xref: /openbmc/qemu/hw/timer/aspeed_timer.c (revision b43047a2)
1 /*
2  * ASPEED AST2400 Timer
3  *
4  * Andrew Jeffery <andrew@aj.id.au>
5  *
6  * Copyright (C) 2016 IBM Corp.
7  *
8  * This code is licensed under the GPL version 2 or later.  See
9  * the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qapi/error.h"
14 #include "hw/irq.h"
15 #include "hw/sysbus.h"
16 #include "hw/timer/aspeed_timer.h"
17 #include "migration/vmstate.h"
18 #include "qemu/bitops.h"
19 #include "qemu/timer.h"
20 #include "qemu/log.h"
21 #include "qemu/module.h"
22 #include "trace.h"
23 
24 #define TIMER_NR_REGS 4
25 
26 #define TIMER_CTRL_BITS 4
27 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
28 
29 #define TIMER_CLOCK_USE_EXT true
30 #define TIMER_CLOCK_EXT_HZ 1000000
31 #define TIMER_CLOCK_USE_APB false
32 
33 #define TIMER_REG_STATUS 0
34 #define TIMER_REG_RELOAD 1
35 #define TIMER_REG_MATCH_FIRST 2
36 #define TIMER_REG_MATCH_SECOND 3
37 
38 #define TIMER_FIRST_CAP_PULSE 4
39 
40 enum timer_ctrl_op {
41     op_enable = 0,
42     op_external_clock,
43     op_overflow_interrupt,
44     op_pulse_enable
45 };
46 
47 /*
48  * Minimum value of the reload register to filter out short period
49  * timers which have a noticeable impact in emulation. 5us should be
50  * enough, use 20us for "safety".
51  */
52 #define TIMER_MIN_NS (20 * SCALE_US)
53 
54 /**
55  * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
56  * structs, as it's a waste of memory. The ptimer BH callback needs to know
57  * whether a specific AspeedTimer is enabled, but this information is held in
58  * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
59  * arbitrary AspeedTimer to AspeedTimerCtrlState.
60  */
61 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
62 {
63     const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
64     return container_of(timers, AspeedTimerCtrlState, timers);
65 }
66 
67 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
68 {
69     return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
70 }
71 
72 static inline bool timer_enabled(AspeedTimer *t)
73 {
74     return timer_ctrl_status(t, op_enable);
75 }
76 
77 static inline bool timer_overflow_interrupt(AspeedTimer *t)
78 {
79     return timer_ctrl_status(t, op_overflow_interrupt);
80 }
81 
82 static inline bool timer_can_pulse(AspeedTimer *t)
83 {
84     return t->id >= TIMER_FIRST_CAP_PULSE;
85 }
86 
87 static inline bool timer_external_clock(AspeedTimer *t)
88 {
89     return timer_ctrl_status(t, op_external_clock);
90 }
91 
92 static inline uint32_t calculate_rate(struct AspeedTimer *t)
93 {
94     AspeedTimerCtrlState *s = timer_to_ctrl(t);
95 
96     return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : s->scu->apb_freq;
97 }
98 
99 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
100 {
101     uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
102     uint32_t rate = calculate_rate(t);
103     uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
104 
105     return t->reload - MIN(t->reload, ticks);
106 }
107 
108 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
109 {
110     uint32_t rate = calculate_rate(t);
111     uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
112 
113     return  value < min_ticks ? min_ticks : value;
114 }
115 
116 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
117 {
118     uint64_t delta_ns;
119     uint64_t delta_ticks;
120 
121     delta_ticks = t->reload - MIN(t->reload, ticks);
122     delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
123 
124     return t->start + delta_ns;
125 }
126 
127 static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
128 {
129     return t->match[i] < t->reload ? t->match[i] : 0;
130 }
131 
132 static uint64_t calculate_next(struct AspeedTimer *t)
133 {
134     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
135     uint64_t next;
136 
137     /*
138      * We don't know the relationship between the values in the match
139      * registers, so sort using MAX/MIN/zero. We sort in that order as
140      * the timer counts down to zero.
