xref: /openbmc/qemu/hw/timer/arm_mptimer.c (revision f6bda9cb)
1 /*
2  * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Copyright (c) 2011 Linaro Limited
6  * Written by Paul Brook, Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "hw/sysbus.h"
23 #include "qemu/timer.h"
24 #include "qom/cpu.h"
25 
26 /* This device implements the per-cpu private timer and watchdog block
27  * which is used in both the ARM11MPCore and Cortex-A9MP.
28  */
29 
30 #define MAX_CPUS 4
31 
32 /* State of a single timer or watchdog block */
33 typedef struct {
34     uint32_t count;
35     uint32_t load;
36     uint32_t control;
37     uint32_t status;
38     int64_t tick;
39     QEMUTimer *timer;
40     qemu_irq irq;
41     MemoryRegion iomem;
42 } TimerBlock;
43 
44 #define TYPE_ARM_MPTIMER "arm_mptimer"
45 #define ARM_MPTIMER(obj) \
46     OBJECT_CHECK(ARMMPTimerState, (obj), TYPE_ARM_MPTIMER)
47 
48 typedef struct {
49     /*< private >*/
50     SysBusDevice parent_obj;
51     /*< public >*/
52 
53     uint32_t num_cpu;
54     TimerBlock timerblock[MAX_CPUS];
55     MemoryRegion iomem;
56 } ARMMPTimerState;
57 
58 static inline int get_current_cpu(ARMMPTimerState *s)
59 {
60     if (current_cpu->cpu_index >= s->num_cpu) {
61         hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
62                  s->num_cpu, current_cpu->cpu_index);
63     }
64     return current_cpu->cpu_index;
65 }
66 
67 static inline void timerblock_update_irq(TimerBlock *tb)
68 {
69     qemu_set_irq(tb->irq, tb->status);
70 }
71 
72 /* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
73 static inline uint32_t timerblock_scale(TimerBlock *tb)
74 {
75     return (((tb->control >> 8) & 0xff) + 1) * 10;
76 }
77 
78 static void timerblock_reload(TimerBlock *tb, int restart)
79 {
80     if (tb->count == 0) {
81         return;
82     }
83     if (restart) {
84         tb->tick = qemu_get_clock_ns(vm_clock);
85     }
86     tb->tick += (int64_t)tb->count * timerblock_scale(tb);
87     qemu_mod_timer(tb->timer, tb->tick);
88 }
89 
90 static void timerblock_tick(void *opaque)
91 {
92     TimerBlock *tb = (TimerBlock *)opaque;
93     tb->status = 1;
94     if (tb->control & 2) {
95         tb->count = tb->load;
96         timerblock_reload(tb, 0);
97     } else {
98         tb->count = 0;
99     }
100     timerblock_update_irq(tb);
101 }
102 
103 static uint64_t timerblock_read(void *opaque, hwaddr addr,
104                                 unsigned size)
105 {
106     TimerBlock *tb = (TimerBlock *)opaque;
107     int64_t val;
108     switch (addr) {
109     case 0: /* Load */
110         return tb->load;
111     case 4: /* Counter.  */
112         if (((tb->control & 1) == 0) || (tb->count == 0)) {
113             return 0;
114         }
115         /* Slow and ugly, but hopefully won't happen too often.  */
116         val = tb->tick - qemu_get_clock_ns(vm_clock);
117         val /= timerblock_scale(tb);
118         if (val < 0) {
119             val = 0;
120         }
121         return val;
122     case 8: /* Control.  */
123         return tb->control;
124     case 12: /* Interrupt status.  */
125         return tb->status;
126     default:
127         return 0;
128     }
129 }
130 
131 static void timerblock_write(void *opaque, hwaddr addr,
132                              uint64_t value, unsigned size)
133 {
134     TimerBlock *tb = (TimerBlock *)opaque;
135     int64_t old;
136     switch (addr) {
137     case 0: /* Load */
138         tb->load = value;
139         /* Fall through.  */
140     case 4: /* Counter.  */
141         if ((tb->control & 1) && tb->count) {
142             /* Cancel the previous timer.  */
143             qemu_del_timer(tb->timer);
144         }
145         tb->count = value;
146         if (tb->control & 1) {
147             timerblock_reload(tb, 1);
148         }
149         break;
150     case 8: /* Control.  */
151         old = tb->control;
152         tb->control = value;
153         if (((old & 1) == 0) && (value & 1)) {
154             if (tb->count == 0 && (tb->control & 2)) {
155                 tb->count = tb->load;
156             }
157             timerblock_reload(tb, 1);
158         }
159         break;
160     case 12: /* Interrupt status.  */
161         tb->status &= ~value;
162         timerblock_update_irq(tb);
163         break;
164     }
165 }
166 
167 /* Wrapper functions to implement the "read timer/watchdog for
168  * the current CPU" memory regions.
