xref: /openbmc/qemu/hw/timer/aspeed_timer.c (revision 764a6ee9)
1 /*
2  * ASPEED AST2400 Timer
3  *
4  * Andrew Jeffery <andrew@aj.id.au>
5  *
6  * Copyright (C) 2016 IBM Corp.
7  *
8  * This code is licensed under the GPL version 2 or later.  See
9  * the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qapi/error.h"
14 #include "hw/irq.h"
15 #include "hw/sysbus.h"
16 #include "hw/timer/aspeed_timer.h"
17 #include "migration/vmstate.h"
18 #include "qemu/bitops.h"
19 #include "qemu/timer.h"
20 #include "qemu/log.h"
21 #include "qemu/module.h"
22 #include "hw/qdev-properties.h"
23 #include "trace.h"
24 
25 #define TIMER_NR_REGS 4
26 
27 #define TIMER_CTRL_BITS 4
28 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
29 
30 #define TIMER_CLOCK_USE_EXT true
31 #define TIMER_CLOCK_EXT_HZ 1000000
32 #define TIMER_CLOCK_USE_APB false
33 
34 #define TIMER_REG_STATUS 0
35 #define TIMER_REG_RELOAD 1
36 #define TIMER_REG_MATCH_FIRST 2
37 #define TIMER_REG_MATCH_SECOND 3
38 
39 #define TIMER_FIRST_CAP_PULSE 4
40 
41 enum timer_ctrl_op {
42     op_enable = 0,
43     op_external_clock,
44     op_overflow_interrupt,
45     op_pulse_enable
46 };
47 
48 /*
49  * Minimum value of the reload register to filter out short period
50  * timers which have a noticeable impact in emulation. 5us should be
51  * enough, use 20us for "safety".
52  */
53 #define TIMER_MIN_NS (20 * SCALE_US)
54 
55 /**
56  * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
57  * structs, as it's a waste of memory. The ptimer BH callback needs to know
58  * whether a specific AspeedTimer is enabled, but this information is held in
59  * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
60  * arbitrary AspeedTimer to AspeedTimerCtrlState.
61  */
62 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
63 {
64     const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
65     return container_of(timers, AspeedTimerCtrlState, timers);
66 }
67 
68 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
69 {
70     return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
71 }
72 
73 static inline bool timer_enabled(AspeedTimer *t)
74 {
75     return timer_ctrl_status(t, op_enable);
76 }
77 
78 static inline bool timer_overflow_interrupt(AspeedTimer *t)
79 {
80     return timer_ctrl_status(t, op_overflow_interrupt);
81 }
82 
83 static inline bool timer_can_pulse(AspeedTimer *t)
84 {
85     return t->id >= TIMER_FIRST_CAP_PULSE;
86 }
87 
88 static inline bool timer_external_clock(AspeedTimer *t)
89 {
90     return timer_ctrl_status(t, op_external_clock);
91 }
92 
93 static inline uint32_t calculate_rate(struct AspeedTimer *t)
94 {
95     AspeedTimerCtrlState *s = timer_to_ctrl(t);
96 
97     return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ :
98         aspeed_scu_get_apb_freq(s->scu);
99 }
100 
101 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
102 {
103     uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
104     uint32_t rate = calculate_rate(t);
105     uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
106 
107     return t->reload - MIN(t->reload, ticks);
108 }
109 
110 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
111 {
112     uint32_t rate = calculate_rate(t);
113     uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
114 
115     return  value < min_ticks ? min_ticks : value;
116 }
117 
118 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
119 {
120     uint64_t delta_ns;
121     uint64_t delta_ticks;
122 
123     delta_ticks = t->reload - MIN(t->reload, ticks);
124     delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
125 
126     return t->start + delta_ns;
127 }
128 
129 static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
130 {
131     return t->match[i] < t->reload ? t->match[i] : 0;
132 }
133 
134 static uint64_t calculate_next(struct AspeedTimer *t)
135 {
136     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
137     uint64_t next;
138 
139     /*
140      * We don't know the relationship between the values in the match
141      * registers, so sort using MAX/MIN/zero. We sort in that order as
142      * the timer counts down to zero.
