timer_register_types) 580