xref: /openbmc/qemu/hw/timer/aspeed_timer.c (revision 520e210c)
1 /*
2  * ASPEED AST2400 Timer
3  *
4  * Andrew Jeffery <andrew@aj.id.au>
5  *
6  * Copyright (C) 2016 IBM Corp.
7  *
8  * This code is licensed under the GPL version 2 or later.  See
9  * the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qapi/error.h"
14 #include "hw/sysbus.h"
15 #include "hw/timer/aspeed_timer.h"
16 #include "qemu-common.h"
17 #include "qemu/bitops.h"
18 #include "qemu/timer.h"
19 #include "qemu/log.h"
20 #include "trace.h"
21 
22 #define TIMER_NR_REGS 4
23 
24 #define TIMER_CTRL_BITS 4
25 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
26 
27 #define TIMER_CLOCK_USE_EXT true
28 #define TIMER_CLOCK_EXT_HZ 1000000
29 #define TIMER_CLOCK_USE_APB false
30 
31 #define TIMER_REG_STATUS 0
32 #define TIMER_REG_RELOAD 1
33 #define TIMER_REG_MATCH_FIRST 2
34 #define TIMER_REG_MATCH_SECOND 3
35 
36 #define TIMER_FIRST_CAP_PULSE 4
37 
38 enum timer_ctrl_op {
39     op_enable = 0,
40     op_external_clock,
41     op_overflow_interrupt,
42     op_pulse_enable
43 };
44 
45 /**
46  * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
47  * structs, as it's a waste of memory. The ptimer BH callback needs to know
48  * whether a specific AspeedTimer is enabled, but this information is held in
49  * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
50  * arbitrary AspeedTimer to AspeedTimerCtrlState.
51  */
52 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
53 {
54     const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
55     return container_of(timers, AspeedTimerCtrlState, timers);
56 }
57 
58 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
59 {
60     return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
61 }
62 
63 static inline bool timer_enabled(AspeedTimer *t)
64 {
65     return timer_ctrl_status(t, op_enable);
66 }
67 
68 static inline bool timer_overflow_interrupt(AspeedTimer *t)
69 {
70     return timer_ctrl_status(t, op_overflow_interrupt);
71 }
72 
73 static inline bool timer_can_pulse(AspeedTimer *t)
74 {
75     return t->id >= TIMER_FIRST_CAP_PULSE;
76 }
77 
78 static inline bool timer_external_clock(AspeedTimer *t)
79 {
80     return timer_ctrl_status(t, op_external_clock);
81 }
82 
83 static inline uint32_t calculate_rate(struct AspeedTimer *t)
84 {
85     AspeedTimerCtrlState *s = timer_to_ctrl(t);
86 
87     return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : s->scu->apb_freq;
88 }
89 
90 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
91 {
92     uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
93     uint32_t rate = calculate_rate(t);
94     uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
95 
96     return t->reload - MIN(t->reload, ticks);
97 }
98 
99 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
100 {
101     uint64_t delta_ns;
102     uint64_t delta_ticks;
103 
104     delta_ticks = t->reload - MIN(t->reload, ticks);
105     delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
106 
107     return t->start + delta_ns;
108 }
109 
110 static uint64_t calculate_next(struct AspeedTimer *t)
111 {
112     uint64_t next = 0;
113     uint32_t rate = calculate_rate(t);
114 
115     while (!next) {
116         /* We don't know the relationship between the values in the match
117          * registers, so sort using MAX/MIN/zero. We sort in that order as the
118          * timer counts down to zero. */
119         uint64_t seq[] = {
120             calculate_time(t, MAX(t->match[0], t->match[1])),
121             calculate_time(t, MIN(t->match[0], t->match[1])),
122             calculate_time(t, 0),
123         };
124         uint64_t reload_ns;
125         uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
126 
127         if (now < seq[0]) {
128             next = seq[0];
129         } else if (now < seq[1]) {
130             next = seq[1];
131         } else if (now < seq[2]) {
132             next = seq[2];
133         } else if (t->reload) {
134             reload_ns = muldiv64(t->reload, NANOSECONDS_PER_SECOND, rate);
135             t->start = now - ((now - t->start) % reload_ns);
136         } else {
137             /* no reload value, return 0 */
138             break;
139         }
