xref: /openbmc/qemu/hw/timer/arm_mptimer.c (revision de15df5e)
1 /*
2  * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Copyright (c) 2011 Linaro Limited
6  * Written by Paul Brook, Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "hw/hw.h"
24 #include "hw/irq.h"
25 #include "hw/ptimer.h"
26 #include "hw/qdev-properties.h"
27 #include "hw/timer/arm_mptimer.h"
28 #include "migration/vmstate.h"
29 #include "qapi/error.h"
30 #include "qemu/module.h"
31 #include "hw/core/cpu.h"
32 
33 #define PTIMER_POLICY                       \
34     (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD |  \
35      PTIMER_POLICY_CONTINUOUS_TRIGGER    |  \
36      PTIMER_POLICY_NO_IMMEDIATE_TRIGGER  |  \
37      PTIMER_POLICY_NO_IMMEDIATE_RELOAD   |  \
38      PTIMER_POLICY_NO_COUNTER_ROUND_DOWN)
39 
40 /* This device implements the per-cpu private timer and watchdog block
41  * which is used in both the ARM11MPCore and Cortex-A9MP.
42  */
43 
44 static inline int get_current_cpu(ARMMPTimerState *s)
45 {
46     int cpu_id = current_cpu ? current_cpu->cpu_index : 0;
47 
48     if (cpu_id >= s->num_cpu) {
49         hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
50                  s->num_cpu, cpu_id);
51     }
52 
53     return cpu_id;
54 }
55 
56 static inline void timerblock_update_irq(TimerBlock *tb)
57 {
58     qemu_set_irq(tb->irq, tb->status && (tb->control & 4));
59 }
60 
61 /* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
62 static inline uint32_t timerblock_scale(uint32_t control)
63 {
64     return (((control >> 8) & 0xff) + 1) * 10;
65 }
66 
67 /* Must be called within a ptimer transaction block */
68 static inline void timerblock_set_count(struct ptimer_state *timer,
69                                         uint32_t control, uint64_t *count)
70 {
71     /* PTimer would trigger interrupt for periodic timer when counter set
72      * to 0, MPtimer under certain condition only.
73      */
74     if ((control & 3) == 3 && (control & 0xff00) == 0 && *count == 0) {
75         *count = ptimer_get_limit(timer);
76     }
77     ptimer_set_count(timer, *count);
78 }
79 
80 /* Must be called within a ptimer transaction block */
81 static inline void timerblock_run(struct ptimer_state *timer,
82                                   uint32_t control, uint32_t load)
83 {
84     if ((control & 1) && ((control & 0xff00) || load != 0)) {
85         ptimer_run(timer, !(control & 2));
86     }
87 }
88 
89 static void timerblock_tick(void *opaque)
90 {
91     TimerBlock *tb = (TimerBlock *)opaque;
92     /* Periodic timer with load = 0 and prescaler != 0 would re-trigger
93      * IRQ after one period, otherwise it either stops or wraps around.
94      */
95     if ((tb->control & 2) && (tb->control & 0xff00) == 0 &&
96             ptimer_get_limit(tb->timer) == 0) {
97         ptimer_stop(tb->timer);
98     }
99     tb->status = 1;
100     timerblock_update_irq(tb);
101 }
102 
103 static uint64_t timerblock_read(void *opaque, hwaddr addr,
104                                 unsigned size)
105 {
106     TimerBlock *tb = (TimerBlock *)opaque;
107     switch (addr) {
108     case 0: /* Load */
109         return ptimer_get_limit(tb->timer);
110     case 4: /* Counter.  */
111         return ptimer_get_count(tb->timer);
112     case 8: /* Control.  */
113         return tb->control;
114     case 12: /* Interrupt status.  */
115         return tb->status;
116     default:
117         return 0;
118     }
119 }
120 
121 static void timerblock_write(void *opaque, hwaddr addr,
122                              uint64_t value, unsigned size)
123 {
124     TimerBlock *tb = (TimerBlock *)opaque;
125     uint32_t control = tb->control;
126     switch (addr) {
127     case 0: /* Load */
128         ptimer_transaction_begin(tb->timer);
129         /* Setting load to 0 stops the timer without doing the tick if
130          * prescaler = 0.
131          */
132         if ((control & 1) && (control & 0xff00) == 0 && value == 0) {
133             ptimer_stop(tb->timer);
134         }
135         ptimer_set_limit(tb->timer, value, 1);
136         timerblock_run(tb->timer, control, value);
137         ptimer_transaction_commit(tb->timer);
138         break;
139     case 4: /* Counter.  */
140         ptimer_transaction_begin(tb->timer);
141         /* Setting counter to 0 stops the one-shot timer, or periodic with
142          * load = 0, without doing the tick if prescaler = 0.
143          */
144         if ((control & 1) && (control & 0xff00) == 0 && value == 0 &&
145                 (!(control & 2) || ptimer_get_limit(tb->timer) == 0)) {
146             ptimer_stop(tb->timer);
147         }
148         timerblock_set_count(tb->timer, control, &value);
149         timerblock_run(tb->timer, control, value);
150         ptimer_transaction_commit(tb->timer);
151         break;
152     case 8: /* Control.  */
153         ptimer_transaction_begin(tb->timer);
154         if ((control & 3) != (value & 3)) {
155             ptimer_stop(tb->timer);
156         }
157         if ((control & 0xff00) != (value & 0xff00)) {
158             ptimer_set_period(tb->timer, timerblock_scale(value));
159         }
160         if (value & 1) {
161             uint64_t count = ptimer_get_count(tb->timer);
162             /* Re-load periodic timer counter if needed.  */
163             if ((value & 2) && count == 0) {
164                 timerblock_set_count(tb->timer, value, &count);
165             }
166             timerblock_run(tb->timer, value, count);
167         }
168         tb->control = value;
169         ptimer_transaction_commit(tb->timer);
170         break;
171     case 12: /* Interrupt status.  */
172         tb->status &= ~value;
173         timerblock_update_irq(tb);
174         break;
175     }
176 }
177 
178 /* Wrapper functions to implement the "read timer/watchdog for
179  * the current CPU" memory regions.