169  */
170 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
171                                    unsigned size)
172 {
173     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
174     int id = get_current_cpu(s);
175     return timerblock_read(&s->timerblock[id], addr, size);
176 }
177 
178 static void arm_thistimer_write(void *opaque, hwaddr addr,
179                                 uint64_t value, unsigned size)
180 {
181     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
182     int id = get_current_cpu(s);
183     timerblock_write(&s->timerblock[id], addr, value, size);
184 }
185 
186 static const MemoryRegionOps arm_thistimer_ops = {
187     .read = arm_thistimer_read,
188     .write = arm_thistimer_write,
189     .valid = {
190         .min_access_size = 4,
191         .max_access_size = 4,
192     },
193     .endianness = DEVICE_NATIVE_ENDIAN,
194 };
195 
196 static const MemoryRegionOps timerblock_ops = {
197     .read = timerblock_read,
198     .write = timerblock_write,
199     .valid = {
200         .min_access_size = 4,
201         .max_access_size = 4,
202     },
203     .endianness = DEVICE_NATIVE_ENDIAN,
204 };
205 
206 static void timerblock_reset(TimerBlock *tb)
207 {
208     tb->count = 0;
209     tb->load = 0;
210     tb->control = 0;
211     tb->status = 0;
212     tb->tick = 0;
213     if (tb->timer) {
214         qemu_del_timer(tb->timer);
215     }
216 }
217 
218 static void arm_mptimer_reset(DeviceState *dev)
219 {
220     ARMMPTimerState *s = ARM_MPTIMER(dev);
221     int i;
222 
223     for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
224         timerblock_reset(&s->timerblock[i]);
225     }
226 }
227 
228 static int arm_mptimer_init(SysBusDevice *dev)
229 {
230     ARMMPTimerState *s = ARM_MPTIMER(dev);
231     int i;
232 
233     if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) {
234         hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS);
235     }
236     /* We implement one timer block per CPU, and expose multiple MMIO regions:
237      *  * region 0 is "timer for this core"
238      *  * region 1 is "timer for core 0"
239      *  * region 2 is "timer for core 1"
240      * and so on.
241      * The outgoing interrupt lines are
242      *  * timer for core 0
243      *  * timer for core 1
244      * and so on.
245      */
246     memory_region_init_io(&s->iomem, OBJECT(s), &arm_thistimer_ops, s,
247                           "arm_mptimer_timer", 0x20);
248     sysbus_init_mmio(dev, &s->iomem);
249     for (i = 0; i < s->num_cpu; i++) {
250         TimerBlock *tb = &s->timerblock[i];
251         tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb);
252         sysbus_init_irq(dev, &tb->irq);
253         memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
254                               "arm_mptimer_timerblock", 0x20);
255         sysbus_init_mmio(dev, &tb->iomem);
256     }
257 
258     return 0;
259 }
260 
261 static const VMStateDescription vmstate_timerblock = {
262     .name = "arm_mptimer_timerblock",
263     .version_id = 2,
264     .minimum_version_id = 2,
265     .fields = (VMStateField[]) {
266         VMSTATE_UINT32(count, TimerBlock),
267         VMSTATE_UINT32(load, TimerBlock),
268         VMSTATE_UINT32(control, TimerBlock),
269         VMSTATE_UINT32(status, TimerBlock),
270         VMSTATE_INT64(tick, TimerBlock),
271         VMSTATE_TIMER(timer, TimerBlock),
272         VMSTATE_END_OF_LIST()
273     }
274 };
275 
276 static const VMStateDescription vmstate_arm_mptimer = {
277     .name = "arm_mptimer",
278     .version_id = 2,
279     .minimum_version_id = 2,
280     .fields = (VMStateField[]) {
281         VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
282                                      2, vmstate_timerblock, TimerBlock),
283         VMSTATE_END_OF_LIST()
284     }
285 };
286 
287 static Property arm_mptimer_properties[] = {
288     DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
289     DEFINE_PROP_END_OF_LIST()
290 };
291 
292 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
293 {
294     DeviceClass *dc = DEVICE_CLASS(klass);
295     SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
296 
297     sbc->init = arm_mptimer_init;
298     dc->vmsd = &vmstate_arm_mptimer;
299     dc->reset = arm_mptimer_reset;
300     dc->no_user = 1;
301     dc->props = arm_mptimer_properties;
302 }
303 
304 static const TypeInfo arm_mptimer_info = {
305     .name          = TYPE_ARM_MPTIMER,
306     .parent        = TYPE_SYS_BUS_DEVICE,
307     .instance_size = sizeof(ARMMPTimerState),
308     .class_init    = arm_mptimer_class_init,
309 };
310 
311 static void arm_mptimer_register_types(void)
312 {
313     type_register_static(&arm_mptimer_info);
314 }
315 
316 type_init(arm_mptimer_register_types)
317