140     }
141 
142     return next;
143 }
144 
145 static void aspeed_timer_mod(AspeedTimer *t)
146 {
147     uint64_t next = calculate_next(t);
148     if (next) {
149         timer_mod(&t->timer, next);
150     }
151 }
152 
153 static void aspeed_timer_expire(void *opaque)
154 {
155     AspeedTimer *t = opaque;
156     bool interrupt = false;
157     uint32_t ticks;
158 
159     if (!timer_enabled(t)) {
160         return;
161     }
162 
163     ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
164 
165     if (!ticks) {
166         interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
167     } else if (ticks <= MIN(t->match[0], t->match[1])) {
168         interrupt = true;
169     } else if (ticks <= MAX(t->match[0], t->match[1])) {
170         interrupt = true;
171     }
172 
173     if (interrupt) {
174         t->level = !t->level;
175         qemu_set_irq(t->irq, t->level);
176     }
177 
178     aspeed_timer_mod(t);
179 }
180 
181 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
182 {
183     uint64_t value;
184 
185     switch (reg) {
186     case TIMER_REG_STATUS:
187         value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
188         break;
189     case TIMER_REG_RELOAD:
190         value = t->reload;
191         break;
192     case TIMER_REG_MATCH_FIRST:
193     case TIMER_REG_MATCH_SECOND:
194         value = t->match[reg - 2];
195         break;
196     default:
197         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
198                       __func__, reg);
199         value = 0;
200         break;
201     }
202     return value;
203 }
204 
205 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
206 {
207     AspeedTimerCtrlState *s = opaque;
208     const int reg = (offset & 0xf) / 4;
209     uint64_t value;
210 
211     switch (offset) {
212     case 0x30: /* Control Register */
213         value = s->ctrl;
214         break;
215     case 0x34: /* Control Register 2 */
216         value = s->ctrl2;
217         break;
218     case 0x00 ... 0x2c: /* Timers 1 - 4 */
219         value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
220         break;
221     case 0x40 ... 0x8c: /* Timers 5 - 8 */
222         value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
223         break;
224     /* Illegal */
225     case 0x38:
226     case 0x3C:
227     default:
228         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
229                 __func__, offset);
230         value = 0;
231         break;
232     }
233     trace_aspeed_timer_read(offset, size, value);
234     return value;
235 }
236 
237 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
238                                    uint32_t value)
239 {
240     AspeedTimer *t;
241     uint32_t old_reload;
242 
243     trace_aspeed_timer_set_value(timer, reg, value);
244     t = &s->timers[timer];
245     switch (reg) {
246     case TIMER_REG_RELOAD:
247         old_reload = t->reload;
248         t->reload = value;
249 
250         /* If the reload value was not previously set, or zero, and
251          * the current value is valid, try to start the timer if it is
252          * enabled.
253          */
254         if (old_reload || !t->reload) {
255             break;
256         }
257 
258     case TIMER_REG_STATUS:
259         if (timer_enabled(t)) {
260             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
261             int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
262             uint32_t rate = calculate_rate(t);
263 
264             t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
265             aspeed_timer_mod(t);
266         }
267         break;
268     case TIMER_REG_MATCH_FIRST:
269     case TIMER_REG_MATCH_SECOND:
270         t->match[reg - 2] = value;
271         if (timer_enabled(t)) {
272             aspeed_timer_mod(t);
273         }
274         break;
275     default:
276         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
277                       __func__, reg);
278         break;
279     }
280 }
281 
282 /* Control register operations are broken out into helpers that can be
283  * explicitly called on aspeed_timer_reset(), but also from
284  * aspeed_timer_ctrl_op().
