1 /* 2 * ASPEED AST2400 Timer 3 * 4 * Andrew Jeffery <andrew@aj.id.au> 5 * 6 * Copyright (C) 2016 IBM Corp. 7 * 8 * This code is licensed under the GPL version 2 or later. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "hw/sysbus.h" 14 #include "hw/timer/aspeed_timer.h" 15 #include "qemu-common.h" 16 #include "qemu/bitops.h" 17 #include "qemu/timer.h" 18 #include "qemu/log.h" 19 #include "trace.h" 20 21 #define TIMER_NR_REGS 4 22 23 #define TIMER_CTRL_BITS 4 24 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) 25 26 #define TIMER_CLOCK_USE_EXT true 27 #define TIMER_CLOCK_EXT_HZ 1000000 28 #define TIMER_CLOCK_USE_APB false 29 #define TIMER_CLOCK_APB_HZ 24000000 30 31 #define TIMER_REG_STATUS 0 32 #define TIMER_REG_RELOAD 1 33 #define TIMER_REG_MATCH_FIRST 2 34 #define TIMER_REG_MATCH_SECOND 3 35 36 #define TIMER_FIRST_CAP_PULSE 4 37 38 enum timer_ctrl_op { 39 op_enable = 0, 40 op_external_clock, 41 op_overflow_interrupt, 42 op_pulse_enable 43 }; 44 45 /** 46 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer 47 * structs, as it's a waste of memory. The ptimer BH callback needs to know 48 * whether a specific AspeedTimer is enabled, but this information is held in 49 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an 50 * arbitrary AspeedTimer to AspeedTimerCtrlState. 51 */ 52 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) 53 { 54 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); 55 return container_of(timers, AspeedTimerCtrlState, timers); 56 } 57 58 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) 59 { 60 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); 61 } 62 63 static inline bool timer_enabled(AspeedTimer *t) 64 { 65 return timer_ctrl_status(t, op_enable); 66 } 67 68 static inline bool timer_overflow_interrupt(AspeedTimer *t) 69 { 70 return timer_ctrl_status(t, op_overflow_interrupt); 71 } 72 73 static inline bool timer_can_pulse(AspeedTimer *t) 74 { 75 return t->id >= TIMER_FIRST_CAP_PULSE; 76 } 77 78 static inline bool timer_external_clock(AspeedTimer *t) 79 { 80 return timer_ctrl_status(t, op_external_clock); 81 } 82 83 static uint32_t clock_rates[] = { TIMER_CLOCK_APB_HZ, TIMER_CLOCK_EXT_HZ }; 84 85 static inline uint32_t calculate_rate(struct AspeedTimer *t) 86 { 87 return clock_rates[timer_external_clock(t)]; 88 } 89 90 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) 91 { 92 uint64_t delta_ns = now_ns - MIN(now_ns, t->start); 93 uint32_t rate = calculate_rate(t); 94 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); 95 96 return t->reload - MIN(t->reload, ticks); 97 } 98 99 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) 100 { 101 uint64_t delta_ns; 102 uint64_t delta_ticks; 103 104 delta_ticks = t->reload - MIN(t->reload, ticks); 105 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); 106 107 return t->start + delta_ns; 108 } 109 110 static uint64_t calculate_next(struct AspeedTimer *t) 111 { 112 uint64_t next = 0; 113 uint32_t rate = calculate_rate(t); 114 115 while (!next) { 116 /* We don't know the relationship between the values in the match 117 * registers, so sort using MAX/MIN/zero. We sort in that order as the 118 * timer counts down to zero. */ 119 uint64_t seq[] = { 120 calculate_time(t, MAX(t->match[0], t->match[1])), 121 calculate_time(t, MIN(t->match[0], t->match[1])), 122 calculate_time(t, 0), 123 }; 124 uint64_t reload_ns; 125 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 126 127 if (now < seq[0]) { 128 next = seq[0]; 129 } else if (now < seq[1]) { 130 next = seq[1]; 131 } else if (now < seq[2]) { 132 next = seq[2]; 133 } else { 134 reload_ns = muldiv64(t->reload, NANOSECONDS_PER_SECOND, rate); 135 t->start = now - ((now - t->start) % reload_ns); 136 } 137 } 138 139 return next; 140 } 141 142 static void aspeed_timer_expire(void *opaque) 143 { 144 AspeedTimer *t = opaque; 145 bool interrupt = false; 146 uint32_t ticks; 147 148 if (!timer_enabled(t)) { 149 return; 150 } 151 152 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 153 154 if (!ticks) { 155 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; 156 } else if (ticks <= MIN(t->match[0], t->match[1])) { 157 interrupt = true; 158 } else if (ticks <= MAX(t->match[0], t->match[1])) { 159 interrupt = true; 160 } 161 162 if (interrupt) { 163 t->level = !t->level; 164 qemu_set_irq(t->irq, t->level); 165 } 166 167 timer_mod(&t->timer, calculate_next(t)); 168 } 169 170 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) 171 { 172 uint64_t value; 173 174 switch (reg) { 175 case TIMER_REG_STATUS: 176 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 177 break; 178 case TIMER_REG_RELOAD: 179 value = t->reload; 180 break; 181 case TIMER_REG_MATCH_FIRST: 182 case TIMER_REG_MATCH_SECOND: 183 value = t->match[reg - 2]; 184 break; 185 default: 186 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 187 __func__, reg); 188 value = 0; 189 break; 190 } 191 return value; 192 } 193 194 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) 195 { 196 AspeedTimerCtrlState *s = opaque; 197 const int reg = (offset & 0xf) / 4; 198 uint64_t value; 199 200 switch (offset) { 201 case 0x30: /* Control Register */ 202 value = s->ctrl; 203 break; 204 case 0x34: /* Control Register 2 */ 205 value = s->ctrl2; 206 break; 207 case 0x00 ... 