1 /* 2 * ASPEED AST2400 Timer 3 * 4 * Andrew Jeffery <andrew@aj.id.au> 5 * 6 * Copyright (C) 2016 IBM Corp. 7 * 8 * This code is licensed under the GPL version 2 or later. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "hw/sysbus.h" 14 #include "hw/timer/aspeed_timer.h" 15 #include "qemu-common.h" 16 #include "qemu/bitops.h" 17 #include "qemu/timer.h" 18 #include "qemu/log.h" 19 #include "trace.h" 20 21 #define TIMER_NR_REGS 4 22 23 #define TIMER_CTRL_BITS 4 24 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) 25 26 #define TIMER_CLOCK_USE_EXT true 27 #define TIMER_CLOCK_EXT_HZ 1000000 28 #define TIMER_CLOCK_USE_APB false 29 #define TIMER_CLOCK_APB_HZ 24000000 30 31 #define TIMER_REG_STATUS 0 32 #define TIMER_REG_RELOAD 1 33 #define TIMER_REG_MATCH_FIRST 2 34 #define TIMER_REG_MATCH_SECOND 3 35 36 #define TIMER_FIRST_CAP_PULSE 4 37 38 enum timer_ctrl_op { 39 op_enable = 0, 40 op_external_clock, 41 op_overflow_interrupt, 42 op_pulse_enable 43 }; 44 45 /** 46 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer 47 * structs, as it's a waste of memory. The ptimer BH callback needs to know 48 * whether a specific AspeedTimer is enabled, but this information is held in 49 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an 50 * arbitrary AspeedTimer to AspeedTimerCtrlState. 51 */ 52 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) 53 { 54 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); 55 return container_of(timers, AspeedTimerCtrlState, timers); 56 } 57 58 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) 59 { 60 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); 61 } 62 63 static inline bool timer_enabled(AspeedTimer *t) 64 { 65 return timer_ctrl_status(t, op_enable); 66 } 67 68 static inline bool timer_overflow_interrupt(AspeedTimer *t) 69 { 70 return timer_ctrl_status(t, op_overflow_interrupt); 71 } 72 73 static inline bool timer_can_pulse(AspeedTimer *t) 74 { 75 return t->id >= TIMER_FIRST_CAP_PULSE; 76 } 77 78 static inline bool timer_external_clock(AspeedTimer *t) 79 { 80 return timer_ctrl_status(t, op_external_clock); 81 } 82 83 static uint32_t clock_rates[] = { TIMER_CLOCK_APB_HZ, TIMER_CLOCK_EXT_HZ }; 84 85 static inline uint32_t calculate_rate(struct AspeedTimer *t) 86 { 87 return clock_rates[timer_external_clock(t)]; 88 } 89 90 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) 91 { 92 uint64_t delta_ns = now_ns - MIN(now_ns, t->start); 93 uint32_t rate = calculate_rate(t); 94 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); 95 96 return t->reload - MIN(t->reload, ticks); 97 } 98 99 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) 100 { 101 uint64_t delta_ns; 102 uint64_t delta_ticks; 103 104 delta_ticks = t->reload - MIN(t->reload, ticks); 105 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); 106 107 return t->start + delta_ns; 108 } 109 110 static uint64_t calculate_next(struct AspeedTimer *t) 111 { 112 uint64_t next = 0; 113 uint32_t rate = calculate_rate(t); 114 115 while (!next) { 116 /* We don't know the relationship between the values in the match 117 * registers, so sort using MAX/MIN/zero. We sort in that order as the 118 * timer counts down to zero. */ 119 uint64_t seq[] = { 120 calculate_time(t, MAX(t->match[0], t->match[1])), 121 calculate_time(t, MIN(t->match[0], t->match[1])), 122 calculate_time(t, 0), 123 }; 124 uint64_t reload_ns; 125 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 126 127 if (now < seq[0]) { 128 next = seq[0]; 129 } else if (now < seq[1]) { 130 next = seq[1]; 131 } else if (now < seq[2]) { 132 next = seq[2]; 133 } else if (t->reload) { 134 reload_ns = muldiv64(t->reload, NANOSECONDS_PER_SECOND, rate); 135 t->start = now - ((now - t->start) % reload_ns); 136 } else { 137 /* no reload value, return 0 */ 138 break; 139 } 140 } 141 142 return next; 143 } 144 145 static void aspeed_timer_mod(AspeedTimer *t) 146 { 147 uint64_t next = calculate_next(t); 148 if (next) { 149 timer_mod(&t->timer, next); 150 } 151 } 152 153 static void aspeed_timer_expire(void *opaque) 154 { 155 AspeedTimer *t = opaque; 156 bool interrupt = false; 157 uint32_t ticks; 158 159 if (!timer_enabled(t)) { 160 return; 161 } 162 163 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 164 165 if (!ticks) { 166 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; 167 } else if (ticks <= MIN(t->match[0], t->match[1])) { 168 interrupt = true; 169 } else if (ticks <= MAX(t->match[0], t->match[1])) { 170 interrupt = true; 171 } 172 173 if (interrupt) { 174 t->level = !t->level; 175 qemu_set_irq(t->irq, t->level); 176 } 177 178 aspeed_timer_mod(t); 179 } 180 181 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) 182 { 183 uint64_t value; 184 185 switch (reg) { 186 case TIMER_REG_STATUS: 187 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 188 break; 189 case TIMER_REG_RELOAD: 190 value = t->reload; 191 break; 192 case TIMER_REG_MATCH_FIRST: 193 case TIMER_REG_MATCH_SECOND: 194 value = t->match[reg - 2]; 195 break; 196 default: 197 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 198 __func__, reg); 199 value = 0; 200 break; 201 } 202 return value; 203 } 204 205 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) 206 { 207 AspeedTimerCtrlState *s = opaque; 208 const int reg = (offset & 0xf) / 4; 209 uint64_t value; 210 211 switch (offset) { 212 case 0x30: /* Control Register */ 213 value = s->ctrl; 214 break; 215 case 0x34: /* Control Register 2 */ 216 value = s->ctrl2; 217 break; 218 case 0x00 ... 0x2c: /* Timers 1 - 4 */ 219 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); 220 break; 221 case 0x40 ... 0x8c: /* Timers 5 - 8 */ 222 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); 223 break; 224 /* Illegal */ 225 case 0x38: 226 case 0x3C: 227 default: 228 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 229 __func__, offset); 230 value = 0; 231 break; 232 } 233 trace_aspeed_timer_read(offset, size, value); 234 return value; 235 } 236 237 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, 238 uint32_t value) 239 { 240 AspeedTimer *t; 241 uint32_t old_reload; 242 243 trace_aspeed_timer_set_value(timer, reg, value); 244 t = &s->timers[timer]; 245 switch (reg) { 246 case TIMER_REG_RELOAD: 247 old_reload = t->reload; 248 t->reload = value; 249 250 /* If the reload value was not previously set, or zero, and 251 * the current value is valid, try to start the timer if it is 252 * enabled. 253 */ 254 if (old_reload || !t->reload) { 255 break; 256 } 257 258 case TIMER_REG_STATUS: 259 if (timer_enabled(t)) { 260 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 261 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); 262 uint32_t rate = calculate_rate(t); 263 264 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); 265 aspeed_timer_mod(t); 266 } 267 break; 268 case TIMER_REG_MATCH_FIRST: 269 case TIMER_REG_MATCH_SECOND: 270 t->match[reg - 2] = value; 271 if (timer_enabled(t)) { 272 aspeed_timer_mod(t); 273 } 274 break; 275 default: 276 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 277 __func__, reg); 278 break; 279 } 280 } 281 282 /* Control register operations are broken out into helpers that can be 283 * explicitly called on aspeed_timer_reset(), but also from 284 * aspeed_timer_ctrl_op(). 