1 /* 2 * ASPEED AST2400 Timer 3 * 4 * Andrew Jeffery <andrew@aj.id.au> 5 * 6 * Copyright (C) 2016 IBM Corp. 7 * 8 * This code is licensed under the GPL version 2 or later. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qapi/error.h" 14 #include "hw/irq.h" 15 #include "hw/sysbus.h" 16 #include "hw/timer/aspeed_timer.h" 17 #include "migration/vmstate.h" 18 #include "qemu/bitops.h" 19 #include "qemu/timer.h" 20 #include "qemu/log.h" 21 #include "qemu/module.h" 22 #include "hw/qdev-properties.h" 23 #include "trace.h" 24 25 #define TIMER_NR_REGS 4 26 27 #define TIMER_CTRL_BITS 4 28 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) 29 30 #define TIMER_CLOCK_USE_EXT true 31 #define TIMER_CLOCK_EXT_HZ 1000000 32 #define TIMER_CLOCK_USE_APB false 33 34 #define TIMER_REG_STATUS 0 35 #define TIMER_REG_RELOAD 1 36 #define TIMER_REG_MATCH_FIRST 2 37 #define TIMER_REG_MATCH_SECOND 3 38 39 #define TIMER_FIRST_CAP_PULSE 4 40 41 enum timer_ctrl_op { 42 op_enable = 0, 43 op_external_clock, 44 op_overflow_interrupt, 45 op_pulse_enable 46 }; 47 48 /* 49 * Minimum value of the reload register to filter out short period 50 * timers which have a noticeable impact in emulation. 5us should be 51 * enough, use 20us for "safety". 52 */ 53 #define TIMER_MIN_NS (20 * SCALE_US) 54 55 /** 56 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer 57 * structs, as it's a waste of memory. The ptimer BH callback needs to know 58 * whether a specific AspeedTimer is enabled, but this information is held in 59 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an 60 * arbitrary AspeedTimer to AspeedTimerCtrlState. 61 */ 62 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) 63 { 64 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); 65 return container_of(timers, AspeedTimerCtrlState, timers); 66 } 67 68 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) 69 { 70 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); 71 } 72 73 static inline bool timer_enabled(AspeedTimer *t) 74 { 75 return timer_ctrl_status(t, op_enable); 76 } 77 78 static inline bool timer_overflow_interrupt(AspeedTimer *t) 79 { 80 return timer_ctrl_status(t, op_overflow_interrupt); 81 } 82 83 static inline bool timer_can_pulse(AspeedTimer *t) 84 { 85 return t->id >= TIMER_FIRST_CAP_PULSE; 86 } 87 88 static inline bool timer_external_clock(AspeedTimer *t) 89 { 90 return timer_ctrl_status(t, op_external_clock); 91 } 92 93 static inline uint32_t calculate_rate(struct AspeedTimer *t) 94 { 95 AspeedTimerCtrlState *s = timer_to_ctrl(t); 96 97 return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : 98 aspeed_scu_get_apb_freq(s->scu); 99 } 100 101 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) 102 { 103 uint64_t delta_ns = now_ns - MIN(now_ns, t->start); 104 uint32_t rate = calculate_rate(t); 105 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); 106 107 return t->reload - MIN(t->reload, ticks); 108 } 109 110 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value) 111 { 112 uint32_t rate = calculate_rate(t); 113 uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND); 114 115 return value < min_ticks ? min_ticks : value; 116 } 117 118 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) 119 { 120 uint64_t delta_ns; 121 uint64_t delta_ticks; 122 123 delta_ticks = t->reload - MIN(t->reload, ticks); 124 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); 125 126 return t->start + delta_ns; 127 } 128 129 static inline uint32_t calculate_match(struct AspeedTimer *t, int i) 130 { 131 return t->match[i] < t->reload ? t->match[i] : 0; 132 } 133 134 static uint64_t calculate_next(struct AspeedTimer *t) 135 { 136 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 137 uint64_t next; 138 139 /* 140 * We don't know the relationship between the values in the match 141 * registers, so sort using MAX/MIN/zero. We sort in that order as 142 * the timer counts down to zero. 143 */ 144 145 next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1))); 146 if (now < next) { 147 return next; 148 } 149 150 next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1))); 151 if (now < next) { 152 return next; 153 } 154 155 next = calculate_time(t, 0); 156 if (now < next) { 157 return next; 158 } 159 160 /* We've missed all deadlines, fire interrupt and try again */ 161 timer_del(&t->timer); 162 163 if (timer_overflow_interrupt(t)) { 164 AspeedTimerCtrlState *s = timer_to_ctrl(t); 165 t->level = !t->level; 166 s->irq_sts |= BIT(t->id); 167 qemu_set_irq(t->irq, t->level); 168 } 169 170 next = MAX(calculate_match(t, 0), calculate_match(t, 1)); 171 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 172 173 return calculate_time(t, next); 174 } 175 176 static void aspeed_timer_mod(AspeedTimer *t) 177 { 178 uint64_t next = calculate_next(t); 179 if (next) { 180 timer_mod(&t->timer, next); 181 } 182 } 183 184 static void aspeed_timer_expire(void *opaque) 185 { 186 AspeedTimer *t = opaque; 187 bool interrupt = false; 188 uint32_t ticks; 189 190 if (!timer_enabled(t)) { 191 return; 192 } 193 194 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 195 196 if (!ticks) { 197 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; 198 } else if (ticks <= MIN(t->match[0], t->match[1])) { 199 interrupt = true; 200 } else if (ticks <= MAX(t->match[0], t->match[1])) { 201 interrupt = true; 202 } 203 204 if (interrupt) { 205 AspeedTimerCtrlState *s = timer_to_ctrl(t); 206 t->level = !t->level; 207 s->irq_sts |= BIT(t->id); 208 qemu_set_irq(t->irq, t->level); 209 } 210 211 aspeed_timer_mod(t); 212 } 213 214 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) 215 { 216 uint64_t value; 217 218 switch (reg) { 219 case TIMER_REG_STATUS: 220 if (timer_enabled(t)) { 221 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 222 } else { 223 value = t->reload; 224 } 225 break; 226 case TIMER_REG_RELOAD: 227 value = t->reload; 228 break; 229 case TIMER_REG_MATCH_FIRST: 230 case TIMER_REG_MATCH_SECOND: 231 value = t->match[reg - 2]; 232 break; 233 default: 234 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 235 __func__, reg); 236 value = 0; 237 break; 238 } 239 return value; 240 } 241 242 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) 243 { 244 AspeedTimerCtrlState *s = opaque; 245 const int reg = (offset & 0xf) / 4; 246 uint64_t value; 247 248 switch (offset) { 249 case 0x30: /* Control Register */ 250 value = s->ctrl; 251 break; 252 case 0x00 ... 0x2c: /* Timers 1 - 4 */ 253 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); 254 break; 255 case 0x40 ... 0x8c: /* Timers 5 - 8 */ 256 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); 257 break; 258 default: 259 value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset); 260 break; 261 } 262 trace_aspeed_timer_read(offset, size, value); 263 return value; 264 } 265 266 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, 267 uint32_t value) 268 { 269 AspeedTimer *t; 270 uint32_t old_reload; 271 272 trace_aspeed_timer_set_value(timer, reg, value); 273 t = &s->timers[timer]; 274 switch (reg) { 275 case TIMER_REG_RELOAD: 276 old_reload = t->reload; 277 t->reload = calculate_min_ticks(t, value); 278 279 /* 280 * If the reload value was not previously set, or zero, and 281 * the current value is valid, try to start the timer if it is 282 * enabled. 283 */ 284 if (old_reload || !t->reload) { 285 break; 286 } 287 /* fall through to re-enable */ 288 case TIMER_REG_STATUS: 289 if (timer_enabled(t)) { 290 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 291 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); 292 uint32_t rate = calculate_rate(t); 293 294 if (delta >= 0) { 295 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); 296 } else { 297 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate); 298 } 299 aspeed_timer_mod(t); 300 } 301 break; 302 case TIMER_REG_MATCH_FIRST: 303 case TIMER_REG_MATCH_SECOND: 304 t->match[reg - 2] = value; 305 if (timer_enabled(t)) { 306 aspeed_timer_mod(t); 307 } 308 break; 309 default: 310 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 311 __func__, reg); 312 break; 313 } 314 } 315 316 /* 317 * Control register operations are broken out into helpers that can be 318 * explicitly called on aspeed_timer_reset(), but also from 319 * aspeed_timer_ctrl_op(). 