1 /* 2 * ASPEED AST2400 Timer 3 * 4 * Andrew Jeffery <andrew@aj.id.au> 5 * 6 * Copyright (C) 2016 IBM Corp. 7 * 8 * This code is licensed under the GPL version 2 or later. See 9 * the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qapi/error.h" 14 #include "hw/irq.h" 15 #include "hw/sysbus.h" 16 #include "hw/timer/aspeed_timer.h" 17 #include "migration/vmstate.h" 18 #include "qemu/bitops.h" 19 #include "qemu/timer.h" 20 #include "qemu/log.h" 21 #include "qemu/module.h" 22 #include "hw/qdev-properties.h" 23 #include "trace.h" 24 25 #define TIMER_NR_REGS 4 26 27 #define TIMER_CTRL_BITS 4 28 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) 29 30 #define TIMER_CLOCK_USE_EXT true 31 #define TIMER_CLOCK_EXT_HZ 1000000 32 #define TIMER_CLOCK_USE_APB false 33 34 #define TIMER_REG_STATUS 0 35 #define TIMER_REG_RELOAD 1 36 #define TIMER_REG_MATCH_FIRST 2 37 #define TIMER_REG_MATCH_SECOND 3 38 39 #define TIMER_FIRST_CAP_PULSE 4 40 41 enum timer_ctrl_op { 42 op_enable = 0, 43 op_external_clock, 44 op_overflow_interrupt, 45 op_pulse_enable 46 }; 47 48 /* 49 * Minimum value of the reload register to filter out short period 50 * timers which have a noticeable impact in emulation. 5us should be 51 * enough, use 20us for "safety". 52 */ 53 #define TIMER_MIN_NS (20 * SCALE_US) 54 55 /** 56 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer 57 * structs, as it's a waste of memory. The ptimer BH callback needs to know 58 * whether a specific AspeedTimer is enabled, but this information is held in 59 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an 60 * arbitrary AspeedTimer to AspeedTimerCtrlState. 61 */ 62 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) 63 { 64 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); 65 return container_of(timers, AspeedTimerCtrlState, timers); 66 } 67 68 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) 69 { 70 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); 71 } 72 73 static inline bool timer_enabled(AspeedTimer *t) 74 { 75 return timer_ctrl_status(t, op_enable); 76 } 77 78 static inline bool timer_overflow_interrupt(AspeedTimer *t) 79 { 80 return timer_ctrl_status(t, op_overflow_interrupt); 81 } 82 83 static inline bool timer_can_pulse(AspeedTimer *t) 84 { 85 return t->id >= TIMER_FIRST_CAP_PULSE; 86 } 87 88 static inline bool timer_external_clock(AspeedTimer *t) 89 { 90 return timer_ctrl_status(t, op_external_clock); 91 } 92 93 static inline uint32_t calculate_rate(struct AspeedTimer *t) 94 { 95 AspeedTimerCtrlState *s = timer_to_ctrl(t); 96 97 return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : 98 aspeed_scu_get_apb_freq(s->scu); 99 } 100 101 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) 102 { 103 uint64_t delta_ns = now_ns - MIN(now_ns, t->start); 104 uint32_t rate = calculate_rate(t); 105 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); 106 107 return t->reload - MIN(t->reload, ticks); 108 } 109 110 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value) 111 { 112 uint32_t rate = calculate_rate(t); 113 uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND); 114 115 return value < min_ticks ? min_ticks : value; 116 } 117 118 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) 119 { 120 uint64_t delta_ns; 121 uint64_t delta_ticks; 122 123 delta_ticks = t->reload - MIN(t->reload, ticks); 124 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); 125 126 return t->start + delta_ns; 127 } 128 129 static inline uint32_t calculate_match(struct AspeedTimer *t, int i) 130 { 131 return t->match[i] < t->reload ? t->match[i] : 0; 132 } 133 134 static uint64_t calculate_next(struct AspeedTimer *t) 135 { 136 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 137 uint64_t next; 138 139 /* 140 * We don't know the relationship between the values in the match 141 * registers, so sort using MAX/MIN/zero. We sort in that order as 142 * the timer counts down to zero. 143 */ 144 145 next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1))); 146 if (now < next) { 147 return next; 148 } 149 150 next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1))); 151 if (now < next) { 152 return next; 153 } 154 155 next = calculate_time(t, 0); 156 if (now < next) { 157 