0x2c: /* Timers 1 - 4 */ 208 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); 209 break; 210 case 0x40 ... 0x8c: /* Timers 5 - 8 */ 211 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); 212 break; 213 /* Illegal */ 214 case 0x38: 215 case 0x3C: 216 default: 217 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 218 __func__, offset); 219 value = 0; 220 break; 221 } 222 trace_aspeed_timer_read(offset, size, value); 223 return value; 224 } 225 226 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, 227 uint32_t value) 228 { 229 AspeedTimer *t; 230 231 trace_aspeed_timer_set_value(timer, reg, value); 232 t = &s->timers[timer]; 233 switch (reg) { 234 case TIMER_REG_STATUS: 235 if (timer_enabled(t)) { 236 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 237 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); 238 uint32_t rate = calculate_rate(t); 239 240 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); 241 timer_mod(&t->timer, calculate_next(t)); 242 } 243 break; 244 case TIMER_REG_RELOAD: 245 t->reload = value; 246 break; 247 case TIMER_REG_MATCH_FIRST: 248 case TIMER_REG_MATCH_SECOND: 249 t->match[reg - 2] = value; 250 if (timer_enabled(t)) { 251 timer_mod(&t->timer, calculate_next(t)); 252 } 253 break; 254 default: 255 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 256 __func__, reg); 257 break; 258 } 259 } 260 261 /* Control register operations are broken out into helpers that can be 262 * explicitly called on aspeed_timer_reset(), but also from 263 * aspeed_timer_ctrl_op(). 264 */ 265 266 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) 267 { 268 trace_aspeed_timer_ctrl_enable(t->id, enable); 269 if (enable) { 270 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 271 timer_mod(&t->timer, calculate_next(t)); 272 } else { 273 timer_del(&t->timer); 274 } 275 } 276 277 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) 278 { 279 trace_aspeed_timer_ctrl_external_clock(t->id, enable); 280 } 281 282 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) 283 { 284 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); 285 } 286 287 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) 288 { 289 if (timer_can_pulse(t)) { 290 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); 291 } else { 292 qemu_log_mask(LOG_GUEST_ERROR, 293 "%s: Timer does not support pulse mode\n", __func__); 294 } 295 } 296 297 /** 298 * Given the actions are fixed in number and completely described in helper 299 * functions, dispatch with a lookup table rather than manage control flow with 300 * a switch statement. 301 */ 302 static void (*const ctrl_ops[])(AspeedTimer *, bool) = { 303 [op_enable] = aspeed_timer_ctrl_enable, 304 [op_external_clock] = aspeed_timer_ctrl_external_clock, 305 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, 306 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, 307 }; 308 309 /** 310 * Conditionally affect changes chosen by a timer's control bit. 311 * 312 * The aspeed_timer_ctrl_op() interface is convenient for the 313 * aspeed_timer_set_ctrl() function as the "no change" early exit can be 314 * calculated for all operations, which cleans up the caller code. However the 315 * interface isn't convenient for the reset function where we want to enter a 316 * specific state without artificially constructing old and new values that 317 * will fall through the change guard (and motivates extracting the actions 318 * out to helper functions). 319 * 320 * @t: The timer to manipulate 321 * @op: The type of operation to be performed 322 * @old: The old state of the timer's control bits 323 * @new: The incoming state for the timer's control bits 324 */ 325 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, 326 uint8_t old, uint8_t new) 327 { 328 const uint8_t mask = BIT(op); 329 const bool enable = !!(new & mask); 330 const bool changed = ((old ^ new) & mask); 331 if (!changed) { 332 return; 333 } 334 ctrl_ops[op](t, enable); 335 } 336 337 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) 338 { 339 int i; 340 int shift; 341 uint8_t t_old, t_new; 342 AspeedTimer *t; 343 const uint8_t enable_mask = BIT(op_enable); 344 345 /* Handle a dependency between the 'enable' and remaining three 346 * configuration bits - i.e. if more than one bit in the control set has 347 * changed, including the 'enable' bit, then we want either disable the 348 * timer and perform configuration, or perform configuration and then 349 * enable the timer 350 */ 351 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 352 t = &s->timers[i]; 353 shift = (i * TIMER_CTRL_BITS); 354 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; 355 t_new = (reg >> shift) & TIMER_CTRL_MASK; 356 357 /* If we are disabling, do so first */ 358 if ((t_old & enable_mask) && !