285 */ 286 287 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) 288 { 289 trace_aspeed_timer_ctrl_enable(t->id, enable); 290 if (enable) { 291 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 292 aspeed_timer_mod(t); 293 } else { 294 timer_del(&t->timer); 295 } 296 } 297 298 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) 299 { 300 trace_aspeed_timer_ctrl_external_clock(t->id, enable); 301 } 302 303 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) 304 { 305 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); 306 } 307 308 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) 309 { 310 if (timer_can_pulse(t)) { 311 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); 312 } else { 313 qemu_log_mask(LOG_GUEST_ERROR, 314 "%s: Timer does not support pulse mode\n", __func__); 315 } 316 } 317 318 /** 319 * Given the actions are fixed in number and completely described in helper 320 * functions, dispatch with a lookup table rather than manage control flow with 321 * a switch statement. 322 */ 323 static void (*const ctrl_ops[])(AspeedTimer *, bool) = { 324 [op_enable] = aspeed_timer_ctrl_enable, 325 [op_external_clock] = aspeed_timer_ctrl_external_clock, 326 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, 327 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, 328 }; 329 330 /** 331 * Conditionally affect changes chosen by a timer's control bit. 332 * 333 * The aspeed_timer_ctrl_op() interface is convenient for the 334 * aspeed_timer_set_ctrl() function as the "no change" early exit can be 335 * calculated for all operations, which cleans up the caller code. However the 336 * interface isn't convenient for the reset function where we want to enter a 337 * specific state without artificially constructing old and new values that 338 * will fall through the change guard (and motivates extracting the actions 339 * out to helper functions). 340 * 341 * @t: The timer to manipulate 342 * @op: The type of operation to be performed 343 * @old: The old state of the timer's control bits 344 * @new: The incoming state for the timer's control bits 345 */ 346 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, 347 uint8_t old, uint8_t new) 348 { 349 const uint8_t mask = BIT(op); 350 const bool enable = !!(new & mask); 351 const bool changed = ((old ^ new) & mask); 352 if (!changed) { 353 return; 354 } 355 ctrl_ops[op](t, enable); 356 } 357 358 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) 359 { 360 int i; 361 int shift; 362 uint8_t t_old, t_new; 363 AspeedTimer *t; 364 const uint8_t enable_mask = BIT(op_enable); 365 366 /* Handle a dependency between the 'enable' and remaining three 367 * configuration bits - i.e. if more than one bit in the control set has 368 * changed, including the 'enable' bit, then we want either disable the 369 * timer and perform configuration, or perform configuration and then 370 * enable the timer 371 */ 372 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 373 t = &s->timers[i]; 374 shift = (i * TIMER_CTRL_BITS); 375 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; 376 t_new = (reg >> shift) & TIMER_CTRL_MASK; 377 378 /* If we are disabling, do so first */ 379 if ((t_old & enable_mask) && !(t_new & enable_mask)) { 380 aspeed_timer_ctrl_enable(t, false); 381 } 382 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); 383 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); 384 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); 385 /* If we are enabling, do so last */ 386 if (!(t_old & enable_mask) && (t_new & enable_mask)) { 387 aspeed_timer_ctrl_enable(t, true); 388 } 389 } 390 s->ctrl = reg; 391 } 392 393 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) 394 { 395 trace_aspeed_timer_set_ctrl2(value); 396 } 397 398 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, 399 unsigned size) 400 { 401 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 402 const int reg = (offset & 0xf) / 4; 403 AspeedTimerCtrlState *s = opaque; 404 405 switch (offset) { 406 /* Control Registers */ 407 case 0x30: 408 aspeed_timer_set_ctrl(s, tv); 409 break; 410 case 0x34: 411 aspeed_timer_set_ctrl2(s, tv); 412 break; 413 /* Timer Registers */ 414 case 0x00 ... 