143      */
144 
145     next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
146     if (now < next) {
147         return next;
148     }
149 
150     next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
151     if (now < next) {
152         return next;
153     }
154 
155     next = calculate_time(t, 0);
156     if (now < next) {
157         return next;
158     }
159 
160     /* We've missed all deadlines, fire interrupt and try again */
161     timer_del(&t->timer);
162 
163     if (timer_overflow_interrupt(t)) {
164         AspeedTimerCtrlState *s = timer_to_ctrl(t);
165         t->level = !t->level;
166         s->irq_sts |= BIT(t->id);
167         qemu_set_irq(t->irq, t->level);
168     }
169 
170     next = MAX(calculate_match(t, 0), calculate_match(t, 1));
171     t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
172 
173     return calculate_time(t, next);
174 }
175 
176 static void aspeed_timer_mod(AspeedTimer *t)
177 {
178     uint64_t next = calculate_next(t);
179     if (next) {
180         timer_mod(&t->timer, next);
181     }
182 }
183 
184 static void aspeed_timer_expire(void *opaque)
185 {
186     AspeedTimer *t = opaque;
187     bool interrupt = false;
188     uint32_t ticks;
189 
190     if (!timer_enabled(t)) {
191         return;
192     }
193 
194     ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
195 
196     if (!ticks) {
197         interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
198     } else if (ticks <= MIN(t->match[0], t->match[1])) {
199         interrupt = true;
200     } else if (ticks <= MAX(t->match[0], t->match[1])) {
201         interrupt = true;
202     }
203 
204     if (interrupt) {
205         AspeedTimerCtrlState *s = timer_to_ctrl(t);
206         t->level = !t->level;
207         s->irq_sts |= BIT(t->id);
208         qemu_set_irq(t->irq, t->level);
209     }
210 
211     aspeed_timer_mod(t);
212 }
213 
214 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
215 {
216     uint64_t value;
217 
218     switch (reg) {
219     case TIMER_REG_STATUS:
220         if (timer_enabled(t)) {
221             value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
222         } else {
223             value = t->reload;
224         }
225         break;
226     case TIMER_REG_RELOAD:
227         value = t->reload;
228         break;
229     case TIMER_REG_MATCH_FIRST:
230     case TIMER_REG_MATCH_SECOND:
231         value = t->match[reg - 2];
232         break;
233     default:
234         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
235                       __func__, reg);
236         value = 0;
237         break;
238     }
239     return value;
240 }
241 
242 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
243 {
244     AspeedTimerCtrlState *s = opaque;
245     const int reg = (offset & 0xf) / 4;
246     uint64_t value;
247 
248     switch (offset) {
249     case 0x30: /* Control Register */
250         value = s->ctrl;
251         break;
252     case 0x00 ... 0x2c: /* Timers 1 - 4 */
253         value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
254         break;
255     case 0x40 ... 0x8c: /* Timers 5 - 8 */
256         value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
257         break;
258     default:
259         value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset);
260         break;
261     }
262     trace_aspeed_timer_read(offset, size, value);
263     return value;
264 }
265 
266 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
267                                    uint32_t value)
268 {
269     AspeedTimer *t;
270     uint32_t old_reload;
271 
272     trace_aspeed_timer_set_value(timer, reg, value);
273     t = &s->timers[timer];
274     switch (reg) {
275     case TIMER_REG_RELOAD:
276         old_reload = t->reload;
277         t->reload = calculate_min_ticks(t, value);
278 
279         /* If the reload value was not previously set, or zero, and
280          * the current value is valid, try to start the timer if it is
281          * enabled.
282          */
283         if (old_reload || !t->reload) {
284             break;
285         }
286         /* fall through to re-enable */
287     case TIMER_REG_STATUS:
288         if (timer_enabled(t)) {
289             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
290             int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
291             uint32_t rate = calculate_rate(t);
292 
293             if (delta >= 0) {
294                 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
295             } else {
296                 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
297             }
298             aspeed_timer_mod(t);
299         }
300         break;
301     case TIMER_REG_MATCH_FIRST:
302     case TIMER_REG_MATCH_SECOND:
303         t->match[reg - 2] = value;
304         if (timer_enabled(t)) {
305             aspeed_timer_mod(t);
306         }
307         break;
308     default:
309         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
310                       __func__, reg);
311         break;
312     }
313 }
314 
315 /* Control register operations are broken out into helpers that can be
316  * explicitly called on aspeed_timer_reset(), but also from
317  * aspeed_timer_ctrl_op().