(t_new & enable_mask)) { 359 aspeed_timer_ctrl_enable(t, false); 360 } 361 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); 362 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); 363 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); 364 /* If we are enabling, do so last */ 365 if (!(t_old & enable_mask) && (t_new & enable_mask)) { 366 aspeed_timer_ctrl_enable(t, true); 367 } 368 } 369 s->ctrl = reg; 370 } 371 372 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) 373 { 374 trace_aspeed_timer_set_ctrl2(value); 375 } 376 377 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, 378 unsigned size) 379 { 380 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 381 const int reg = (offset & 0xf) / 4; 382 AspeedTimerCtrlState *s = opaque; 383 384 switch (offset) { 385 /* Control Registers */ 386 case 0x30: 387 aspeed_timer_set_ctrl(s, tv); 388 break; 389 case 0x34: 390 aspeed_timer_set_ctrl2(s, tv); 391 break; 392 /* Timer Registers */ 393 case 0x00 ... 0x2c: 394 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); 395 break; 396 case 0x40 ... 0x8c: 397 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); 398 break; 399 /* Illegal */ 400 case 0x38: 401 case 0x3C: 402 default: 403 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 404 __func__, offset); 405 break; 406 } 407 } 408 409 static const MemoryRegionOps aspeed_timer_ops = { 410 .read = aspeed_timer_read, 411 .write = aspeed_timer_write, 412 .endianness = DEVICE_LITTLE_ENDIAN, 413 .valid.min_access_size = 4, 414 .valid.max_access_size = 4, 415 .valid.unaligned = false, 416 }; 417 418 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) 419 { 420 AspeedTimer *t = &s->timers[id]; 421 422 t->id = id; 423 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); 424 } 425 426 static void aspeed_timer_realize(DeviceState *dev, Error **errp) 427 { 428 int i; 429 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 430 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 431 432 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 433 aspeed_init_one_timer(s, i); 434 sysbus_init_irq(sbd, &s->timers[i].irq); 435 } 436 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, 437 TYPE_ASPEED_TIMER, 0x1000); 438 sysbus_init_mmio(sbd, &s->iomem); 439 } 440 441 static void aspeed_timer_reset(DeviceState *dev) 442 { 443 int i; 444 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 445 446 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 447 AspeedTimer *t = &s->timers[i]; 448 /* Explicitly call helpers to avoid any conditional behaviour through 449 * aspeed_timer_set_ctrl(). 450 */ 451 aspeed_timer_ctrl_enable(t, false); 452 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); 453 aspeed_timer_ctrl_overflow_interrupt(t, false); 454 aspeed_timer_ctrl_pulse_enable(t, false); 455 t->level = 0; 456 t->reload = 0; 457 t->match[0] = 0; 458 t->match[1] = 0; 459 } 460 s->ctrl = 0; 461 s->ctrl2 = 0; 462 } 463 464 static const VMStateDescription vmstate_aspeed_timer = { 465 .name = "aspeed.timer", 466 .version_id = 2, 467 .minimum_version_id = 2, 468 .fields = (VMStateField[]) { 469 VMSTATE_UINT8(id, AspeedTimer), 470 VMSTATE_INT32(level, AspeedTimer), 471 VMSTATE_TIMER(timer, AspeedTimer), 472 VMSTATE_UINT32(reload, AspeedTimer), 473 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), 474 VMSTATE_END_OF_LIST() 475 } 476 }; 477 478 static const VMStateDescription vmstate_aspeed_timer_state = { 479 .name = "aspeed.timerctrl", 480 .version_id = 1, 481 .minimum_version_id = 1, 482 .fields = (VMStateField[]) { 483 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), 484 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), 485 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, 486 ASPEED_TIMER_NR_TIMERS, 2, vmstate_aspeed_timer, 487 AspeedTimer), 488 VMSTATE_END_OF_LIST() 489 } 490 }; 491 492 static void timer_class_init(ObjectClass *klass, void *data) 493 { 494 DeviceClass *dc = DEVICE_CLASS(klass); 495 496 dc->realize = aspeed_timer_realize; 497 dc->reset = aspeed_timer_reset; 498 dc->desc = "ASPEED Timer"; 499 dc->vmsd = &vmstate_aspeed_timer_state; 500 } 501 502 static const TypeInfo aspeed_timer_info = { 503 .name = TYPE_ASPEED_TIMER, 504 .parent = TYPE_SYS_BUS_DEVICE, 505 .instance_size = sizeof(AspeedTimerCtrlState), 506 .class_init = timer_class_init, 507 }; 508 509 static void aspeed_timer_register_types(void) 510 { 511 type_register_static(&aspeed_timer_info); 512 } 513 514 type_init(aspeed_timer_register_types) 515