0x2c: 415 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); 416 break; 417 case 0x40 ... 0x8c: 418 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); 419 break; 420 /* Illegal */ 421 case 0x38: 422 case 0x3C: 423 default: 424 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 425 __func__, offset); 426 break; 427 } 428 } 429 430 static const MemoryRegionOps aspeed_timer_ops = { 431 .read = aspeed_timer_read, 432 .write = aspeed_timer_write, 433 .endianness = DEVICE_LITTLE_ENDIAN, 434 .valid.min_access_size = 4, 435 .valid.max_access_size = 4, 436 .valid.unaligned = false, 437 }; 438 439 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) 440 { 441 AspeedTimer *t = &s->timers[id]; 442 443 t->id = id; 444 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); 445 } 446 447 static void aspeed_timer_realize(DeviceState *dev, Error **errp) 448 { 449 int i; 450 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 451 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 452 453 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 454 aspeed_init_one_timer(s, i); 455 sysbus_init_irq(sbd, &s->timers[i].irq); 456 } 457 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, 458 TYPE_ASPEED_TIMER, 0x1000); 459 sysbus_init_mmio(sbd, &s->iomem); 460 } 461 462 static void aspeed_timer_reset(DeviceState *dev) 463 { 464 int i; 465 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 466 467 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 468 AspeedTimer *t = &s->timers[i]; 469 /* Explicitly call helpers to avoid any conditional behaviour through 470 * aspeed_timer_set_ctrl(). 471 */ 472 aspeed_timer_ctrl_enable(t, false); 473 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); 474 aspeed_timer_ctrl_overflow_interrupt(t, false); 475 aspeed_timer_ctrl_pulse_enable(t, false); 476 t->level = 0; 477 t->reload = 0; 478 t->match[0] = 0; 479 t->match[1] = 0; 480 } 481 s->ctrl = 0; 482 s->ctrl2 = 0; 483 } 484 485 static const VMStateDescription vmstate_aspeed_timer = { 486 .name = "aspeed.timer", 487 .version_id = 2, 488 .minimum_version_id = 2, 489 .fields = (VMStateField[]) { 490 VMSTATE_UINT8(id, AspeedTimer), 491 VMSTATE_INT32(level, AspeedTimer), 492 VMSTATE_TIMER(timer, AspeedTimer), 493 VMSTATE_UINT32(reload, AspeedTimer), 494 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), 495 VMSTATE_END_OF_LIST() 496 } 497 }; 498 499 static const VMStateDescription vmstate_aspeed_timer_state = { 500 .name = "aspeed.timerctrl", 501 .version_id = 1, 502 .minimum_version_id = 1, 503 .fields = (VMStateField[]) { 504 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), 505 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), 506 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, 507 ASPEED_TIMER_NR_TIMERS, 2, vmstate_aspeed_timer, 508 AspeedTimer), 509 VMSTATE_END_OF_LIST() 510 } 511 }; 512 513 static void timer_class_init(ObjectClass *klass, void *data) 514 { 515 DeviceClass *dc = DEVICE_CLASS(klass); 516 517 dc->realize = aspeed_timer_realize; 518 dc->reset = aspeed_timer_reset; 519 dc->desc = "ASPEED Timer"; 520 dc->vmsd = &vmstate_aspeed_timer_state; 521 } 522 523 static const TypeInfo aspeed_timer_info = { 524 .name = TYPE_ASPEED_TIMER, 525 .parent = TYPE_SYS_BUS_DEVICE, 526 .instance_size = sizeof(AspeedTimerCtrlState), 527 .class_init = timer_class_init, 528 }; 529 530 static void aspeed_timer_register_types(void) 531 { 532 type_register_static(&aspeed_timer_info); 533 } 534 535 type_init(aspeed_timer_register_types) 536