180  */
181 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
182                                    unsigned size)
183 {
184     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
185     int id = get_current_cpu(s);
186     return timerblock_read(&s->timerblock[id], addr, size);
187 }
188 
189 static void arm_thistimer_write(void *opaque, hwaddr addr,
190                                 uint64_t value, unsigned size)
191 {
192     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
193     int id = get_current_cpu(s);
194     timerblock_write(&s->timerblock[id], addr, value, size);
195 }
196 
197 static const MemoryRegionOps arm_thistimer_ops = {
198     .read = arm_thistimer_read,
199     .write = arm_thistimer_write,
200     .valid = {
201         .min_access_size = 4,
202         .max_access_size = 4,
203     },
204     .endianness = DEVICE_NATIVE_ENDIAN,
205 };
206 
207 static const MemoryRegionOps timerblock_ops = {
208     .read = timerblock_read,
209     .write = timerblock_write,
210     .valid = {
211         .min_access_size = 4,
212         .max_access_size = 4,
213     },
214     .endianness = DEVICE_NATIVE_ENDIAN,
215 };
216 
217 static void timerblock_reset(TimerBlock *tb)
218 {
219     tb->control = 0;
220     tb->status = 0;
221     if (tb->timer) {
222         ptimer_transaction_begin(tb->timer);
223         ptimer_stop(tb->timer);
224         ptimer_set_limit(tb->timer, 0, 1);
225         ptimer_set_period(tb->timer, timerblock_scale(0));
226         ptimer_transaction_commit(tb->timer);
227     }
228 }
229 
230 static void arm_mptimer_reset(DeviceState *dev)
231 {
232     ARMMPTimerState *s = ARM_MPTIMER(dev);
233     int i;
234 
235     for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
236         timerblock_reset(&s->timerblock[i]);
237     }
238 }
239 
240 static void arm_mptimer_init(Object *obj)
241 {
242     ARMMPTimerState *s = ARM_MPTIMER(obj);
243 
244     memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s,
245                           "arm_mptimer_timer", 0x20);
246     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
247 }
248 
249 static void arm_mptimer_realize(DeviceState *dev, Error **errp)
250 {
251     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
252     ARMMPTimerState *s = ARM_MPTIMER(dev);
253     int i;
254 
255     if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) {
256         error_setg(errp, "num-cpu must be between 1 and %d",
257                    ARM_MPTIMER_MAX_CPUS);
258         return;
259     }
260     /* We implement one timer block per CPU, and expose multiple MMIO regions:
261      *  * region 0 is "timer for this core"
262      *  * region 1 is "timer for core 0"
263      *  * region 2 is "timer for core 1"
264      * and so on.
265      * The outgoing interrupt lines are
266      *  * timer for core 0
267      *  * timer for core 1
268      * and so on.
269      */
270     for (i = 0; i < s->num_cpu; i++) {
271         TimerBlock *tb = &s->timerblock[i];
272         tb->timer = ptimer_init(timerblock_tick, tb, PTIMER_POLICY);
273         sysbus_init_irq(sbd, &tb->irq);
274         memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
275                               "arm_mptimer_timerblock", 0x20);
276         sysbus_init_mmio(sbd, &tb->iomem);
277     }
278 }
279 
280 static const VMStateDescription vmstate_timerblock = {
281     .name = "arm_mptimer_timerblock",
282     .version_id = 3,
283     .minimum_version_id = 3,
284     .fields = (VMStateField[]) {
285         VMSTATE_UINT32(control, TimerBlock),
286         VMSTATE_UINT32(status, TimerBlock),
287         VMSTATE_PTIMER(timer, TimerBlock),
288         VMSTATE_END_OF_LIST()
289     }
290 };
291 
292 static const VMStateDescription vmstate_arm_mptimer = {
293     .name = "arm_mptimer",
294     .version_id = 3,
295     .minimum_version_id = 3,
296     .fields = (VMStateField[]) {
297         VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
298                                      3, vmstate_timerblock, TimerBlock),
299         VMSTATE_END_OF_LIST()
300     }
301 };
302 
303 static Property arm_mptimer_properties[] = {
304     DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
305     DEFINE_PROP_END_OF_LIST()
306 };
307 
308 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
309 {
310     DeviceClass *dc = DEVICE_CLASS(klass);
311 
312     dc->realize = arm_mptimer_realize;
313     dc->vmsd = &vmstate_arm_mptimer;
314     dc->reset = arm_mptimer_reset;
315     device_class_set_props(dc, arm_mptimer_properties);
316 }
317 
318 static const TypeInfo arm_mptimer_info = {
319     .name          = TYPE_ARM_MPTIMER,
320     .parent        = TYPE_SYS_BUS_DEVICE,
321     .instance_size = sizeof(ARMMPTimerState),
322     .instance_init = arm_mptimer_init,
323     .class_init    = arm_mptimer_class_init,
324 };
325 
326 static void arm_mptimer_register_types(void)
327 {
328     type_register_static(&arm_mptimer_info);
329 }
330 
331 type_init(arm_mptimer_register_types)
332