return next; 158 } 159 160 /* We've missed all deadlines, fire interrupt and try again */ 161 timer_del(&t->timer); 162 163 if (timer_overflow_interrupt(t)) { 164 AspeedTimerCtrlState *s = timer_to_ctrl(t); 165 t->level = !t->level; 166 s->irq_sts |= BIT(t->id); 167 qemu_set_irq(t->irq, t->level); 168 } 169 170 next = MAX(calculate_match(t, 0), calculate_match(t, 1)); 171 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 172 173 return calculate_time(t, next); 174 } 175 176 static void aspeed_timer_mod(AspeedTimer *t) 177 { 178 uint64_t next = calculate_next(t); 179 if (next) { 180 timer_mod(&t->timer, next); 181 } 182 } 183 184 static void aspeed_timer_expire(void *opaque) 185 { 186 AspeedTimer *t = opaque; 187 bool interrupt = false; 188 uint32_t ticks; 189 190 if (!timer_enabled(t)) { 191 return; 192 } 193 194 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 195 196 if (!ticks) { 197 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; 198 } else if (ticks <= MIN(t->match[0], t->match[1])) { 199 interrupt = true; 200 } else if (ticks <= MAX(t->match[0], t->match[1])) { 201 interrupt = true; 202 } 203 204 if (interrupt) { 205 AspeedTimerCtrlState *s = timer_to_ctrl(t); 206 t->level = !t->level; 207 s->irq_sts |= BIT(t->id); 208 qemu_set_irq(t->irq, t->level); 209 } 210 211 aspeed_timer_mod(t); 212 } 213 214 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) 215 { 216 uint64_t value; 217 218 switch (reg) { 219 case TIMER_REG_STATUS: 220 if (timer_enabled(t)) { 221 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 222 } else { 223 value = t->reload; 224 } 225 break; 226 case TIMER_REG_RELOAD: 227 value = t->reload; 228 break; 229 case TIMER_REG_MATCH_FIRST: 230 case TIMER_REG_MATCH_SECOND: 231 value = t->match[reg - 2]; 232 break; 233 default: 234 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 235 __func__, reg); 236 value = 0; 237 break; 238 } 239 return value; 240 } 241 242 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) 243 { 244 AspeedTimerCtrlState *s = opaque; 245 const int reg = (offset & 0xf) / 4; 246 uint64_t value; 247 248 switch (offset) { 249 case 0x30: /* Control Register */ 250 value = s->ctrl; 251 break; 252 case 0x00 ... 0x2c: /* Timers 1 - 4 */ 253 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); 254 break; 255 case 0x40 ... 0x8c: /* Timers 5 - 8 */ 256 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); 257 break; 258 default: 259 value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset); 260 break; 261 } 262 trace_aspeed_timer_read(offset, size, value); 263 return value; 264 } 265 266 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, 267 uint32_t value) 268 { 269 AspeedTimer *t; 270 uint32_t old_reload; 271 272 trace_aspeed_timer_set_value(timer, reg, value); 273 t = &s->timers[timer]; 274 switch (reg) { 275 case TIMER_REG_RELOAD: 276 old_reload = t->reload; 277 t->reload = calculate_min_ticks(t, value); 278 279 /* If the reload value was not previously set, or zero, and 280 * the current value is valid, try to start the timer if it is 281 * enabled. 282 */ 283 if (old_reload || !t->reload) { 284 break; 285 } 286 /* fall through to re-enable */ 287 case TIMER_REG_STATUS: 288 if (timer_enabled(t)) { 289 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 290 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); 291 uint32_t rate = calculate_rate(t); 292 293 if (delta >= 0) { 294 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); 295 } else { 296 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate); 297 } 298 aspeed_timer_mod(t); 299 } 300 break; 301 case TIMER_REG_MATCH_FIRST: 302 case TIMER_REG_MATCH_SECOND: 303 t->match[reg - 2] = value; 304 if (timer_enabled(t)) { 305 aspeed_timer_mod(t); 306 } 307 break; 308 default: 309 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", 310 __func__, reg); 311 break; 312 } 313 } 314 315 /* Control register operations are broken out into helpers that can be 316 * explicitly called on aspeed_timer_reset(), but also from 317 * aspeed_timer_ctrl_op(). 