318  */
319 
320 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
321 {
322     trace_aspeed_timer_ctrl_enable(t->id, enable);
323     if (enable) {
324         t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
325         aspeed_timer_mod(t);
326     } else {
327         timer_del(&t->timer);
328     }
329 }
330 
331 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
332 {
333     trace_aspeed_timer_ctrl_external_clock(t->id, enable);
334 }
335 
336 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
337 {
338     trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
339 }
340 
341 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
342 {
343     if (timer_can_pulse(t)) {
344         trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
345     } else {
346         qemu_log_mask(LOG_GUEST_ERROR,
347                 "%s: Timer does not support pulse mode\n", __func__);
348     }
349 }
350 
351 /**
352  * Given the actions are fixed in number and completely described in helper
353  * functions, dispatch with a lookup table rather than manage control flow with
354  * a switch statement.
355  */
356 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
357     [op_enable] = aspeed_timer_ctrl_enable,
358     [op_external_clock] = aspeed_timer_ctrl_external_clock,
359     [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
360     [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
361 };
362 
363 /**
364  * Conditionally affect changes chosen by a timer's control bit.
365  *
366  * The aspeed_timer_ctrl_op() interface is convenient for the
367  * aspeed_timer_set_ctrl() function as the "no change" early exit can be
368  * calculated for all operations, which cleans up the caller code. However the
369  * interface isn't convenient for the reset function where we want to enter a
370  * specific state without artificially constructing old and new values that
371  * will fall through the change guard (and motivates extracting the actions
372  * out to helper functions).
373  *
374  * @t: The timer to manipulate
375  * @op: The type of operation to be performed
376  * @old: The old state of the timer's control bits
377  * @new: The incoming state for the timer's control bits
378  */
379 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
380                                  uint8_t old, uint8_t new)
381 {
382     const uint8_t mask = BIT(op);
383     const bool enable = !!(new & mask);
384     const bool changed = ((old ^ new) & mask);
385     if (!changed) {
386         return;
387     }
388     ctrl_ops[op](t, enable);
389 }
390 
391 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
392 {
393     int i;
394     int shift;
395     uint8_t t_old, t_new;
396     AspeedTimer *t;
397     const uint8_t enable_mask = BIT(op_enable);
398 
399     /* Handle a dependency between the 'enable' and remaining three
400      * configuration bits - i.e. if more than one bit in the control set has
401      * changed, including the 'enable' bit, then we want either disable the
402      * timer and perform configuration, or perform configuration and then
403      * enable the timer
404      */
405     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
406         t = &s->timers[i];
407         shift = (i * TIMER_CTRL_BITS);
408         t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
409         t_new = (reg >> shift) & TIMER_CTRL_MASK;
410 
411         /* If we are disabling, do so first */
412         if ((t_old & enable_mask) && !(t_new & enable_mask)) {
413             aspeed_timer_ctrl_enable(t, false);
414         }
415         aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
416         aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
417         aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
418         /* If we are enabling, do so last */
419         if (!(t_old & enable_mask) && (t_new & enable_mask)) {
420             aspeed_timer_ctrl_enable(t, true);
421         }
422     }
423     s->ctrl = reg;
424 }
425 
426 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
427 {
428     trace_aspeed_timer_set_ctrl2(value);
429 }
430 
431 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
432                                unsigned size)
433 {
434     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
435     const int reg = (offset & 0xf) / 4;
436     AspeedTimerCtrlState *s = opaque;
437 
438     switch (offset) {
439     /* Control Registers */
440     case 0x30:
441         aspeed_timer_set_ctrl(s, tv);
442         break;
443     /* Timer Registers */
444     case 0x00 ... 0x2c:
445         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
446         break;
447     case 0x40 ... 0x8c:
448         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
449         break;
450     default:
451         ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value);
452         break;
453     }
454 }
455 
456 static const MemoryRegionOps aspeed_timer_ops = {
457     .read = aspeed_timer_read,
458     .write = aspeed_timer_write,
459     .endianness = DEVICE_LITTLE_ENDIAN,
460     .valid.min_access_size = 4,
461     .valid.max_access_size = 4,
462     .valid.unaligned = false,
463 };
464 
465 static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
466 {
467     uint64_t value;
468 
469     switch (offset) {
470     case 0x34:
471         value = s->ctrl2;
472         break;
473     case 0x38:
474     case 0x3C:
475     default:
476         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
477                 __func__, offset);
478         value = 0;
479         break;
480     }
481     return value;
482 }
483 
484 static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
485                                     uint64_t value)
486 {
487     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
488 
489     switch (offset) {
490     case 0x34:
491         aspeed_timer_set_ctrl2(s, tv);
492         break;
493     case 0x38:
494     case 0x3C:
495     default:
496         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
497                 __func__, offset);
498         break;
499     }
500 }
501 
502 static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
503 {
504     uint64_t value;
505 
506     switch (offset) {
507     case 0x34:
508         value = s->ctrl2;
509         break;
510     case 0x38:
511         value = s->ctrl3 & BIT(0);
512         break;
513     case 0x3C:
514     default:
515         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
516                 __func__, offset);
517         value = 0;
518         break;
519     }
520     return value;
521 }
522 
523 static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
524                                     uint64_t value)
525 {
526     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
527     uint8_t command;
528 
529     switch (offset) {
530     case 0x34:
531         aspeed_timer_set_ctrl2(s, tv);
532         break;
533     case 0x38:
534         command = (value >> 1) & 0xFF;
535         if (command == 0xAE) {
536             s->ctrl3 = 0x1;
537         } else if (command == 0xEA) {
538             s->ctrl3 = 0x0;
539         }
540         break;
541     case 0x3C:
542         if (s->ctrl3 & BIT(0)) {
543             aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
544         }
545         break;
546 
547     default:
548         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
549                 __func__, offset);
550         break;
551     }
552 }
553 
554 static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
555 {
556     uint64_t value;
557 
558     switch (offset) {
559     case 0x34:
560         value = s->irq_sts;
561         break;
562     case 0x38:
563     case 0x3C:
564     default:
565         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
566                 __func__, offset);
567         value = 0;
568         break;
569     }
570     return value;
571 }
572 
573 static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
574                                     uint64_t value)
575 {
576     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
577 
578     switch (offset) {
579     case 0x34:
580         s->irq_sts &= tv;
581         break;
582     case 0x3C:
583         aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
584         break;
585 
586     case 0x38:
587     default:
588         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
589                 __func__, offset);
590         break;
591     }
592 }
593 
594 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
595 {
596     AspeedTimer *t = &s->timers[id];
597 
598     t->id = id;
599     timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
600 }
601 
602 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
603 {
604     int i;
605     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
606     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
607 
608     assert(s->scu);
609 
610     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
611         aspeed_init_one_timer(s, i);
612         sysbus_init_irq(sbd, &s->timers[i].irq);
613     }
614     memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
615                           TYPE_ASPEED_TIMER, 0x1000);
616     sysbus_init_mmio(sbd, &s->iomem);
617 }
618 
619 static void aspeed_timer_reset(DeviceState *dev)
620 {
621     int i;
622     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
623 
624     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
625         AspeedTimer *t = &s->timers[i];
626         /* Explicitly call helpers to avoid any conditional behaviour through
627          * aspeed_timer_set_ctrl().