320 */ 321 322 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) 323 { 324 trace_aspeed_timer_ctrl_enable(t->id, enable); 325 if (enable) { 326 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 327 aspeed_timer_mod(t); 328 } else { 329 timer_del(&t->timer); 330 } 331 } 332 333 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) 334 { 335 trace_aspeed_timer_ctrl_external_clock(t->id, enable); 336 } 337 338 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) 339 { 340 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); 341 } 342 343 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) 344 { 345 if (timer_can_pulse(t)) { 346 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); 347 } else { 348 qemu_log_mask(LOG_GUEST_ERROR, 349 "%s: Timer does not support pulse mode\n", __func__); 350 } 351 } 352 353 /** 354 * Given the actions are fixed in number and completely described in helper 355 * functions, dispatch with a lookup table rather than manage control flow with 356 * a switch statement. 357 */ 358 static void (*const ctrl_ops[])(AspeedTimer *, bool) = { 359 [op_enable] = aspeed_timer_ctrl_enable, 360 [op_external_clock] = aspeed_timer_ctrl_external_clock, 361 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, 362 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, 363 }; 364 365 /** 366 * Conditionally affect changes chosen by a timer's control bit. 367 * 368 * The aspeed_timer_ctrl_op() interface is convenient for the 369 * aspeed_timer_set_ctrl() function as the "no change" early exit can be 370 * calculated for all operations, which cleans up the caller code. However the 371 * interface isn't convenient for the reset function where we want to enter a 372 * specific state without artificially constructing old and new values that 373 * will fall through the change guard (and motivates extracting the actions 374 * out to helper functions). 375 * 376 * @t: The timer to manipulate 377 * @op: The type of operation to be performed 378 * @old: The old state of the timer's control bits 379 * @new: The incoming state for the timer's control bits 380 */ 381 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, 382 uint8_t old, uint8_t new) 383 { 384 const uint8_t mask = BIT(op); 385 const bool enable = !!(new & mask); 386 const bool changed = ((old ^ new) & mask); 387 if (!changed) { 388 return; 389 } 390 ctrl_ops[op](t, enable); 391 } 392 393 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) 394 { 395 int i; 396 int shift; 397 uint8_t t_old, t_new; 398 AspeedTimer *t; 399 const uint8_t enable_mask = BIT(op_enable); 400 401 /* 402 * Handle a dependency between the 'enable' and remaining three 403 * configuration bits - i.e. if more than one bit in the control set has 404 * changed, including the 'enable' bit, then we want either disable the 405 * timer and perform configuration, or perform configuration and then 406 * enable the timer 407 */ 408 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 409 t = &s->timers[i]; 410 shift = (i * TIMER_CTRL_BITS); 411 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; 412 t_new = (reg >> shift) & TIMER_CTRL_MASK; 413 414 /* If we are disabling, do so first */ 415 if ((t_old & enable_mask) && !(t_new & enable_mask)) { 416 aspeed_timer_ctrl_enable(t, false); 417 } 418 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); 419 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); 420 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); 421 /* If we are enabling, do so last */ 422 if (!(t_old & enable_mask) && (t_new & enable_mask)) { 423 aspeed_timer_ctrl_enable(t, true); 424 } 425 } 426 s->ctrl = reg; 427 } 428 429 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) 430 { 431 trace_aspeed_timer_set_ctrl2(value); 432 } 433 434 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, 435 unsigned size) 436 { 437 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 438 const int reg = (offset & 0xf) / 4; 439 AspeedTimerCtrlState *s = opaque; 440 441 switch (offset) { 442 /* Control Registers */ 443 case 0x30: 444 aspeed_timer_set_ctrl(s, tv); 445 break; 446 /* Timer Registers */ 447 case 0x00 ... 0x2c: 448 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); 449 break; 450 case 0x40 ... 