318 */ 319 320 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) 321 { 322 trace_aspeed_timer_ctrl_enable(t->id, enable); 323 if (enable) { 324 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 325 aspeed_timer_mod(t); 326 } else { 327 timer_del(&t->timer); 328 } 329 } 330 331 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) 332 { 333 trace_aspeed_timer_ctrl_external_clock(t->id, enable); 334 } 335 336 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) 337 { 338 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); 339 } 340 341 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) 342 { 343 if (timer_can_pulse(t)) { 344 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); 345 } else { 346 qemu_log_mask(LOG_GUEST_ERROR, 347 "%s: Timer does not support pulse mode\n", __func__); 348 } 349 } 350 351 /** 352 * Given the actions are fixed in number and completely described in helper 353 * functions, dispatch with a lookup table rather than manage control flow with 354 * a switch statement. 355 */ 356 static void (*const ctrl_ops[])(AspeedTimer *, bool) = { 357 [op_enable] = aspeed_timer_ctrl_enable, 358 [op_external_clock] = aspeed_timer_ctrl_external_clock, 359 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, 360 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, 361 }; 362 363 /** 364 * Conditionally affect changes chosen by a timer's control bit. 365 * 366 * The aspeed_timer_ctrl_op() interface is convenient for the 367 * aspeed_timer_set_ctrl() function as the "no change" early exit can be 368 * calculated for all operations, which cleans up the caller code. However the 369 * interface isn't convenient for the reset function where we want to enter a 370 * specific state without artificially constructing old and new values that 371 * will fall through the change guard (and motivates extracting the actions 372 * out to helper functions). 373 * 374 * @t: The timer to manipulate 375 * @op: The type of operation to be performed 376 * @old: The old state of the timer's control bits 377 * @new: The incoming state for the timer's control bits 378 */ 379 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, 380 uint8_t old, uint8_t new) 381 { 382 const uint8_t mask = BIT(op); 383 const bool enable = !!(new & mask); 384 const bool changed = ((old ^ new) & mask); 385 if (!changed) { 386 return; 387 } 388 ctrl_ops[op](t, enable); 389 } 390 391 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) 392 { 393 int i; 394 int shift; 395 uint8_t t_old, t_new; 396 AspeedTimer *t; 397 const uint8_t enable_mask = BIT(op_enable); 398 399 /* Handle a dependency between the 'enable' and remaining three 400 * configuration bits - i.e. if more than one bit in the control set has 401 * changed, including the 'enable' bit, then we want either disable the 402 * timer and perform configuration, or perform configuration and then 403 * enable the timer 404 */ 405 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 406 t = &s->timers[i]; 407 shift = (i * TIMER_CTRL_BITS); 408 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; 409 t_new = (reg >> shift) & TIMER_CTRL_MASK; 410 411 /* If we are disabling, do so first */ 412 if ((t_old & enable_mask) && !(t_new & enable_mask)) { 413 aspeed_timer_ctrl_enable(t, false); 414 } 415 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); 416 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); 417 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); 418 /* If we are enabling, do so last */ 419 if (!(t_old & enable_mask) && (t_new & enable_mask)) { 420 aspeed_timer_ctrl_enable(t, true); 421 } 422 } 423 s->ctrl = reg; 424 } 425 426 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) 427 { 428 trace_aspeed_timer_set_ctrl2(value); 429 } 430 431 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, 432 unsigned size) 433 { 434 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 435 const int reg = (offset & 0xf) / 4; 436 AspeedTimerCtrlState *s = opaque; 437 438 switch (offset) { 439 /* Control Registers */ 440 case 0x30: 441 aspeed_timer_set_ctrl(s, tv); 442 break; 443 /* Timer Registers */ 444 case 0x00 ... 0x2c: 445 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); 446 break; 447 case 0x40 ... 