628          */
629         aspeed_timer_ctrl_enable(t, false);
630         aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
631         aspeed_timer_ctrl_overflow_interrupt(t, false);
632         aspeed_timer_ctrl_pulse_enable(t, false);
633         t->level = 0;
634         t->reload = 0;
635         t->match[0] = 0;
636         t->match[1] = 0;
637     }
638     s->ctrl = 0;
639     s->ctrl2 = 0;
640     s->ctrl3 = 0;
641     s->irq_sts = 0;
642 }
643 
644 static const VMStateDescription vmstate_aspeed_timer = {
645     .name = "aspeed.timer",
646     .version_id = 2,
647     .minimum_version_id = 2,
648     .fields = (const VMStateField[]) {
649         VMSTATE_UINT8(id, AspeedTimer),
650         VMSTATE_INT32(level, AspeedTimer),
651         VMSTATE_TIMER(timer, AspeedTimer),
652         VMSTATE_UINT32(reload, AspeedTimer),
653         VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
654         VMSTATE_END_OF_LIST()
655     }
656 };
657 
658 static const VMStateDescription vmstate_aspeed_timer_state = {
659     .name = "aspeed.timerctrl",
660     .version_id = 2,
661     .minimum_version_id = 2,
662     .fields = (const VMStateField[]) {
663         VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
664         VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
665         VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState),
666         VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState),
667         VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
668                              ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
669                              AspeedTimer),
670         VMSTATE_END_OF_LIST()
671     }
672 };
673 
674 static Property aspeed_timer_properties[] = {
675     DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU,
676                      AspeedSCUState *),
677     DEFINE_PROP_END_OF_LIST(),
678 };
679 
680 static void timer_class_init(ObjectClass *klass, void *data)
681 {
682     DeviceClass *dc = DEVICE_CLASS(klass);
683 
684     dc->realize = aspeed_timer_realize;
685     device_class_set_legacy_reset(dc, aspeed_timer_reset);
686     dc->desc = "ASPEED Timer";
687     dc->vmsd = &vmstate_aspeed_timer_state;
688     device_class_set_props(dc, aspeed_timer_properties);
689 }
690 
691 static const TypeInfo aspeed_timer_info = {
692     .name = TYPE_ASPEED_TIMER,
693     .parent = TYPE_SYS_BUS_DEVICE,
694     .instance_size = sizeof(AspeedTimerCtrlState),
695     .class_init = timer_class_init,
696     .class_size = sizeof(AspeedTimerClass),
697     .abstract   = true,
698 };
699 
700 static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data)
701 {
702     DeviceClass *dc = DEVICE_CLASS(klass);
703     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
704 
705     dc->desc = "ASPEED 2400 Timer";
706     awc->read = aspeed_2400_timer_read;
707     awc->write = aspeed_2400_timer_write;
708 }
709 
710 static const TypeInfo aspeed_2400_timer_info = {
711     .name = TYPE_ASPEED_2400_TIMER,
712     .parent = TYPE_ASPEED_TIMER,
713     .class_init = aspeed_2400_timer_class_init,
714 };
715 
716 static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data)
717 {
718     DeviceClass *dc = DEVICE_CLASS(klass);
719     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
720 
721     dc->desc = "ASPEED 2500 Timer";
722     awc->read = aspeed_2500_timer_read;
723     awc->write = aspeed_2500_timer_write;
724 }
725 
726 static const TypeInfo aspeed_2500_timer_info = {
727     .name = TYPE_ASPEED_2500_TIMER,
728     .parent = TYPE_ASPEED_TIMER,
729     .class_init = aspeed_2500_timer_class_init,
730 };
731 
732 static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data)
733 {
734     DeviceClass *dc = DEVICE_CLASS(klass);
735     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
736 
737     dc->desc = "ASPEED 2600 Timer";
738     awc->read = aspeed_2600_timer_read;
739     awc->write = aspeed_2600_timer_write;
740 }
741 
742 static const TypeInfo aspeed_2600_timer_info = {
743     .name = TYPE_ASPEED_2600_TIMER,
744     .parent = TYPE_ASPEED_TIMER,
745     .class_init = aspeed_2600_timer_class_init,
746 };
747 
748 static void aspeed_1030_timer_class_init(ObjectClass *klass, void *data)
749 {
750     DeviceClass *dc = DEVICE_CLASS(klass);
751     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
752 
753     dc->desc = "ASPEED 1030 Timer";
754     awc->read = aspeed_2600_timer_read;
755     awc->write = aspeed_2600_timer_write;
756 }
757 
758 static const TypeInfo aspeed_1030_timer_info = {
759     .name = TYPE_ASPEED_1030_TIMER,
760     .parent = TYPE_ASPEED_TIMER,
761     .class_init = aspeed_1030_timer_class_init,
762 };
763 
764 static void aspeed_timer_register_types(void)
765 {
766     type_register_static(&aspeed_timer_info);
767     type_register_static(&aspeed_2400_timer_info);
768     type_register_static(&aspeed_2500_timer_info);
769     type_register_static(&aspeed_2600_timer_info);
770     type_register_static(&aspeed_1030_timer_info);
771 }
772 
773 type_init(aspeed_timer_register_types)
774