0x8c: 451 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); 452 break; 453 default: 454 ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value); 455 break; 456 } 457 } 458 459 static const MemoryRegionOps aspeed_timer_ops = { 460 .read = aspeed_timer_read, 461 .write = aspeed_timer_write, 462 .endianness = DEVICE_LITTLE_ENDIAN, 463 .valid.min_access_size = 1, 464 .valid.max_access_size = 4, 465 .valid.unaligned = false, 466 }; 467 468 static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 469 { 470 uint64_t value; 471 472 switch (offset) { 473 case 0x34: 474 value = s->ctrl2; 475 break; 476 case 0x38: 477 case 0x3C: 478 default: 479 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 480 __func__, offset); 481 value = 0; 482 break; 483 } 484 return value; 485 } 486 487 static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 488 uint64_t value) 489 { 490 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 491 492 switch (offset) { 493 case 0x34: 494 aspeed_timer_set_ctrl2(s, tv); 495 break; 496 case 0x38: 497 case 0x3C: 498 default: 499 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 500 __func__, offset); 501 break; 502 } 503 } 504 505 static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 506 { 507 uint64_t value; 508 509 switch (offset) { 510 case 0x34: 511 value = s->ctrl2; 512 break; 513 case 0x38: 514 value = s->ctrl3 & BIT(0); 515 break; 516 case 0x3C: 517 default: 518 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 519 __func__, offset); 520 value = 0; 521 break; 522 } 523 return value; 524 } 525 526 static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 527 uint64_t value) 528 { 529 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 530 uint8_t command; 531 532 switch (offset) { 533 case 0x34: 534 aspeed_timer_set_ctrl2(s, tv); 535 break; 536 case 0x38: 537 command = (value >> 1) & 0xFF; 538 if (command == 0xAE) { 539 s->ctrl3 = 0x1; 540 } else if (command == 0xEA) { 541 s->ctrl3 = 0x0; 542 } 543 break; 544 case 0x3C: 545 if (s->ctrl3 & BIT(0)) { 546 aspeed_timer_set_ctrl(s, s->ctrl & ~tv); 547 } 548 break; 549 550 default: 551 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 552 __func__, offset); 553 break; 554 } 555 } 556 557 static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 558 { 559 uint64_t value; 560 561 switch (offset) { 562 case 0x34: 563 value = s->irq_sts; 564 break; 565 case 0x38: 566 case 0x3C: 567 default: 568 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 569 __func__, offset); 570 value = 0; 571 break; 572 } 573 return value; 574 } 575 576 static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 577 uint64_t value) 578 { 579 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 580 581 switch (offset) { 582 case 0x34: 583 s->irq_sts &= ~tv; 584 break; 585 case 0x3C: 586 aspeed_timer_set_ctrl(s, s->ctrl & ~tv); 587 break; 588 case 0x38: 589 default: 590 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 591 __func__, offset); 592 break; 593 } 594 } 595 596 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) 597 { 598 AspeedTimer *t = &s->timers[id]; 599 600 t->id = id; 601 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); 602 } 603 604 static void aspeed_timer_realize(DeviceState *dev, Error **errp) 605 { 606 int i; 607 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 608 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 609 610 assert(s->scu); 611 612 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 613 aspeed_init_one_timer(s, i); 614 sysbus_init_irq(sbd, &s->timers[i].irq); 615 } 616 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, 617 TYPE_ASPEED_TIMER, 0x1000); 618 sysbus_init_mmio(sbd, &s->iomem); 619 } 620 621 static void aspeed_timer_reset(DeviceState *dev) 622 { 623 int i; 624 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 625 626 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 627 AspeedTimer *t = &s->timers[i]; 628 /* 629 * Explicitly call helpers to avoid any conditional behaviour through 630 * aspeed_timer_set_ctrl(). 