285  */
286 
287 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
288 {
289     trace_aspeed_timer_ctrl_enable(t->id, enable);
290     if (enable) {
291         t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
292         aspeed_timer_mod(t);
293     } else {
294         timer_del(&t->timer);
295     }
296 }
297 
298 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
299 {
300     trace_aspeed_timer_ctrl_external_clock(t->id, enable);
301 }
302 
303 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
304 {
305     trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
306 }
307 
308 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
309 {
310     if (timer_can_pulse(t)) {
311         trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
312     } else {
313         qemu_log_mask(LOG_GUEST_ERROR,
314                 "%s: Timer does not support pulse mode\n", __func__);
315     }
316 }
317 
318 /**
319  * Given the actions are fixed in number and completely described in helper
320  * functions, dispatch with a lookup table rather than manage control flow with
321  * a switch statement.
322  */
323 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
324     [op_enable] = aspeed_timer_ctrl_enable,
325     [op_external_clock] = aspeed_timer_ctrl_external_clock,
326     [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
327     [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
328 };
329 
330 /**
331  * Conditionally affect changes chosen by a timer's control bit.
332  *
333  * The aspeed_timer_ctrl_op() interface is convenient for the
334  * aspeed_timer_set_ctrl() function as the "no change" early exit can be
335  * calculated for all operations, which cleans up the caller code. However the
336  * interface isn't convenient for the reset function where we want to enter a
337  * specific state without artificially constructing old and new values that
338  * will fall through the change guard (and motivates extracting the actions
339  * out to helper functions).
340  *
341  * @t: The timer to manipulate
342  * @op: The type of operation to be performed
343  * @old: The old state of the timer's control bits
344  * @new: The incoming state for the timer's control bits
345  */
346 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
347                                  uint8_t old, uint8_t new)
348 {
349     const uint8_t mask = BIT(op);
350     const bool enable = !!(new & mask);
351     const bool changed = ((old ^ new) & mask);
352     if (!changed) {
353         return;
354     }
355     ctrl_ops[op](t, enable);
356 }
357 
358 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
359 {
360     int i;
361     int shift;
362     uint8_t t_old, t_new;
363     AspeedTimer *t;
364     const uint8_t enable_mask = BIT(op_enable);
365 
366     /* Handle a dependency between the 'enable' and remaining three
367      * configuration bits - i.e. if more than one bit in the control set has
368      * changed, including the 'enable' bit, then we want either disable the
369      * timer and perform configuration, or perform configuration and then
370      * enable the timer
371      */
372     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
373         t = &s->timers[i];
374         shift = (i * TIMER_CTRL_BITS);
375         t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
376         t_new = (reg >> shift) & TIMER_CTRL_MASK;
377 
378         /* If we are disabling, do so first */
379         if ((t_old & enable_mask) && !(t_new & enable_mask)) {
380             aspeed_timer_ctrl_enable(t, false);
381         }
382         aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
383         aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
384         aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
385         /* If we are enabling, do so last */
386         if (!(t_old & enable_mask) && (t_new & enable_mask)) {
387             aspeed_timer_ctrl_enable(t, true);
388         }
389     }
390     s->ctrl = reg;
391 }
392 
393 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
394 {
395     trace_aspeed_timer_set_ctrl2(value);
396 }
397 
398 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
399                                unsigned size)
400 {
401     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
402     const int reg = (offset & 0xf) / 4;
403     AspeedTimerCtrlState *s = opaque;
404 
405     switch (offset) {
406     /* Control Registers */
407     case 0x30:
408         aspeed_timer_set_ctrl(s, tv);
409         break;
410     case 0x34:
411         aspeed_timer_set_ctrl2(s, tv);
412         break;
413     /* Timer Registers */
414     case 0x00 ... 0x2c:
415         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
416         break;
417     case 0x40 ... 0x8c:
418         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
419         break;
420     /* Illegal */
421     case 0x38:
422     case 0x3C:
423     default:
424         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
425                 __func__, offset);
426         break;
427     }
428 }
429 
430 static const MemoryRegionOps aspeed_timer_ops = {
431     .read = aspeed_timer_read,
432     .write = aspeed_timer_write,
433     .endianness = DEVICE_LITTLE_ENDIAN,
434     .valid.min_access_size = 4,
435     .valid.max_access_size = 4,
436     .valid.unaligned = false,
437 };
438 
439 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
440 {
441     AspeedTimer *t = &s->timers[id];
442 
443     t->id = id;
444     timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
445 }
446 
447 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
448 {
449     int i;
450     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
451     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
452     Object *obj;
453     Error *err = NULL;
454 
455     obj = object_property_get_link(OBJECT(dev), "scu", &err);
456     if (!obj) {
457         error_propagate_prepend(errp, err, "required link 'scu' not found: ");
458         return;
459     }
460     s->scu = ASPEED_SCU(obj);
461 
462     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
463         aspeed_init_one_timer(s, i);
464         sysbus_init_irq(sbd, &s->timers[i].irq);
465     }
466     memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
467                           TYPE_ASPEED_TIMER, 0x1000);
468     sysbus_init_mmio(sbd, &s->iomem);
469 }
470 
471 static void aspeed_timer_reset(DeviceState *dev)
472 {
473     int i;
474     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
475 
476     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
477         AspeedTimer *t = &s->timers[i];
478         /* Explicitly call helpers to avoid any conditional behaviour through
479          * aspeed_timer_set_ctrl().
480          */
481         aspeed_timer_ctrl_enable(t, false);
482         aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
483         aspeed_timer_ctrl_overflow_interrupt(t, false);
484         aspeed_timer_ctrl_pulse_enable(t, false);
485         t->level = 0;
486         t->reload = 0;
487         t->match[0] = 0;
488         t->match[1] = 0;
489     }
490     s->ctrl = 0;
491     s->ctrl2 = 0;
492 }
493 
494 static const VMStateDescription vmstate_aspeed_timer = {
495     .name = "aspeed.timer",
496     .version_id = 2,
497     .minimum_version_id = 2,
498     .fields = (VMStateField[]) {
499         VMSTATE_UINT8(id, AspeedTimer),
500         VMSTATE_INT32(level, AspeedTimer),
501         VMSTATE_TIMER(timer, AspeedTimer),
502         VMSTATE_UINT32(reload, AspeedTimer),
503         VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
504         VMSTATE_END_OF_LIST()
505     }
506 };
507 
508 static const VMStateDescription vmstate_aspeed_timer_state = {
509     .name = "aspeed.timerctrl",
510     .version_id = 1,
511     .minimum_version_id = 1,
512     .fields = (VMStateField[]) {
513         VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
514         VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
515         VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
516                              ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
517                              AspeedTimer),
518         VMSTATE_END_OF_LIST()
519     }
520 };
521 
522 static void timer_class_init(ObjectClass *klass, void *data)
523 {
524     DeviceClass *dc = DEVICE_CLASS(klass);
525 
526     dc->realize = aspeed_timer_realize;
527     dc->reset = aspeed_timer_reset;
528     dc->desc = "ASPEED Timer";
529     dc->vmsd = &vmstate_aspeed_timer_state;
530 }
531 
532 static const TypeInfo aspeed_timer_info = {
533     .name = TYPE_ASPEED_TIMER,
534     .parent = TYPE_SYS_BUS_DEVICE,
535     .instance_size = sizeof(AspeedTimerCtrlState),
536     .class_init = timer_class_init,
537 };
538 
539 static void aspeed_timer_register_types(void)
540 {
541     type_register_static(&aspeed_timer_info);
542 }
543 
544 type_init(aspeed_timer_register_types)
545