0x8c: 448 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); 449 break; 450 default: 451 ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value); 452 break; 453 } 454 } 455 456 static const MemoryRegionOps aspeed_timer_ops = { 457 .read = aspeed_timer_read, 458 .write = aspeed_timer_write, 459 .endianness = DEVICE_LITTLE_ENDIAN, 460 .valid.min_access_size = 4, 461 .valid.max_access_size = 4, 462 .valid.unaligned = false, 463 }; 464 465 static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 466 { 467 uint64_t value; 468 469 switch (offset) { 470 case 0x34: 471 value = s->ctrl2; 472 break; 473 case 0x38: 474 case 0x3C: 475 default: 476 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 477 __func__, offset); 478 value = 0; 479 break; 480 } 481 return value; 482 } 483 484 static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 485 uint64_t value) 486 { 487 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 488 489 switch (offset) { 490 case 0x34: 491 aspeed_timer_set_ctrl2(s, tv); 492 break; 493 case 0x38: 494 case 0x3C: 495 default: 496 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 497 __func__, offset); 498 break; 499 } 500 } 501 502 static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 503 { 504 uint64_t value; 505 506 switch (offset) { 507 case 0x34: 508 value = s->ctrl2; 509 break; 510 case 0x38: 511 value = s->ctrl3 & BIT(0); 512 break; 513 case 0x3C: 514 default: 515 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 516 __func__, offset); 517 value = 0; 518 break; 519 } 520 return value; 521 } 522 523 static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 524 uint64_t value) 525 { 526 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 527 uint8_t command; 528 529 switch (offset) { 530 case 0x34: 531 aspeed_timer_set_ctrl2(s, tv); 532 break; 533 case 0x38: 534 command = (value >> 1) & 0xFF; 535 if (command == 0xAE) { 536 s->ctrl3 = 0x1; 537 } else if (command == 0xEA) { 538 s->ctrl3 = 0x0; 539 } 540 break; 541 case 0x3C: 542 if (s->ctrl3 & BIT(0)) { 543 aspeed_timer_set_ctrl(s, s->ctrl & ~tv); 544 } 545 break; 546 547 default: 548 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 549 __func__, offset); 550 break; 551 } 552 } 553 554 static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset) 555 { 556 uint64_t value; 557 558 switch (offset) { 559 case 0x34: 560 value = s->irq_sts; 561 break; 562 case 0x38: 563 case 0x3C: 564 default: 565 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 566 __func__, offset); 567 value = 0; 568 break; 569 } 570 return value; 571 } 572 573 static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset, 574 uint64_t value) 575 { 576 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); 577 578 switch (offset) { 579 case 0x34: 580 s->irq_sts &= tv; 581 break; 582 case 0x3C: 583 aspeed_timer_set_ctrl(s, s->ctrl & ~tv); 584 break; 585 586 case 0x38: 587 default: 588 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", 589 __func__, offset); 590 break; 591 } 592 } 593 594 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) 595 { 596 AspeedTimer *t = &s->timers[id]; 597 598 t->id = id; 599 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); 600 } 601 602 static void aspeed_timer_realize(DeviceState *dev, Error **errp) 603 { 604 int i; 605 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 606 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 607 608 assert(s->scu); 609 610 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 611 aspeed_init_one_timer(s, i); 612 sysbus_init_irq(sbd, &s->timers[i].irq); 613 } 614 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, 615 TYPE_ASPEED_TIMER, 0x1000); 616 sysbus_init_mmio(sbd, &s->iomem); 617 } 618 619 static void aspeed_timer_reset(DeviceState *dev) 620 { 621 int i; 622 AspeedTimerCtrlState *s = ASPEED_TIMER(dev); 623 624 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { 625 AspeedTimer *t = &s->timers[i]; 626 /* Explicitly call helpers to avoid any conditional behaviour through 627 * aspeed_timer_set_ctrl(). 