141      */
142 
143     next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
144     if (now < next) {
145         return next;
146     }
147 
148     next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
149     if (now < next) {
150         return next;
151     }
152 
153     next = calculate_time(t, 0);
154     if (now < next) {
155         return next;
156     }
157 
158     /* We've missed all deadlines, fire interrupt and try again */
159     timer_del(&t->timer);
160 
161     if (timer_overflow_interrupt(t)) {
162         t->level = !t->level;
163         qemu_set_irq(t->irq, t->level);
164     }
165 
166     next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0);
167     t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
168 
169     return calculate_time(t, next);
170 }
171 
172 static void aspeed_timer_mod(AspeedTimer *t)
173 {
174     uint64_t next = calculate_next(t);
175     if (next) {
176         timer_mod(&t->timer, next);
177     }
178 }
179 
180 static void aspeed_timer_expire(void *opaque)
181 {
182     AspeedTimer *t = opaque;
183     bool interrupt = false;
184     uint32_t ticks;
185 
186     if (!timer_enabled(t)) {
187         return;
188     }
189 
190     ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
191 
192     if (!ticks) {
193         interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
194     } else if (ticks <= MIN(t->match[0], t->match[1])) {
195         interrupt = true;
196     } else if (ticks <= MAX(t->match[0], t->match[1])) {
197         interrupt = true;
198     }
199 
200     if (interrupt) {
201         t->level = !t->level;
202         qemu_set_irq(t->irq, t->level);
203     }
204 
205     aspeed_timer_mod(t);
206 }
207 
208 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
209 {
210     uint64_t value;
211 
212     switch (reg) {
213     case TIMER_REG_STATUS:
214         if (timer_enabled(t)) {
215             value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
216         } else {
217             value = t->reload;
218         }
219         break;
220     case TIMER_REG_RELOAD:
221         value = t->reload;
222         break;
223     case TIMER_REG_MATCH_FIRST:
224     case TIMER_REG_MATCH_SECOND:
225         value = t->match[reg - 2];
226         break;
227     default:
228         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
229                       __func__, reg);
230         value = 0;
231         break;
232     }
233     return value;
234 }
235 
236 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
237 {
238     AspeedTimerCtrlState *s = opaque;
239     const int reg = (offset & 0xf) / 4;
240     uint64_t value;
241 
242     switch (offset) {
243     case 0x30: /* Control Register */
244         value = s->ctrl;
245         break;
246     case 0x34: /* Control Register 2 */
247         value = s->ctrl2;
248         break;
249     case 0x00 ... 0x2c: /* Timers 1 - 4 */
250         value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
251         break;
252     case 0x40 ... 0x8c: /* Timers 5 - 8 */
253         value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
254         break;
255     /* Illegal */
256     case 0x38:
257     case 0x3C:
258     default:
259         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
260                 __func__, offset);
261         value = 0;
262         break;
263     }
264     trace_aspeed_timer_read(offset, size, value);
265     return value;
266 }
267 
268 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
269                                    uint32_t value)
270 {
271     AspeedTimer *t;
272     uint32_t old_reload;
273 
274     trace_aspeed_timer_set_value(timer, reg, value);
275     t = &s->timers[timer];
276     switch (reg) {
277     case TIMER_REG_RELOAD:
278         old_reload = t->reload;
279         t->reload = calculate_min_ticks(t, value);
280 
281         /* If the reload value was not previously set, or zero, and
282          * the current value is valid, try to start the timer if it is
283          * enabled.
284          */
285         if (old_reload || !t->reload) {
286             break;
287         }
288 
289     case TIMER_REG_STATUS:
290         if (timer_enabled(t)) {
291             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
292             int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
293             uint32_t rate = calculate_rate(t);
294 
295             if (delta >= 0) {
296                 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
297             } else {
298                 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
299             }
300             aspeed_timer_mod(t);
301         }
302         break;
303     case TIMER_REG_MATCH_FIRST:
304     case TIMER_REG_MATCH_SECOND:
305         t->match[reg - 2] = value;
306         if (timer_enabled(t)) {
307             aspeed_timer_mod(t);
308         }
309         break;
310     default:
311         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
312                       __func__, reg);
313         break;
314     }
315 }
316 
317 /* Control register operations are broken out into helpers that can be
318  * explicitly called on aspeed_timer_reset(), but also from
319  * aspeed_timer_ctrl_op().