631 */ 632 aspeed_timer_ctrl_enable(t, false); 633 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); 634 aspeed_timer_ctrl_overflow_interrupt(t, false); 635 aspeed_timer_ctrl_pulse_enable(t, false); 636 t->level = 0; 637 t->reload = 0; 638 t->match[0] = 0; 639 t->match[1] = 0; 640 } 641 s->ctrl = 0; 642 s->ctrl2 = 0; 643 s->ctrl3 = 0; 644 s->irq_sts = 0; 645 } 646 647 static const VMStateDescription vmstate_aspeed_timer = { 648 .name = "aspeed.timer", 649 .version_id = 2, 650 .minimum_version_id = 2, 651 .fields = (const VMStateField[]) { 652 VMSTATE_UINT8(id, AspeedTimer), 653 VMSTATE_INT32(level, AspeedTimer), 654 VMSTATE_TIMER(timer, AspeedTimer), 655 VMSTATE_UINT32(reload, AspeedTimer), 656 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), 657 VMSTATE_END_OF_LIST() 658 } 659 }; 660 661 static const VMStateDescription vmstate_aspeed_timer_state = { 662 .name = "aspeed.timerctrl", 663 .version_id = 2, 664 .minimum_version_id = 2, 665 .fields = (const VMStateField[]) { 666 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), 667 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), 668 VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState), 669 VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState), 670 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, 671 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer, 672 AspeedTimer), 673 VMSTATE_END_OF_LIST() 674 } 675 }; 676 677 static Property aspeed_timer_properties[] = { 678 DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU, 679 AspeedSCUState *), 680 DEFINE_PROP_END_OF_LIST(), 681 }; 682 683 static void timer_class_init(ObjectClass *klass, void *data) 684 { 685 DeviceClass *dc = DEVICE_CLASS(klass); 686 687 dc->realize = aspeed_timer_realize; 688 device_class_set_legacy_reset(dc, aspeed_timer_reset); 689 dc->desc = "ASPEED Timer"; 690 dc->vmsd = &vmstate_aspeed_timer_state; 691 device_class_set_props(dc, aspeed_timer_properties); 692 } 693 694 static const TypeInfo aspeed_timer_info = { 695 .name = TYPE_ASPEED_TIMER, 696 .parent = TYPE_SYS_BUS_DEVICE, 697 .instance_size = sizeof(AspeedTimerCtrlState), 698 .class_init = timer_class_init, 699 .class_size = sizeof(AspeedTimerClass), 700 .abstract = true, 701 }; 702 703 static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data) 704 { 705 DeviceClass *dc = DEVICE_CLASS(klass); 706 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 707 708 dc->desc = "ASPEED 2400 Timer"; 709 awc->read = aspeed_2400_timer_read; 710 awc->write = aspeed_2400_timer_write; 711 } 712 713 static const TypeInfo aspeed_2400_timer_info = { 714 .name = TYPE_ASPEED_2400_TIMER, 715 .parent = TYPE_ASPEED_TIMER, 716 .class_init = aspeed_2400_timer_class_init, 717 }; 718 719 static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data) 720 { 721 DeviceClass *dc = DEVICE_CLASS(klass); 722 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 723 724 dc->desc = "ASPEED 2500 Timer"; 725 awc->read = aspeed_2500_timer_read; 726 awc->write = aspeed_2500_timer_write; 727 } 728 729 static const TypeInfo aspeed_2500_timer_info = { 730 .name = TYPE_ASPEED_2500_TIMER, 731 .parent = TYPE_ASPEED_TIMER, 732 .class_init = aspeed_2500_timer_class_init, 733 }; 734 735 static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data) 736 { 737 DeviceClass *dc = DEVICE_CLASS(klass); 738 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 739 740 dc->desc = "ASPEED 2600 Timer"; 741 awc->read = aspeed_2600_timer_read; 742 awc->write = aspeed_2600_timer_write; 743 } 744 745 static const TypeInfo aspeed_2600_timer_info = { 746 .name = TYPE_ASPEED_2600_TIMER, 747 .parent = TYPE_ASPEED_TIMER, 748 .class_init = aspeed_2600_timer_class_init, 749 }; 750 751 static void aspeed_1030_timer_class_init(ObjectClass *klass, void *data) 752 { 753 DeviceClass *dc = DEVICE_CLASS(klass); 754 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 755 756 dc->desc = "ASPEED 1030 Timer"; 757 awc->read = aspeed_2600_timer_read; 758 awc->write = aspeed_2600_timer_write; 759 } 760 761 static const TypeInfo aspeed_1030_timer_info = { 762 .name = TYPE_ASPEED_1030_TIMER, 763 .parent = TYPE_ASPEED_TIMER, 764 .class_init = aspeed_1030_timer_class_init, 765 }; 766 767 static void aspeed_timer_register_types(void) 768 { 769 type_register_static(&aspeed_timer_info); 770 type_register_static(&aspeed_2400_timer_info); 771 type_register_static(&aspeed_2500_timer_info); 772 type_register_static(&aspeed_2600_timer_info); 773 type_register_static(&aspeed_1030_timer_info); 774 } 775 776 type_init(aspeed_timer_register_types) 777