628 */ 629 aspeed_timer_ctrl_enable(t, false); 630 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); 631 aspeed_timer_ctrl_overflow_interrupt(t, false); 632 aspeed_timer_ctrl_pulse_enable(t, false); 633 t->level = 0; 634 t->reload = 0; 635 t->match[0] = 0; 636 t->match[1] = 0; 637 } 638 s->ctrl = 0; 639 s->ctrl2 = 0; 640 s->ctrl3 = 0; 641 s->irq_sts = 0; 642 } 643 644 static const VMStateDescription vmstate_aspeed_timer = { 645 .name = "aspeed.timer", 646 .version_id = 2, 647 .minimum_version_id = 2, 648 .fields = (const VMStateField[]) { 649 VMSTATE_UINT8(id, AspeedTimer), 650 VMSTATE_INT32(level, AspeedTimer), 651 VMSTATE_TIMER(timer, AspeedTimer), 652 VMSTATE_UINT32(reload, AspeedTimer), 653 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), 654 VMSTATE_END_OF_LIST() 655 } 656 }; 657 658 static const VMStateDescription vmstate_aspeed_timer_state = { 659 .name = "aspeed.timerctrl", 660 .version_id = 2, 661 .minimum_version_id = 2, 662 .fields = (const VMStateField[]) { 663 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), 664 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), 665 VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState), 666 VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState), 667 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, 668 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer, 669 AspeedTimer), 670 VMSTATE_END_OF_LIST() 671 } 672 }; 673 674 static Property aspeed_timer_properties[] = { 675 DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU, 676 AspeedSCUState *), 677 DEFINE_PROP_END_OF_LIST(), 678 }; 679 680 static void timer_class_init(ObjectClass *klass, void *data) 681 { 682 DeviceClass *dc = DEVICE_CLASS(klass); 683 684 dc->realize = aspeed_timer_realize; 685 device_class_set_legacy_reset(dc, aspeed_timer_reset); 686 dc->desc = "ASPEED Timer"; 687 dc->vmsd = &vmstate_aspeed_timer_state; 688 device_class_set_props(dc, aspeed_timer_properties); 689 } 690 691 static const TypeInfo aspeed_timer_info = { 692 .name = TYPE_ASPEED_TIMER, 693 .parent = TYPE_SYS_BUS_DEVICE, 694 .instance_size = sizeof(AspeedTimerCtrlState), 695 .class_init = timer_class_init, 696 .class_size = sizeof(AspeedTimerClass), 697 .abstract = true, 698 }; 699 700 static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data) 701 { 702 DeviceClass *dc = DEVICE_CLASS(klass); 703 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 704 705 dc->desc = "ASPEED 2400 Timer"; 706 awc->read = aspeed_2400_timer_read; 707 awc->write = aspeed_2400_timer_write; 708 } 709 710 static const TypeInfo aspeed_2400_timer_info = { 711 .name = TYPE_ASPEED_2400_TIMER, 712 .parent = TYPE_ASPEED_TIMER, 713 .class_init = aspeed_2400_timer_class_init, 714 }; 715 716 static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data) 717 { 718 DeviceClass *dc = DEVICE_CLASS(klass); 719 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 720 721 dc->desc = "ASPEED 2500 Timer"; 722 awc->read = aspeed_2500_timer_read; 723 awc->write = aspeed_2500_timer_write; 724 } 725 726 static const TypeInfo aspeed_2500_timer_info = { 727 .name = TYPE_ASPEED_2500_TIMER, 728 .parent = TYPE_ASPEED_TIMER, 729 .class_init = aspeed_2500_timer_class_init, 730 }; 731 732 static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data) 733 { 734 DeviceClass *dc = DEVICE_CLASS(klass); 735 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 736 737 dc->desc = "ASPEED 2600 Timer"; 738 awc->read = aspeed_2600_timer_read; 739 awc->write = aspeed_2600_timer_write; 740 } 741 742 static const TypeInfo aspeed_2600_timer_info = { 743 .name = TYPE_ASPEED_2600_TIMER, 744 .parent = TYPE_ASPEED_TIMER, 745 .class_init = aspeed_2600_timer_class_init, 746 }; 747 748 static void aspeed_1030_timer_class_init(ObjectClass *klass, void *data) 749 { 750 DeviceClass *dc = DEVICE_CLASS(klass); 751 AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); 752 753 dc->desc = "ASPEED 1030 Timer"; 754 awc->read = aspeed_2600_timer_read; 755 awc->write = aspeed_2600_timer_write; 756 } 757 758 static const TypeInfo aspeed_1030_timer_info = { 759 .name = TYPE_ASPEED_1030_TIMER, 760 .parent = TYPE_ASPEED_TIMER, 761 .class_init = aspeed_1030_timer_class_init, 762 }; 763 764 static void aspeed_timer_register_types(void) 765 { 766 type_register_static(&aspeed_timer_info); 767 type_register_static(&aspeed_2400_timer_info); 768 type_register_static(&aspeed_2500_timer_info); 769 type_register_static(&aspeed_2600_timer_info); 770 type_register_static(&aspeed_1030_timer_info); 771 } 772 773 type_init(aspeed_timer_register_types) 774