320  */
321 
322 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
323 {
324     trace_aspeed_timer_ctrl_enable(t->id, enable);
325     if (enable) {
326         t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
327         aspeed_timer_mod(t);
328     } else {
329         timer_del(&t->timer);
330     }
331 }
332 
333 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
334 {
335     trace_aspeed_timer_ctrl_external_clock(t->id, enable);
336 }
337 
338 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
339 {
340     trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
341 }
342 
343 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
344 {
345     if (timer_can_pulse(t)) {
346         trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
347     } else {
348         qemu_log_mask(LOG_GUEST_ERROR,
349                 "%s: Timer does not support pulse mode\n", __func__);
350     }
351 }
352 
353 /**
354  * Given the actions are fixed in number and completely described in helper
355  * functions, dispatch with a lookup table rather than manage control flow with
356  * a switch statement.
357  */
358 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
359     [op_enable] = aspeed_timer_ctrl_enable,
360     [op_external_clock] = aspeed_timer_ctrl_external_clock,
361     [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
362     [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
363 };
364 
365 /**
366  * Conditionally affect changes chosen by a timer's control bit.
367  *
368  * The aspeed_timer_ctrl_op() interface is convenient for the
369  * aspeed_timer_set_ctrl() function as the "no change" early exit can be
370  * calculated for all operations, which cleans up the caller code. However the
371  * interface isn't convenient for the reset function where we want to enter a
372  * specific state without artificially constructing old and new values that
373  * will fall through the change guard (and motivates extracting the actions
374  * out to helper functions).
375  *
376  * @t: The timer to manipulate
377  * @op: The type of operation to be performed
378  * @old: The old state of the timer's control bits
379  * @new: The incoming state for the timer's control bits
380  */
381 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
382                                  uint8_t old, uint8_t new)
383 {
384     const uint8_t mask = BIT(op);
385     const bool enable = !!(new & mask);
386     const bool changed = ((old ^ new) & mask);
387     if (!changed) {
388         return;
389     }
390     ctrl_ops[op](t, enable);
391 }
392 
393 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
394 {
395     int i;
396     int shift;
397     uint8_t t_old, t_new;
398     AspeedTimer *t;
399     const uint8_t enable_mask = BIT(op_enable);
400 
401     /* Handle a dependency between the 'enable' and remaining three
402      * configuration bits - i.e. if more than one bit in the control set has
403      * changed, including the 'enable' bit, then we want either disable the
404      * timer and perform configuration, or perform configuration and then
405      * enable the timer
406      */
407     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
408         t = &s->timers[i];
409         shift = (i * TIMER_CTRL_BITS);
410         t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
411         t_new = (reg >> shift) & TIMER_CTRL_MASK;
412 
413         /* If we are disabling, do so first */
414         if ((t_old & enable_mask) && !(t_new & enable_mask)) {
415             aspeed_timer_ctrl_enable(t, false);
416         }
417         aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
418         aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
419         aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
420         /* If we are enabling, do so last */
421         if (!(t_old & enable_mask) && (t_new & enable_mask)) {
422             aspeed_timer_ctrl_enable(t, true);
423         }
424     }
425     s->ctrl = reg;
426 }
427 
428 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
429 {
430     trace_aspeed_timer_set_ctrl2(value);
431 }
432 
433 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
434                                unsigned size)
435 {
436     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
437     const int reg = (offset & 0xf) / 4;
438     AspeedTimerCtrlState *s = opaque;
439 
440     switch (offset) {
441     /* Control Registers */
442     case 0x30:
443         aspeed_timer_set_ctrl(s, tv);
444         break;
445     case 0x34:
446         aspeed_timer_set_ctrl2(s, tv);
447         break;
448     /* Timer Registers */
449     case 0x00 ... 0x2c:
450         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
451         break;
452     case 0x40 ... 0x8c:
453         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
454         break;
455     /* Illegal */
456     case 0x38:
457     case 0x3C:
458     default:
459         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
460                 __func__, offset);
461         break;
462     }
463 }
464 
465 static const MemoryRegionOps aspeed_timer_ops = {
466     .read = aspeed_timer_read,
467     .write = aspeed_timer_write,
468     .endianness = DEVICE_LITTLE_ENDIAN,
469     .valid.min_access_size = 4,
470     .valid.max_access_size = 4,
471     .valid.unaligned = false,
472 };
473 
474 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
475 {
476     AspeedTimer *t = &s->timers[id];
477 
478     t->id = id;
479     timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
480 }
481 
482 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
483 {
484     int i;
485     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
486     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
487     Object *obj;
488     Error *err = NULL;
489 
490     obj = object_property_get_link(OBJECT(dev), "scu", &err);
491     if (!obj) {
492         error_propagate_prepend(errp, err, "required link 'scu' not found: ");
493         return;
494     }
495     s->scu = ASPEED_SCU(obj);
496 
497     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
498         aspeed_init_one_timer(s, i);
499         sysbus_init_irq(sbd, &s->timers[i].irq);
500     }
501     memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
502                           TYPE_ASPEED_TIMER, 0x1000);
503     sysbus_init_mmio(sbd, &s->iomem);
504 }
505 
506 static void aspeed_timer_reset(DeviceState *dev)
507 {
508     int i;
509     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
510 
511     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
512         AspeedTimer *t = &s->timers[i];
513         /* Explicitly call helpers to avoid any conditional behaviour through
514          * aspeed_timer_set_ctrl().
515          */
516         aspeed_timer_ctrl_enable(t, false);
517         aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
518         aspeed_timer_ctrl_overflow_interrupt(t, false);
519         aspeed_timer_ctrl_pulse_enable(t, false);
520         t->level = 0;
521         t->reload = 0;
522         t->match[0] = 0;
523         t->match[1] = 0;
524     }
525     s->ctrl = 0;
526     s->ctrl2 = 0;
527 }
528 
529 static const VMStateDescription vmstate_aspeed_timer = {
530     .name = "aspeed.timer",
531     .version_id = 2,
532     .minimum_version_id = 2,
533     .fields = (VMStateField[]) {
534         VMSTATE_UINT8(id, AspeedTimer),
535         VMSTATE_INT32(level, AspeedTimer),
536         VMSTATE_TIMER(timer, AspeedTimer),
537         VMSTATE_UINT32(reload, AspeedTimer),
538         VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
539         VMSTATE_END_OF_LIST()
540     }
541 };
542 
543 static const VMStateDescription vmstate_aspeed_timer_state = {
544     .name = "aspeed.timerctrl",
545     .version_id = 1,
546     .minimum_version_id = 1,
547     .fields = (VMStateField[]) {
548         VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
549         VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
550         VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
551                              ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
552                              AspeedTimer),
553         VMSTATE_END_OF_LIST()
554     }
555 };
556 
557 static void timer_class_init(ObjectClass *klass, void *data)
558 {
559     DeviceClass *dc = DEVICE_CLASS(klass);
560 
561     dc->realize = aspeed_timer_realize;
562     dc->reset = aspeed_timer_reset;
563     dc->desc = "ASPEED Timer";
564     dc->vmsd = &vmstate_aspeed_timer_state;
565 }
566 
567 static const TypeInfo aspeed_timer_info = {
568     .name = TYPE_ASPEED_TIMER,
569     .parent = TYPE_SYS_BUS_DEVICE,
570     .instance_size = sizeof(AspeedTimerCtrlState),
571     .class_init = timer_class_init,
572 };
573 
574 static void aspeed_timer_register_types(void)
575 {
576     type_register_static(&aspeed_timer_info);
577 }
578 
579 type_init(aspeed_timer_register_types)
580